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Abstract—Despite five decades of clinical investigations, there
is currently no effective treatment for children diagnosed with
Diffuse Intrinsic Pontine Glioma (DIPG). We now understand
that DIPGs share the same histone 3 mutation and fatal prognosis
as other diffuse midline gliomas (DMGs), which led to the
introduction of a new entity referred to as DMG, H3 K27M
mutant. Indeed, therapeutics indicated for other brain neoplasms
have proven ineffective for DIPGs. We posit that by using a
polypharmacological approach to determine drug combinations
that target distinct mechanistic pathways of DIPG, it is more
likely that an efficacious treatment will be developed. We predict
monodrug therapies using a link prediction model trained on
various embeddings of a drug-disease regulatory network and
physicochemical properties of small molecules and proteins. We
validate the in silico predictions by performing cell viability
assays on patient-derived cell cultures for notable therapeutics.
Using FDA-approved drugs as a proxy for viability of a drug
pair for combinatorial use, we develop a model to predict the
synergism of the relationship between drug pairs. Finally, we
calculate the transitive probability that a drug pair contains
drugs that individually regulate DIPG, are blood-brain barrier
penetrant, and the drug pair are suitable for combined use. We
find only moderate agreement between computational predictions
and experimental results for both monodrug and multidrug
therapies, we believe due to the heterogeneity of the disease,
the difficulties of modelling brain permeability, and an inherent
literature bias in the knowledge graph. Such challenges need to
be overcome to develop an efficacious therapy for this disease.

I. INTRODUCTION

To date, there is no approved and satisfactory means of
treatment for DIPG. Repurposed drugs hold great promise as
potential treatments; namely due to their established safety
profiles and manufacturing routes, minimising time to use
these drugs at the point-of-care [1]. Whilst there have been
over 200 clinical trials for DIPG [2], none have shown great
clinical promise. This is in part due to a lack of knowledge of
the pathophysiology of the disease, lack of effective drugs tar-
geting tumorigenic pathways, and difficulties in drug delivery
due to the blood-brain barrier.

Systems pharmacology and network medicine (NM) ap-
proaches to drug discovery and drug repurposing have proved
efficient methods to highlight potential drug candidates [3],
[4]. NM treats biological networks as heterogeneous informa-
tion systems; correlating network topology and node properties
with biological processes, functions, pathways and interac-

Fig. 1. Polypharmacological drug repurposing strategy for DIPG. Illustration
displays a tripartite regulatory network of diseases, gene-encoded proteins and
drugs. Drugs are shown to have a circle of influence, centered around their
drug targets and regulators. This diagram illustrates the ideal drug pair for
treatment of DIPG. The two drugs do not share any drug targets or regulators,
and their only overlap is genes not thought to regulate the disease.

tions. From a systems biology point of view, a disease can
be seen as a selection of genes within a network, whose
misregulation culminates in changes in biological processes
and pathways. Similarly, drugs can be modelled by their drug
targets, and the propagatory effect that their perturbance has
upon the network. The aim of NM is to identify drugs and
diseases in which the network perturbance of the disease state
is reversed by the perturbance of the drug.

It is highly improbable that a drug can be developed with
the regulatory profile of a drug that exactly matches the genetic
(or network) profile of a disease. It is even more improbable
to suggest that a drug, designed for another indication, can
provide an exact match. Polypharmacology, the design or use
of pharmaceutical agents that act on multiple targets or disease
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pathways, can be utilised to overcome this. Multiple drugs can
be combined that each exhibit some overlap with differing
subsets of the disease’s regulatory genes. It has been shown
that combinatorial drugs exist within the ’Goldilocks’ zone
in gene interaction networks [5]. Within the network, drugs
must be sufficiently close to the disease to elicit a change in
gene function, but sufficiently distant from the other drugs to
ensure there are no antagonistic effects between them. The
above study showed that network proximity is correlated with
many similarities between drugs, such as gene ontology terms,
pathways, clinical, genetic and structural similarity. Ultimately,
drugs with lower network proximity will exhibit a larger dis-
parity in terms of mechanism of action. Polypharmacology has
seen success in many disease areas such as other cancers and
viruses, most notably the human immunodeficiency viruses.
We posit that a network polypharmacological approach could
provide benefit in identifying treatments for DIPGs (see Figure
1).

The interactome (the totality of interactions within a cell),
is largely unknown and fascinatingly complex. Drug target
interactions constitute much less than one percent of small-
molecules reported to bind to a protein. Drug regulatory
interactions with disease follow a similar distribution. The
lack of known information holds promise that there may be
novel indications for current drugs; through the reapplication
of drugs to new diseases (through known drug targets), or
through novel drug targets.

In recent years, graph-based machine learning (GML) meth-
ods have been applied to the task of link prediction, to system-
ically ’fill in’ these unreported interactions. Whilst many GML
methods exist, the most intuitive is graph convolutional net-
works. In contrast to conventional neural networks which use
arbitrary model architectures, graph convolutional networks
models explicitly replicate the network relating to their pre-
diction task. For example, using the aforementioned disease-
gene network, and tasked to predict novel gene regulators of
disease, genes which are functionally or physically similar
are more highly connected within the biological network and
by extension more connected in the model architecture. Such
genes will have greater influence on each other during the
training process of the model. One of the applications of GML
is the creation of node embeddings: transforming continuous
high dimensional information of node neighbourhoods to
low-dimensional dense vectors, to be used in downstream
machine learning tasks. Popular approaches include generating
embeddings by sampling a network via random walks, treating
the sample as corpus of words, and applying natural language
processing (NLP) techniques. Similar NLP methods have been
applied to amino acid sequences of proteins [6], and molec-
ular substructures of compounds [7] to generate embeddings
representing primary structure and molecular substructure of
proteins and compounds respectively.

II. RESULTS

A. Knowledge Graph

To identify repurposable drugs candidates for DIPG, we
must first understand the underlying mechanisms of onco-
genesis. To suggest combinatorial drug candidates, we must
further understand the biochemical interaction between the
therapeutics and assess the synergism of the relationship. From
a systems biology point of view, to model this we need to
create a network capable of capturing these biochemical and
regulatory interactions.

Fig. 2. Knowledge graph visualisation using Cytoscape. Size of the
node represents the number of nodes of this type in the graph.
SmallMol (molecule), Protein and Disease are the largest, alongside
SemanticConcept (gene ontology).

We created a knowledge graph predominantly based on
Pathway Studio, a biomedical database derived from relation-
ships extracted from over 30 million academic manuscripts
(see Methods). Each edge in the graph represents at least one
occurrence in scientific literature that has stated a relationship
between biological entities (that carboplatin down-regulates
DIPG). In total, the graph possessed 1.36 million nodes and
8.52 million edges, weighted according to their frequency
in literature (see Fig 2). From this we generated a tripartite
subgraph of diseases, drugs and genes. The schema for this
subgraph can be seen in Fig 3.

B. Blood-brain Barrier Permeability

The success of a drug to treat brain tumors is in part dictated
by the compound’s ability to cross the blood-brain barrier
(BBB), reaching the tumor at a concentration within the re-
quired therapeutic window. To ascertain the BBB permeability
of a drug, we trained a link prediction model using embeddings
based on molecular sub-structures (see Table 1 I). The selective
permeability of drugs crossing the BBB is controlled by: i)
ability to passively diffuse through the tight junctions between
endothelial cells lining cerebral microvessels, ii) the uptake
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Fig. 3. Graph database schema for simplified tripartite graph used in this analysis. Graph consists of drugs, diseases and genes. Inhibition and activation refer
to up- and down-regulation via any direct or indirect mechanism. Regulation refers to any direct or indirect mechanism in which the direction of regulation
is not known. Binds refers to direct binding between drug and gene product. FDA refers to a drug pair that are used as part of a multidrug regimen for any
indication. Penetrates refers to drugs that known to be BBB penetrant.

TABLE I
MODELS USED IN ANALYSIS. Edge COLUMN DESCRIBES THE LINK BEING

PREDICTED, FROM WHICH ONE OF THE THREE EMBEDDINGS WERE
GENERATED. THE Source AND Target COLUMNS DESCRIBE THE TYPE OF

EMBEDDINGS USED FOR THE ADDITIONAL RESPECTIVE SOURCE AND
TARGET FEATURES.

Name Edge Source Target

CiD Drug-inhibits-disease Mol2Vec Gene-regulates-disease
CcC Drug-combo-drug Mol2Vec Mol2Vec
CiB Drug-is-BBB+ Mol2Vec -

and efflux transporters and iii) cellular enzyme systems [8].
Our model specifically predicted the ability of a compound
to cross the BBB via passive diffusion. We predicted the
ability of all approved drugs (approved by either European
Medicines Agency or U.S. Food and Drug Administration).
The predicted BBB permeability of drugs constituting notable
multidrug therapies can be seen in Table V.

C. Monodrug Inhibition

1) In silico: To ascertain the therapeutic efficacy of drugs
for treatment of DIPG, we developed an embedding-based
link prediction model capable of predicting the existence of a

TABLE II
MODEL PERFORMANCE OVER 5 RANDOM FOLDS. STANDARD DEVIATION

SHOWN. Name ABBREVIATION REFERS TO MODELS IN TABLE I.

Name AUC F1 Accuracy

CiD 0.936±0.002 0.888±0.003 0.888±0.003
CcC 0.927±0.002 0.879±0.001 0.876±0.003
CiB 0.97±0.002 - -

relationship (otherwise known as an edge) between two nodes.
We trained link prediction models to predict drugs that inhibit
DIPGs, referred to as the drug-inhibits-disease model (see
Table I). As this edge is based on occurrence of biological rela-
tionships in literature, a predicted link with high probability for
the edge carboplatin-inhibits-DIPG indicates that if a research
group were to research the inhibitory regulation of the drug
upon the disease, there is high likelihood the regulation was
sufficient to report this regulatory relationship in an academic
paper. Top 20 predictions for each disease can be seen in Table
III. For each prediction, we cross-referenced and highlighted
known down-regulators reported in literature. From the top
20 predictions, 8 were already known for DIPG (true positive
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TABLE III
TOP 20 PREDICTED INHIBITORS OF DIPG. * INDICATES DISEASE

REGULATION IS ALREADY KNOWN

.

Drug Inhibition Drug Class

Carboplatin 0.984* Platinum containing cytotoxics
5-FU 0.978 Antimetabolites

Etoposide 0.976* Topo-isomerase inhibitors
Cisplatin 0.965* Platinum containing cytotoxics

Doxorubicin 0.964 Cytotoxic antibiotics
Ifosfamide 0.957 Alkylating agents
Carmustine 0.956* Alkylating agents
Irinotecan 0.953 Topo-isomerase inhibitors

Gemcitabine 0.950 Antimetabolites
Oxaliplatin 0.948 Platinum containing cytotoxics

Panobinostat 0.946* Other chemotherapeutics
Imatinib 0.946* Tyrosine kinase inhibitors

Temozolomide 0.945* Alkylating agents
Lomustine 0.943 Alkylating agents

Mitomycin C 0.943 Cytotoxic antibiotics
Thiotepa 0.941 Alkylating agents

Capecitabine 0.939 Antimetabolites
Docetaxel 0.936 Antimicrotubule agents
Vandetanib 0.935* Tyrosine kinase inhibitors
Bleomycin 0.935 Cytotoxic antibiotics

labels in the graph).
2) In vitro: To validate the in silico predictions, we mea-

sured cell viability in vitro. Using a subset of notable predic-
tions, we used multiple human glioma cell lines derived by
surgical biopsy from pediatric H3.3K27M DIPG patients and
measured their sensitivity to the drugs over a 72 hour period
(see Methods). The 50% inhibitory concentrations (IC50) for
each drug and cell line are tabulated in Table IV. The IC50

plots of viability as a function of dose can be seen in Figure
4.

D. Multidrug inhibition

1) In silico: The basis of this proposed drug repurposing
methodology is that drug combinations prove more effica-
cious treatments than compounds administered alone. Having
established potential therapeutics, we next wished to predict
if a drug pair is complementary. Researchers [5] pioneered
a system polypharmacological methodology, demonstrating
how using protein-protein interaction networks, network prox-
imity between drug targets of multiple drugs and disease
gene regulators can be used to determine the suitability of
those two drugs in treatment of the disease. In their work,
two proximity measures were employed; distance between
drugs (or more precisely distance between the closest drug
targets of each drug) and distance between each drug and
the disease (distance between the closest drug targets and
disease regulators). We posit that by generating node em-
beddings of a disease-drug regulatory bipartite network, the
embeddings will be able to capture both drug-drug proximity
and drug-disease proximity. There are notable differences

TABLE IV
IC50 VALUES AT 72 HOURS AFTER TREATMENT WITH ANTICANCER

AGENTS IN DIPG CELL LINES

Drug Cell line Mutation IC50

5-FU HSJD-DIPG007 H3.3K27M 38.89 µm
5-FU CNMC-D-967 H3.3K27M 19.38 µm

Oxaliplatin HSJD-DIPG007 H3.3K27M 16.81 µm
Oxaliplatin CNMC-D-967 H3.3K27M 1.854 µm
Oxaliplatin CNMC-D-762 H3.3K27M 0.052 µm

Lomustine HSJD-DIPG007 H3.3K27M 16.87 µm
Lomustine CNMC-D-967 H3.3K27M 5.077 µm
Lomustine CNMC-XD-760 H3WT 2.285 µm
Lomustine CNMC-D-1008 H3.3K27M 3.175 µm
Lomustine SU-DIPG-48 H3WT 16.87 µm

Cisplatin HSJD-DIPG007 H3.3K27M 6.761 µm
Cisplatin CNMC-D-762 H3.3K27M 45.06 µm
Cisplatin DRIz-D-105 H3.3K27M 0.32 µm

Mitomycin C HSJD-DIPG007 H3.3K27M 0.081 µm
Mitomycin C CNMC-D-762 H3.3K27M 6.101 µm

Irinotecan HSJD-DIPG007 H3.3K27M 1.450 µm

Vandetanib CNMC-D-967 H3.3K27M 8.138 µm

between the original work and ours. Whilst the original
metrics represented drug-drug-disease relationships in three
dimensions (three one-dimensional proximity measures), we
believe that an embedding-based approach would be able to
capture more latent information of node neighbourhoods in
the higher dimensions of the embeddings. The previous work
used protein-protein interactions alongside drug targets and
disease regulators to connect drugs and diseases whereas we
simply used drug-disease regulation. In a preliminary analysis,
we observed extremely high correlation between drug-disease
regulation, drug-drug target, and protein-protein interaction
bipartite subgraphs (in terms of node embedding similarity and
link prediction performance). Hence we believe that, whilst
this information is not explicitly supplied to the model, it
is implicitly captured in the drug-disease regulatory network
alone.

To perform this workflow, we ingested all FDA-approved
drug combinations as edges between drugs in our knowl-
edge graph. We assumed that all FDA-approved combinations
would exhibit a synergistic or complementary relationship, and
thus proved a valuable indicator for the efficacy of drug pairs.
We then trained a link-prediction model to predict if drug pairs
matched this complementary relationship of FDA-approved
drugs using embeddings based on a drug-disease regulatory
network and the Morgan substructure of the compounds.
Model metrics for the drug-combo-drug model can be seen
in Table II.

Using the above model, we predicted the likelihood that
all the possible pairs of drug candidates (drugs predicted or
known to down-regulate DIPG) would exhibit the complemen-
tary relationship of FDA-approved drugs. Next, we calculated
the transitive probability of combinatorial use of a drug pair to
treat DIPG (see Methods). To clarify, the transitive probability
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Fig. 4. IC50 measurements of DIPG cell lines treated with anticancer agents. Concentrations were determined using non-linear regression [log (inhibitor)
vs. response – variable slope (four parameters)] in GraphPad Prism 8.

of etoposide and doxorubicin for treatment of DIPG, is: the
summation of i) the individual probability of inhibition of
DIPG from use of etoposide, ii) the individual probability
of inhibition of DIPG from use of doxorubicin, and iii) the
probability that both drugs are complementary and comply
with the relationships of known FDA-approved drug pairs. The
top 25 predictions, ranked according to transitive probability
for DIPG and are shown in Table V.

2) In vitro: Observing the top 25 multidrug therapies in
Table V, we chose 3 notable candidates to test in silico.
Platinum drugs were by far the highest predicted therapeutics
in drug pairs, whilst also showing potent induction of cell
death in DIPG cell lines. As such, we decided to choose
drugs highly predicted to complement platinum drugs. 5-FU
was highly predicted to treat DIPG in combination with both
cisplatin and oxaliplatin, which we opted to test. Alongside
these drug pairs, we also treated the CNMC-D-967 cell line
with vandetanib in combination with oxaliplatin, similarly
highly predicted. All cell lines were treated for 72 hours.
Drug interaction landscapes according to the ZIP model are
illustrated in Figure 5. All drug combinations were classified
as additive. The most synergistic drug pair was 5-FU and
oxaliplatin with a ZIP score of 5.71. 5-FU and cisplatin
performed the worst, with a ZIP score of 1.75.

III. DISCUSSION

A. Monodrug Therapies

Using the top predictions of monodrug inhibition of DIPG,
we selected notable therapeutics and tested their effect on cyto-
toxicity in vitro. First, we tested 5-fluorouracil (5-FU), a well-
established chemotherapeutic for colorectal and other can-
cers including glioblastoma. The antimetabolite acts through
thymidylate synthase inhibition, blocking DNA replication
through incorporation of its metabolites into RNA and DNA
[9]. 5-FU was the second most highly predicted small molecule
inhibitor. Despite the strength of the prediction, 5-FU was
poorly effective against each DIPG cell line.

All three platinum containing; cytotoxics, oxaliplatin, cis-
platin and carboplatin, were highly predicted to inhibit DIPG.
We tested cell viability following treatment of oxaliplatin and
cisplatin in multiple cell lines. Interestingly, the CNMC-D-762
cell line responded to oxaliplatin but not cisplatin, with IC50

values of 0.052 µm and 45.06 µm, respectively. Oxaliplatin is
structurally similar to cisplatin, with the exception that two
amine groups are replaced by cyclohexyldiamine for improved
antitumor activity, and the chlorine ligands are replaced by the
oxalato bidentate derived from oxalic acid for improved water
solubility. Although such chemical optimizations may explain
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TABLE V
TOP 25 PREDICTED DRUG COMBINATIONS FOR DIPG. * INDICATES DISEASE REGULATION ALREADY KNOWN, † INDICATES DRUG PAIR ALREADY

FDA-APPROVED FOR ANOTHER INDICATION, ‡ INDICATES DRUG IS KNOWN TO PERMEATE THE BBB.

Drug 1 (D1) Drug 2 (D2) Inhibit D1 Inhibit D2 Combination BBB+ D1 BBB+ D2 Transitive

Carboplatin Cisplatin 0.984* 0.965* 9.411† 0.833 0.958 0.714
Cisplatin Temozolomide 0.965* 0.945* 0.882† 0.958 0.920 0.710
Cisplatin Ifosfamide 0.965* 0.957 0.912† 0.958 0.872 0.704
Cisplatin Oxaplatin 0.965* 0.948 0.929† 0.958 0.794 0.657
Cisplatin Cyclophosphamide 0.965* 0.847 0.942† 0.958 0.829 0.611

Carboplatin Oxaplatin 0.984* 0.948 0.960† 0.833 0.794 0.593
Cisplatin Imatinib 0.965* 0.946* 0.904† 0.958 0.746 0.590

Carboplatin 5-FU 0.984* 0.978 0.962† 0.833 0.757 0.584
5-FU Cisplatin 0.978 0.965* 0.815† 0.757 0.958 0.558

Cisplatin Thalidomide 0.965* 0.917* 0.685 0.958 0.956‡ 0.555
Carboplatin Temozolomide 0.984* 0.945* 0.766 0.833 0.920 0.546
Carboplatin Ifosfamide 0.984* 0.957 0.795 0.833 0.872 0.545

Cisplatin Gemcitabine 0.965* 0.950 0.872† 0.958 0.705 0.540
5-FU Oxaliplatin 0.978 0.948 0.929† 0.757 0.794 0.518

Cisplatin Lenalidomide 0.965* 0.825 0.737 0.958 0.921 0.517
Cisplatin Tegafur 0.965* 0.773 0.926† 0.958 0.780 0.516
Cisplatin Gefitinib 0.965* 0.870 0.901† 0.958 0.706 0.512

Carboplatin Thalidomide 0.984* 0.917* 0.712 0.833 0.956‡ 0.512
Ifosfamide Oxaliplatin 0.956 0.948 0.808 0.872 0.794 0.508

Temozolomide Vorinostat 0.945* 0.805 0.847† 0.920 0.849 0.503
Cyclophosphamide Lenalidomide 0.847 0.825 0.936† 0.829 0.921 0.499

Oxaliplatin Vandetanib 0.948 0.935* 0.879† 0.794 0.804 0.497
Thalidomide Cyclophosphamide 0.917* 0.847 0.807† 0.956‡ 0.829 0.497

5-FU Ifosfamide 0.978 0.957 0.802 0.757 0.872 0.496
Carboplatin Gemcitabine 0.984* 0.950 0.901† 0.833 0.705 0.495

some of the difference in response, such a disparity in response
between platinum analogues is surprising. Oxaliplatin-based
regimens have been shown to be superior over cisplatin-based
in tumor remission [10]. The physicochemical properties of
platinum drugs facilitate relatively good systemic delivery of
the drugs, and excellent convection enhanced delivery [11].
Promising CNS penetrance and inhibition suggest oxaliplatin
may be a suitable candidate for combinatorial treatment of
DIPG.

Lomustine, an alkalating agent, responded well to vari-
ous cell lines, the lowest of which exhibiting an IC50 of
2.285 µm (CNMC-XD-760). Lomustine is a highly lipophilic
nitrosourea compound which undergoes hydrolysis to form
reactive metabolites that cause alkylation and cross-linking of
DNA and RNA, in turn inducing cytotoxicity. Due to its high
lipophilicity, lomustine is highly BBB penetrant and reaches
the tumor at therapeutic concentrations. Thus, lomustine may
be suitable for use as part of a multidrug regimen.

Next, we tested mitomycin C. The antibiotic functions
by selectively inhibiting the synthesis of DNA through the
cross-linking of complementary strands. Whilst mitomycin C
responded well to the HSJD-DIPG007 cell line, with an IC50

of 0.081 µm, the drug has been shown to increase levels of
P-glycoprotein [12]. P-glycoprotein is one of the major efflux
transporters at the BBB, and thus mitomycin may restrict the

penetration of various chemotherapeutics.
Irinotecan, a well known topo-isomerase inhibitor, re-

sponded well to the HSJD-DIPG007 cell line with an IC50 of
1.45 µm. Other topo-isomerases such as etoposide have been
used in the treatment of DIPG. Etoposide boasts a higher BBB
penetrance and was more strongly predicted to inhibit DIPG,
suggesting the drug may be more suitable to treat DIPG than
irinotecan.

Overexpression and gene amplification of epidermal growth
factor receptor have been reported in a subset of DIPGs [13].
Glioblastomas are some of the most vascularised tumors in
which angiogenesis has a critical role in tumorigenesis [14].
Vandetanib, a small-molecule inhibitor of VEGF receptor 2,
epidermal growth factor receptor, and RET has been suggested
as a potential therapeutic to restore abhorrent levels of EGFR.
We tested Vandetanib against the CNMC-D-967 cell line, how-
ever the drug showed only a moderate decrease in induction
of cell death, with an IC50 of 8.138 µm.

B. Multidrug Therapies

We tested 5-FU with both oxaliplatin and cisplatin, along-
side vandetanib with oxaliplatin. Oxaliplatin and 5-FU were
highly predicted, and have been suggested as a potential
treatment for multiple neoplasms such as advanced colorectal
cancer [15]. Despite this, the combination was classified as
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Fig. 5. The drug interaction landscape based on the ZIP model. CNMC-D-967 cell line treated with anticancer agents: cisplatin and 5-fluorouracil, oxaliplatin
and 5-fluorouracil or oxaliplatin and vandetanib combination for 72 hours. A) 8x11 %Inhibition dose–response matrix. B) calculated 3D synergy maps,
SynergyFinder 2.0: visual analytics of multi-drug combination synergies. Synergy score: Less than -10: the interaction between two drugs is likely to be
antagonistic; From -10 to 10: the interaction between two drugs is likely to be additive; Larger than 10: the interaction between two drugs is likely to be
synergistic.

additive according to the ZIP model of drug synergy. Similarly,
cisplatin and 5-FU were classified as additive. Oxaliplatin,
the superior analogue of cisplatin showed marginally greater
synergy with 5-FU, presumably due the drug’s improvements
in terms of antitumor activity and water solubility.

Ultimately, despite all three drug combinations exhibiting
high transitive probabilities, their combined effect was not
greater than that predicted by their individual potency. Low
correlation was found between the in silico and in vitro mod-
els. Whilst all three drug combinations have been proposed as
therapies for treatment of DIPG, their relationships were not
synergistic. Such a results highlights the unmet need and room
for improvement for multidrug therapies for DIPG.

Platinum drugs demonstrated the largest effect on cell
viability, therefore one could logically conclude research ef-
forts should focus on finding a supplementary drug that is
synergistic with platinum drugs. It is pertinent to remember,
however, that platinum drugs demonstrate desirable inhibition
of cell growth only in certain cell lines. This variance of
response across all cell lines illustrates the heterogeneity of
the disease and the complexity of the challenge facing re-
searchers and health-care professionals. It highlights the need
for further basic research to stratify such disease endotypes
and to understand which endotype respond to which therapy.
Until such stratification can be achieved at the point of care,
perhaps we should question what kind of relationship a drug
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pair should ideally possess. (Leaving aside the improbable
situation where a wonderdrug or wonder-drug-pair will be
developed that inhibits growth of all DIPG endotypes.) Is it
desirable to find a synergistic drug combination that inhibits
one endotype of DIPG? Or is it more desirable to find an
additive drug pair that target two distinct endotypes, to which
a greater proportion of patients respond to therapy?

C. Methodology

One of the main challenges of finding effective treatment
of DIPG is the necessity to deliver the drug to the tumor at
therapeutic concentrations. Whilst passive diffusion is highly
correlated with lipophilicity and thus can be accurately pre-
dicted, the situation is much more complex. Efflux transporter
proteins (such as those belonging to the adenosine triphosphate
binding cassette superfamily), have a major role in the deliv-
ery of chemotherapeutics. It is becoming increasingly clear
many of the common drugs used to treat glioblastomas have
an effect on efflux transporters such as P-glycoprotein, the
multidrug resistance protein or the breast cancer resistance
protein. Whilst our analysis highlighted drugs predicted to
be BBB penetrant via passive diffusion, it did not take into
consideration interactions between the potential drugs and
efflux transporters.

The drug-combo-drug pairwise model finds high dimen-
sional correlations between drugs (in terms of node neigh-
bourhood and physicochemical properties of the compounds)
to determine if two drugs are suitable for combinatorial use
(for any indication). Due to the unique requirement of brain
cancers to be BBB penetrant, the model would not take this
into consideration. Models are only as good as the data they
are trained on. As there is no gold standard therapeutic to treat
glioblastomas, the drug-inhibits-disease model was trained on
less than ideal positives (regulators reported in literature to
inhibit brain neoplasms but have poor BBB penetrance), and
thus predictions will reflect this obfuscation.

In silico and in vitro disease models are approximations of
a disease. Such approximations have their shortcomings. In
terms of our computational analysis, an important note is that
the above drugs have vastly differing degrees of connectivity
in the knowledge graph. A well-used drug such as imatinib
is used in the treatment of many neoplasms and thus has
many reported regulation edges in the graph. Lesser known
kinase inhibitors such as trametinib have an order of magnitude
fewer edges. Such differences in degree indicate different prior
probabilities of treatment. In other words, nodes in a graph
with higher connectivity are statistically more likely to be
connected. This prior probability is reflected in the probability
distributions. Imatinib will have a considerably higher average
probability compared to trametinib thus the model will be
biased to predict more highly connected drugs. All of the top
20 predicted inhibitors of DIPG are well-known therapeutics
for treatment of the disease, indicating the prevalence of this
bias. In contrast, high throughput screening of multiple DMG
cultures (without this bias) yielded promising investigational
drugs such as marizomib [16]. It is difficult to ascertain to what

extent predictions are dependent on the therapeutic efficacy of
the drug, or simply on this literature bias. Recently researchers
have attempted to prevent the encoding of node degree into
embeddings [17], [18]. It would be interesting to see if the use
of such embeddings in a link prediction model would highlight
more unknown left-of-field therapeutic candidates.

For our in silico models, we used a literature-derived
knowledge graph. The DIPG disease node represents any
occurrence in literature that referenced the disease. To clarify,
the disease node is a conflation of all in vitro and in vivo
models, and any clinical observations. All disease endotypes
are similarly conflated. There is a known lack of agreement
between observations seen in in vitro DIPG models and in vivo,
thought to be primarily due to the mechanisms preventing drug
delivery. Whilst a machine learning model that predicted IC50

values for a specific cell line would be more correlated with the
experimentally validated cell viability, this would ignore the
problem of drug delivery. By using a literature-derived method
(that involves a conflation of all methods) we hoped this would
provide more less biased results. One obvious shortcoming of
this methodology is there is no differentiation between disease
subtypes. As can be seen in Table IV, drug responses differ
greatly between different patient-derived cells. Combining en-
dotypes with obviously disparate cellular environments may be
naı̈ve and impede understanding of the underlying tumorigenic
mechanisms.

Link prediction on knowledge graphs signifies that the area
under the receiver operating characteristic curve is not 0.5
for random guesses of connecting source and target nodes:
it is much higher. Researchers have shown prior probability
of treatment (the likelihood two nodes are connected simply
by their node degrees) can be achieved by randomly permuting
bipartite graphs multiple times (swapping edges but preserving
node degree) and noting the average probability of an edge
as a function of source and target degree. Ensuring an edge
prediction is larger than the prior probability of connection,
guarantees local network topology suggests the presence of an
unreported edge, not simply the global degree distribution. The
prior probability dominates predictions on most networks. One
recent attempt to overcome this uses a Bayesian approach dur-
ing the training process of the graph embeddings; modelling
the prior probability as the prior in the Bayes formula [18].
By explicitly modelling the prior, it ensures it is not captured
in the graph embedding.

Machine learning methods are often cursed by their lack
of explainability. Specifically, the optimized parameters of
supervised models are hard to interpret. Whilst embeddings
methods have proved powerful strategies to capture continuous
data into discrete and dense vector representations, they obfus-
cate explainability even further. Embeddings are used as the
features of a model. As each dimension is the output of another
vectorization model, they are completely uninterpretable.

FDA approved drugs were used as a proxy to measure
the complementary action of two drugs. This may not be
the best approach to ascertain this relationship. Drug synergy
dramatically varies between cell lines. If one wished to predict
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synergy for certain drugs pairs in certain cell lines, there are
more established and accurate methods available [19]. Whilst
FDA approval was shown to be correlated with drug synergy,
the majority of drug pairs are different drug classes such as
antivirals and kinase inhibitors are often indicated together.
If one wished to predict complementary drugs acting upon
different disease mechanisms, it may be beneficial to remove
all drug pairs from the same drug class from the training set
of the model. Alternatively, this could easily be achieved by
imposing a threshold of network proximity (cosine distance),
to ensure functional and mechanistic dissimilarity between
drugs.

This workflow trained and predicted on only FDA-approved
drugs. Whilst there are a few thousand drugs in the graph,
there are over 1 million compounds. Rerunning the analysis
on all compounds may highlight i) drug-like compounds with
therapeutic potential and ii) potential nutraceutical candidates.
We did not initially include compounds, as the degree of
connectivity massively varies between drugs and compounds,
to a much greater extent than diseases. We believed this in-
creased prior probability of connection would have dominated
the predictions. The prior probability issue should be resolved
before rerunning the analysis.

Biomedical knowledge graphs are largely incomplete. On
average, well under one percent of possible relationships are
reported for edges such as regulation, binding and expression.
This presents a problem for link prediction models; the true
distribution of positive and negative classes is unknown, and
it is impossible to differentiate a true (but unreported) positive
from a false positive. It is preferable to train your model on
a class balance that matches your real world distribution. In
this application, this is not possible. Moreover, when your
real world distribution is known, optimizing your classification
threshold becomes a much simpler task. We used maximal f1
score to determine the optimal threshold. This often meant
an unrealistic increase in the number of positive predicted
samples. For 3302 drugs and 19387 diseases, there are 163590
known inhibitors (0.25 percent). The average positive class for
a random subset of predicted regulators above the optimal
threshold of 0.634 was 28 percent, a 112-fold increase in
regulators. This is obviously a gross overestimation in the
number of unreported regulators and a major limitation in our
approach. We encourage predictions to be analysed only in the
context of the relative list of regulators for that disease. An
alternative approach taken to decide classification threshold
would be based largely on the known class distribution [4].

The knowledge graph provides an incredible amount of
biological information, and we only used a small amount
of this information. Each edge in the graph was weighted
according to the absolute occurrence that this relationship
appears in scientific literature. It is logical to believe the
number of times a relationship is reported is correlated with its
strength or confidence. This does, however, introduce a new
level of knowledge bias. Genes such as p53 have received
tremendous attention. Does this signify said gene’s importance
over it’s less researched genetic counterparts? In previous

unpublished analyses, we attempted to utilise this weighting
through numerous normalisation strategies such as frequency
of node, edge and path and log-scaled reference counts. We
found that such strategies only generalised solutions; wherein
well-researched areas performed better, whilst less-researched
performed worse. An interesting approach would be to nor-
malise nodes according to the weighted edges that connect
to it (weighted by reference count). In this case, for a well-
researched node with 10 edges and an individual edge weight
of 50, each edge would be equivalent to a node with 10
edges and an edge weight of 5. This may also solve the prior
probability issue stated earlier, as for nodes with fewer edges,
each edge will be given higher importance, partially mitigating
the dominating effect of nodes with high degrees.

CONCLUSION

There are currently no satisfactory means of treatment
of DIPG. Using a network polypharmacology approach, we
highlighted multidrug therapeutics to be used for the treatment
of DIPG. We calculated transitive probabilities for each drug
pair based on the predicted regulatory action and blood-brain
barrier permeability of each drug, and the predicted synergy of
the drug pair. Whilst top predictions yielded drug combinations
commonly used for other neoplasms, the drug pairs were seen
to be only additive when measured in a combinatorial drug
synergy assay. DIPG cell lines showed dramatically different
responses when treated by monodrug therapies, illustrating
the heterogeneity of the disease. Challenges such as this
heterogeneity, difficulties of modelling brain permeability, and
an inherent bias in literature-derived link prediction methods
need to be overcome before a satisfactory treatment for DIPG
is developed.

IV. METHODS

A. Knowledge Graph

We created a knowledge graph predominantly based on
Pathway Studio, a literature-derived database that uses nat-
ural language processing techniques to leverage biological
relationships from over 30 million literary sources. Pathway
Studio also contains the relevant subset of Reaxys Medicinal
Chemistry, a database of small-molecule protein bioactivities,
pertaining the species homo sapiens, Mus muccus, and Rattus
rattus, and rattus norvegicus. We appended this core graph
with gene ontologies [20], drug side effects from SIDER [21]
and drug-target information from Drug Central [22]. We also
created similarity links such as protein-protein similarity (Lo-
cal Smith Waterman of over 0.5), and molecule substructure
similarity (Tanimoto similarity of Morgan Fingerprint of over
0.5). After refactoring and harmonization, the graph possessed
1.36 million nodes and 8.52 million edges and over 200 edge
types, weighted according to their occurrences in literature.

For each molecule with an InChI code or key within the
graph, we generated a Mol2Vec embedding, using the pre-
trained embeddings [7] were trained on 20 million compounds
from the ZINC database [23]. As all other embeddings had a
dimension of 100, and as the model requires embeddings of
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the same size, we used the scikit-learn version of principal
component analysis to reduce the embedding down to the re-
quired size. Summation of the explained variance showed only
1.3 percent of information was lost. Similarly, we generated
embeddings for proteins based on trimers of their amino acid
sequence using the pretrained model of ProtVec [6], trained
on 551,754 proteins from Swiss-Prot. Because trimers can
start at the first, second or third amino acid in a protein
sequence, three embeddings were generated per protein. As per
the methodology of the original paper, we took the element-
wise average of these.

For this analysis, we created a tripartite subgraph of dis-
eases, genes and drugs, connected via multiple regulatory
edges. Said edges included up- and down-regulation via any
direct or indirect mechanism. For example, the edge drug-
inhibits-gene conflates expression, indirect regulation, direct
binding (agonism and antagonism), and promoter binding.
We also provided a conflated edge of both up- and down-
regulation.

B. Monodrug Inhibition Prediction

To determine if a drug down-regulated a disease or gene,
we developed an embedding-based link prediction model
based on multiple disease regulatory bipartite networks and
additional physicochemical and structural information of the
source and target nodes (see Fig 6). The embeddings were used
by a random forest classifier (scikit-learn implementation),
optimized via hyper-parameter bayesian optimization. We as-
sessed multiple node embedding strategies in this project. For
embedding choice in the link prediction model, we assessed
GraRep, nodevec, LINE and SVD model. All models used
the BioNev [24] implementation, except node2vec, for which
we used the C++ version from SNAP [25]. Random search
was employed to determine models with the highest AUC
score. We also investigated different mathematical functions
to create an edge embedding from two node embeddings
(concatenation, element-wise average, hadamard, L1 and and
L2 loss). Because our model used two different types of
embeddings for each edge (for example: i) graph embedding
for protein and molecule, and ii) ProtVec and Mol2vec respec-
tively), employing the hadamard edge function signifies, the
hadamard was calculated both for graph embeddings, and the
for Mol2vec and ProtVec separately before concatenating. We
also investigated stacking models to create soft-voting bagging
classifiers. Because a subset of edges must be removed and
used to train the model, we postulated that training multiple
models on different subsets, and combining their predic-
tions via a weighted average according to the performance,
would increase predictive power of the stacked model. Results
showed, however, that increase was extremely marginal (under
0.5 percent increase in AUC). Due to the doubling of training
time, we deemed this increase unnecessary. The following
metrics were used to determine model performance: AUC, F1
score, accuracy, and precision. The best classification threshold
was determined by the finding at which F1 score was highest

(the point at which accuracy and precision intersect). Scores
were averaged over 5 random folds.

For the protein-drug regulation prediction, node neighbour-
hood embeddings of dimension d for source and target ns,t,
were complemented with structural information: es protein
ProtVec amino acid trimer embeddings, and et Mol2Vec
Morgan fingerprint substructure embeddings, where:

ns, nt, es, et = Rd

The L2 norm between pairs of node and structural em-
beddings were calculated via L2 before the vectors were
concatenated together:

nst = f(ns, nt)

est = f(es, et)

xst = f(nst, est)

fl2(x, y) = ‖x− y‖2

fconcatenate(x, y) = x⊕ y

C. Drug Combination Prediction

We ingested FDA approved drugs from the DrugCombDB
dataset [26], mapped to the drugs in our knowledge graph
by PubChem CID. As multidrug therapies exist within the
dataset (more than two drugs), we split these into all possible
two pair combinations of these multidrug combinations, and
individually added these to the graph. Next, we trained a link-
prediction model to predict the FDA Combination relationship
between two drugs. This model differed from the previous
models used to predict down-regulation of diseases, genes and
cellular processes. The previous models generated embeddings
of the bipartite subgraph of the edge it was predicting, along-
side an additional embedding based on an additional network.
To clarify, the model to predict drug-inhibits-disease edges
used embeddings based on a drug-inhibits-disease subgraph
alongside embeddings based on a gene-inhibits-disease sub-
graph. In contrast, this model, trained to predict the drug-
combo-drug edge, did not generate embeddings from a drug-
combo-drug bipartite graph, whereas it used only a drug-
combo-drug subgraph. As the GraRep embedding is trans-
ductive, one can only generate embeddings if the node exists
within the graph. Thus, using embeddings based on drug-
combo-drug would limit predictions to the 572 drugs currently
approved for combinatorial use. In contrast, using the drug-
combo-drug subgraph permitted predictions for 2861 drugs.
We investigated the effect of using the FDA combination edges
alongside the drug-disease regulatory edges, which yielded a
2 percent increase in AUC. We deemed the decrease in utility
and drug scope more important than this increase in model
performance.

We calculated transitive probability of treatment pTAB
using

the equation below, where pAdown
is the probability drug A

down-regulates the disease, pBdown
is the probability drug B
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Fig. 6. Workflow for model generation for drug-inhibits-disease edge. First, we split the graph into two subgraphs, a disease-gene subgraph (Red and
green nodes, respectively), and a disease-mol subgraph (red and blue, respectively). 1) We generated embeddings for disease and gene nodes (Embeddings
A). 2) We removed a subset of the edges of the disease-mol subgraph and generate node embeddings for disease and molecules (Embeddings B). 3) We
generated embeddings based on the molecular substructure (Embeddings C). We now have two embeddings for each disease, and two for each molecule. To
summarise, Embeddings A describe the neighbourhood or proximity of disease and genes in a disease-gene regulatory network (how close is one disease to
another). Embeddings B describes the neighbourhood or proximity of a disease and molecule in a disease-mol regulatory network. Embeddings C describe
the physicochemical similarity of compounds. 4) We combined the two embeddings for each disease and molecule (AB and BC, respectively), and used the
edges removed from the disease-mol network to train a model capable of predicting the existence of a link between a disease and a molecule. In the example
below, we can see there were two known disease-gene pairs (the regulation has been stated in Pathway Studio), and two random disease-gene pairs. We can
see that the model has predicted the final pair to actually be an unreported regulation link.

down-regulates the disease and pCAB
is the probability drug

A and drug B are FDA-approved (complementary):

pTAB
= pAdown

× pBdown
× pCAB

D. Blood-brain Barrier Permeability Prediction

To predict if a drug was BBB+ or BBB-, we created a
simple predictive model. For training data, we used Adenot
and Lahana’s dataset [27]. Once mapped onto molecules in
our graph, there were 1220 BBB+ drugs and 291 BBB-. This
class imbalance threatened to dominate the predictions towards
the majority class (BBB+). To prevent this, we used Synthetic
Minority Oversampling Technique (SMOTE) to artificially
synthesise negative samples. We used pretrained Mol2Vec

embeddings, based on Morgan substructures, trained on 20
million molecules from ZINC [23] as features for our model.
The pretrained Mol2Vec embeddings had a dimension of 300.
Since the minority class had only 291, we applied principal
component analysis (PCA) to reduce the embeddings until
0.95 of the variance was still conserved. This created reduced
embeddings of 35 dimensions; a significant reduction in vector
size, whilst only losing 0.05 percent of information within
the embeddings. We used a Bayesian-optimized random forest
classifier for this model. To validate the model we used 10-fold
stratified cross validation. Importantly, to prevent data leakage,
SMOTE and PCA were applied within each fold of the training
data. Artificially generated samples were only used for training
and not testing.
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A previous study [28] showed drug indications and side
effects can be used to predict if a drug is BBB+ or BBB-. Their
logic dictates that any drug that exhibits clinical phenotypes
associated with the brain must be able to pass or circumvent
the BBB via any mechanism. The study used grouped brain-
associated phenotypes as features. We replicated this analysis
by replacing Mol2Vec with embeddings based on i) drug-
disease regulatory network and ii) drug-disease association
network. We reasoned that the embeddings would be able to
capture the brain-associated diseases and therefore would be
informative to the model. The replacement with both of these
embeddings represented an 5 percent decrease in AUC score.

We calculated the transitive probability of treatment pCAB

using a similar equation as in Drug Combinations, however
extended to include the probability of BBB permeability for
each drug (pABBB+

and pBBBB+
for drug A and drug B

respectively).

pTAB
= pAdown

× pBdown
× pCAB

× pABBB+
× pBBBB+

E. Cell Viability

1) Patient-derived cell cultures: All human cell cultures
were generated from biopsy or autopsy samples collected in
accordance with informed consent and in compliance with the
dissociation protocol for DIPG cells from Biopsies established
at the Children’s National Hospital (CNMC) in Washington
(IRB protocols, #1339) and DIPG Research Institute Zurich
(BASEC-Nr. : 2019-00615). HSJD-DIPG007 cells were kindly
provided by Dr. Angel Montero Carcaboso at the Hospi-
tal Sant Joan de Deu, Barcelona. Cells were maintained
in NeuroCult NS-A Basal Medium with NS-A Proliferation
Supplement (STEMCELL Technologies, Vancouver, CA), 1X
Antibiotic/Antimycotic (ThermoFisher), 40 ng/mL epidermal
growth factor (PeproTech, NJ, USA), and 40 ng/mL fibroblast
growth factor (PeproTech, NJ, USA). All cell culture models
were validated by DNA fingerprinting.

2) Drugs and Cell Viability Assays: Drugs used in this body
of work were purchased from Selleckchem. For drug treatment
cell viability cells were plated in 96-well plates at 5000 cells
per well and cultured 72 hours in the presence of drug in
quadruplicate. Experiments were repeated for validation. Cell
viability was measured using a CellTiter-Glo R© Luminescent
Cell Viability Assay (G7570, Promega) and data were col-
lected on a Biotek Cytation 3 luminescence reader. IC50

concentrations were determined using non-linear regression
[log (inhibitor) vs. response – Variable slope (four parameters)]
in GraphPad Prism 8 (LaJolla, CA).

3) Combinatorial Drug Synergy: For testing combinatory
effects of two drugs, the cells were treated with each drug
individually or in combination for 72 hours before subjecting
to CellTiter-Glo assay. Drug interactions were evaluated using
the SynergyFinder 2.0 platform [29], which uses the Zero
Interaction Potency (ZIP) [30] model for quantifying drug
synergy.
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