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Summary. 

The quiescent muscle stem cell (QSC) pool is heterogeneous and generally characterized by the 

presence and levels of intrinsic myogenic transcription factors. Whether extrinsic factors maintain 

the diversity of states across the QSC pool remains unknown. The muscle fiber is a multinucleated 

syncytium that serves as a niche to QSCs, raising the possibility that the muscle fiber regulates the 

diversity of states across the QSC pool. Here we show that the muscle fiber maintains a continuum 

of quiescent states, through a gradient of Notch ligand, Dll4, produced by the fiber and captured 

by QSCs. The abundance of Dll4 captured by the QSC correlates with levels of the SC identity 

gene, Pax7. Niche-specific loss of Dll4 decreases QSC diversity and shifts the continuum, towards 

more proliferative and committed states. We reveal that fiber-derived Mindbomb1 (Mib1), an E3 

ubiquitin ligase activates Dll4 and controls the spatial localization of Dll4. In response to injury, 

with a Dll4-replenished niche, the normal continuum and diversity of SC pool is restored, 

demonstrating bi-directionality within the SC continuum. Our data shows that a post-translational 

mechanism controls spatial heterogeneity of Notch ligands in a multinucleated niche cell to 

maintain a continuum of diverse states within the SC pool during tissue homeostasis. 

 

Introduction. 

Adult muscle stem cells (SCs) are essential for muscle tissue repair. Subsets of the SC pool 

are endowed with self-renewal potential and others are restricted to differentiation (Chakkalakal 

et al., 2014; Kuang et al., 2007; Rocheteau et al., 2012; Scaramozza et al., 2019). This is consistent 

with a unidirectional and hierarchical relationship between stem cells. Intrinsic and extrinsic cues 

regulate cell fate decisions of activated SCs to self-renew or differentiate (Dumont et al., 2015; 

Kuang et al., 2008). Due to low muscle tissue turnover, SCs exist predominantly in a quiescent 
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state for the majority of adult life. Through single cell RNA-sequencing (scRNA-seq) and 

transgenic reporter mice it is appreciated that the QSC pool is molecularly and phenotypically 

heterogeneous (Chakkalakal et al., 2014; De Micheli et al., 2020; Dell'Orso et al., 2019; Kimmel 

et al., 2020; Kuang et al., 2007; Rocheteau et al., 2012). These different cell states enable SCs to 

exhibit functional heterogeneity in response to activation and injury cues. It is not known how the 

diversity of states are maintained across the QSC pool. SC quiescence is actively maintained by 

paracrine-acting cues from the muscle fiber, serving as a niche cell (Bischoff, 1990; Eliazer et al., 

2019; Goel et al., 2017). In contrast to niche cells across many stem cell compartments, each 

muscle fiber is a multi-nucleated syncytium, that exhibits transcriptional diversity across the 

myonuclei, to provide spatial control for specialized functions (Kim et al., 2020; Petrany et al., 

2020). Does the multinucleated niche cell regulate the diversity of states across the QSC pool?  

 

Results. 

Adult QSCs exist in a continuum of molecular cell states. 

To answer this question, we first asked whether the QSC pool is composed of a continuum 

of cell states during tissue homeostasis. We stained freshly isolated single muscle fibers from adult 

mice, with the SC identify marker, Pax7 (Lepper et al., 2011; Sambasivan et al., 2011; von 

Maltzahn et al., 2013) and Ddx6 (p54/RCK), an RNA helicase found enriched in P-bodies and 

stress granules (Buchan and Parker, 2009). Pax7 and Ddx6 are expressed in QSCs and decrease 

during activation and commitment (Crist et al., 2012; Zammit et al., 2006). A density map of Pax7 

and Ddx6 expression shows a broad range of expression levels across the QSC pool (Figure 1A- 

1C). A bivariate plot shows a positive correlation between Pax7 and Ddx6 (Figure S1A). 

Therefore, based on the expression profile of two different markers, the QSC pool is composed of 
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a continuum of molecular states at tissue homeostasis. This supports models inferred from scRNA-

seq analysis on SCs (De Micheli et al., 2020; Dell'Orso et al., 2019; Kimmel et al., 2020). 

To determine the fate of cells along the cell state continuum, we isolated Pax7high, 

Pax7medium and Pax7low -expressing populations of SCs from Pax7-nGFP reporter mice (Rocheteau 

et al., 2012), and analyzed their potential for cell cycle entry and differentiation. As expected, the 

Pax7low population entered cell cycle and differentiated faster than the Pax7high expressers, 

suggesting that Pax7high SCs are in a more dormant state and the Pax7low SCs exist in a primed 

state (Rocheteau et al., 2012). The Pax7medium population is in an intermediate molecular and 

phenotypic state between the Pax7high and Pax7low QSCs (Figure S1B- S1G). Therefore, the QSC 

pool exists as a continuum of phenotypic cell states. 

 

Heterogeneous expression of Dll4 in a multinucleated niche cell is coupled to QSC diversity  

The multinucleated muscle fiber functions as a niche cell for the SC, regulating the depth 

of quiescence and rate of activation in response to injury (Eliazer et al., 2019). The Delta-Notch 

signaling pathway is an evolutionarily conserved inter-cellular signaling pathway for cell fate 

specification (Kopan and Ilagan, 2009). Adult muscle QSCs display active notch signaling 

(Bjornson et al., 2012; Fukada et al., 2011; Low et al., 2018; Mourikis et al., 2012; Verma et al., 

2018). Overexpression of NICD1 increases Pax7 expression (Wen et al., 2012) and RBP-Jκ, a 

transcriptional co-activator of the notch signaling pathway, maintains the SC pool by repressing 

differentiation (Bjornson et al., 2012; Mourikis et al., 2012). It is not known if Notch ligands 

maintain the continuum of diverse cell states across the QSC pool.  

We first examined Notch ligands on isolated single muscle fibers from postnatal day3 (p3), 

postnatal day7 (p7) and adult through microarray analysis. Dll4 transcripts on the fiber showed the 
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most enrichment as the SC transitioned from proliferating myogenic progenitors (postnatal) to 

becoming quiescent (adult) (Figure S2A). RT-qPCR on isolated adult single muscle fibers show 

the expression of Dll4 transcripts, which was confirmed by RNAscope and immunofluorescence 

(Figure S2B, S2C and Figure 1D) (Kann and Krauss, 2019). Dll4 transcript is expressed in less 

than 1% of QSCs (De Micheli et al., 2020; Kimmel et al., 2020), suggesting that the muscle fiber 

is a source of SC-bound Dll4. Since the QSC pool is distributed as a continuum of cell states, we 

hypothesized that Dll4 expression across the multi-nucleated niche cell is heterogeneous. Single 

muscle fibers stained with anti-Dll4 shows that Dll4 protein formed clusters along the muscle fiber 

and were enriched around the QSCs. Further analysis revealed heterogeneous spatial expression 

of Dll4 protein along the muscle fiber that correlated with the amount of Dll4 captured by the SCs. 

We observed a positive correlation between the amount of Dll4 foci on the fibers and the intensity 

of Dll4 present on the adjacent QSC (Figure 1D, 1E). In contrast, Dll4 transcript expression was 

uniform along the fiber (Figure S2C).  

To directly link DLL4 localization with SC diversity, we isolated and stained SCs for Dll4 

and Pax7. A bivariate plot of Pax7 and Dll4 expression within SCs, reveals a positive correlation 

between the Dll4 captured by the stem cell and Pax7 intensity (Figure 1F). Comparison between 

Dll4 protein and Pax7 levels using a Pax7-nGFP reporter, confirmed the positive correlation 

between Pax7 and Dll4 protein expression (Figure S1E, S1H). Quantification of Dll4 expression 

levels on fiber adjacent to SCs per single muscle fiber of an Extensor Digitorum Longus (EDL) 

muscle shows that less than 10% of fibers are exclusively Dll4High or DLL4low, suggesting SC 

diversity is coordinated in a fiber-autonomous manner (Figure S1I). Therefore, spatial 

heterogeneity of niche-derived DLL4 is coupled with a continuum of diverse molecular and 

phenotypic states across the QSC population. 
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Niche-derived Dll4 maintains SC diversity.  

To determine if Dll4 from the muscle fiber controlled SC diversity, we deleted Dll4 

(Hozumi et al., 2008) specifically in the adult muscle fibers using a tamoxifen (tmx)-inducible 

HSACreMER mouse line (McCarthy et al., 2012) (Transgenic mice are herein called as MF-Dll4fl/fl) 

(Figure 2A). Dll4 ligand expression in the muscle fiber and the ligand captured by the SCs 

decreased in MF-Dll4fl/fl compared to control, suggesting that the muscle fiber is the major source 

of SC-bound Dll4 in uninjured muscle (Figure 2B- 2D). It is possible that cell sources other than 

the muscle fiber could provide Dll4 to SCs in other contexts (Verma et al., 2018). We observed 

that Pax7 and Ddx6 expression in SCs from MF-Dll4fl/fl fibers decreased compared to controls 

(Figure 2E, 2G). Density maps show that there is a shift in the distribution of expression levels of 

Pax7 and Ddx6. We calculated the variance of the expression levels to gauge the spread of the 

distribution. The decrease in variance in MF-Dll4fl/fl compared to controls, indicates reduced 

diversity across the QSC pool, effectively reducing the range of states on the continuum (Figure 

2F, 2H). We also observed a 50% decrease in the total number of Pax7+ SCs in MF-Dll4fl/fl fibers 

compared to controls (Figure 2I), suggesting a stem cell loss phenotype. A decrease in SC 

diversity, number and Pax7 levels can be explained by a loss of Pax7high SCs (due to apoptosis or 

fusion), or a shift in the continuum towards a more committed fusion-competent state, followed 

by fusion of SCs expressing the lowest levels of Pax7. qRT-PCR on QSCs from control and MF-

Dll4fl/fl reveals a decrease in pax7 (stem cell marker) and an increase in myoD (activation marker) 

and myogenin (differentiation marker) transcripts (Figure 3B). The simultaneous loss of Pax7 and 

induction of myogenin, a gene not normally expressed in QSCs, suggests a shift in the QSC 

continuum. While a loss of Pax7high cells alone would not increase Myogenin expression, we 
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cannot exclude a loss of Pax7high SCs in addition to the shift in continuum. Deletion of Dll4 in 

Pax7+ SCs using a Pax7CreER transgenic mouse line (Nishijo et al., 2009) (Transgenic mice are 

referred to as SC-Dll4fl/fl) did not change Pax7+ SC number, compared to controls (Figure S3A, 

S3B), suggesting that Dll4 does not have an autocrine role in QSCs. Together, these results suggest 

that Dll4 from the muscle fiber is required to maintain the continuum of diverse cellular states 

across the QSC pool. 

 

Dll4 from the muscle fiber constrains the proliferative and commitment potential across the 

QSC pool 

 To analyze the phenotypic states across the QSC pool that remains on the Dll4-depleted 

niche, we cultured isolated single muscle fibers from control and MF-Dll4fl/fl mice for 30h (Figure 

3A). SCs on a Dll4-depleted niche entered cell cycle faster than controls (Figure 3C, 3D). This is 

consistent with a loss of more dormant Pax7high SCs. We next cultured the SCs on control and Dll4 

depleted niche for 48h in 10% serum-containing media (Figure 3A). The number of SCs on a Dll4-

depleted niche was similar to controls, suggesting compensatory proliferation of the remaining 

SCs (Figure 3E). The absolute number of Myogenin+ cells per fiber was increased, suggesting that 

a fraction of the remaining SCs on a Dll4-depleted niche rapidly entered the differentiation 

program when exposed to mitogen. (Figure 3F). Therefore, in the absence of fiber-derived Dll4 

the QSC pool shifts along a continuum, losing its dormant features and becoming more 

proliferative and committed. Induction of myogenin is consistent with the anti-differentiative role 

of RBP-Jκ (Bjornson et al., 2012; Mourikis et al., 2012). Based on prior work, we would not have 

predicted an increase in SC proliferation in mitogen after niche depletion of Dll4 (Bjornson et al., 

2012; Mourikis et al., 2012). 
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We next examined the effect of a Dll4-depleted niche on fate potential of the remaining 

SCs in response to muscle injury. Using the tmx-inducible HSACreMER/+ genetic model, the niche 

is genetically modified, but the SCs are genetically wildtype. The wildtype SCs reform the adult 

muscle fibers during regeneration (Eliazer et al., 2019). Therefore, any regenerative phenotype 

observed is directly due to the loss of Dll4 in the niche prior to injury. Fourteen days after injury, 

muscle fiber size in MF-Dll4fl/fl TA muscle was significantly smaller than controls (Figure 3G, 

3H), consistent with the rapid entrance of some SCs into the differentiation program, as reported 

after deletion of RBP-Jκ in SCs (Bjornson et al., 2012; Mourikis et al., 2012). The inability to 

repair muscle fibers after a loss in SC diversity suggests a reduced pool of fusion-competent 

progenitors. The shift in the continuum after Dll4 deletion, suggests a role for Pax7high SCs in the 

generation of fusion-competent progenitors. 

We next asked whether the remaining population of Pax7+ SCs in a Dll4-depleted niche 

was capable of reestablishing the normal continuum of Pax7+ states in the injury model. In contrast 

to the contra-lateral uninjured muscle (Figure 3I), the average Pax7 levels and the variance across 

the SC population was not different in a Dll4-replenished niche and control niche (Figure 3J). In 

addition, the number of Pax7+ cells were similar to control regenerated muscle (Figure 3K). This 

was unanticipated due to the decrease in Pax7 levels and a shift along the continuum towards a 

more committed state in the QSC pool (Kuang et al., 2007; Rocheteau et al., 2012). Therefore, 

SCs expressing modest levels of Pax7 have the potential to produce SCs with higher levels of Pax7 

during muscle regeneration, revealing an unappreciated level of plasticity and bidirectionality 

along the SC continuum.  

 

Mib1 directs spatial patterning and activation of Dll4. 
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Single nucleus RNA sequencing has uncovered substantial transcriptional diversity across 

muscle fibers (Kim et al., 2020; Petrany et al., 2020). However, Dll4 activity is regulated post-

translationally. Mindbomb1 (Mib1), is an E3 ubiquitin ligase that activates all Notch ligands in the 

signal sending cell by adding mono-ubiquitin groups onto the ligands (Koo et al., 2005; Koo et al., 

2007). The hypothalamus-pituitary-gonadal axis has been shown to induce Mib1 in muscle fibers 

during development, thus activating notch signaling in juvenile SCs (Kim et al., 2016). To 

determine if the heterogeneous pattern of Dll4 on the adult muscle fiber is directed by Mib1, we 

analyzed the spatial expression of Mib1 on adult muscle fibers. We stained isolated single muscle 

fibers with Mib1 antibody and found heterogeneous expression pattern of Mib1 on individual 

muscle fibers. Similar to Dll4 expression, we observed a positive correlation between the intensity 

of Mib1 expression on muscle fibers and the Pax7 intensity within the adjacent SC (Figure 4A, 

4B).  Formation of Dll4 clusters is a marker of the activated form of the ligand (Le Borgne and 

Schweisguth, 2003). To test whether Mib1 played a role in clustering and activating Dll4 on the 

muscle fibers, Mib1 floxed mice (Koo et al., 2007) were crossed with tamoxifen inducible 

HSACreMER mice (Tg: hereafter called as MF-Mib1fl/fl). After a 30-day chase, the expression of 

Mib1 transcripts were decreased in the Mib1-depleted myofibers compared to controls (Figure 

S4A, S4B). Analysis of Dll4 expression in control and MF-Mib1fl/fl isolated single muscle fibers, 

reveals a loss of Dll4 clusters and a reduction in the intensity of Dll4 expression in Mib1-depleted 

niche (Figure 4C- 4E). Therefore, Mib1 directs the activation and spatial patterning of Dll4 within 

a multinucleated niche cell. 

 

Niche-derived Mib1 maintains a continuum of states across the QSC pool.  
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Based on the loss of SC-bound Dll4 after Mib1 deletion in the niche, we analyzed Pax7 

levels and diversity across the QSC pool on a Mib1-depleted niche. Compared to controls, Pax7 

levels decreased, the variance across the QSC pool was reduced and SC number was less in a 

Mib1-depleted niche (Figure 4F, 4G, Figure S4C). RT-qPCR of myogenic markers show that Pax7 

and myoD transcript levels did not change. However, myogenin was upregulated in the SCs 

remaining on a Mib1-depleted niche (Figure S4D).  

 In response to activation cues, SCs on a Mib1-depleted niche proliferate faster and 

upregulate Myogenin compared to the SCs on control muscle fibers, indicating that the remaining 

SCs are primed for proliferation and differentiation (Figure S4E- S4G). In response to muscle 

injury, the size of regenerating muscle fibers was smaller than the control muscle fibers (Figure 

S4H, S4I). Therefore, niche-derived Mib1 expressed in a spatially heterogenous pattern in a fiber-

autonomous manner maintains the normal continuum of diverse QSC states during tissue 

homeostasis.  

 

Discussion.  

  The multinucleated muscle fiber acts as a niche cell to maintain the QSC pool in a 

continuum of diverse states through the spatial patterning of the E3 ligase, Mib1 and activation of 

Dll4, in a fiber-autonomous manner. The composition and location of niche cells are critical for 

stem cell regulation. Our study reveals that the localization of niche factors within multinucleated 

cells are an important component of stem cell regulation.  

The QSC pool is heterogeneous and exists in an array of cellular states based on SC 

markers. It is important to actively maintain the diversity of cell states so that in the event of an 

injury, all the SCs are not equally lost to activation or differentiation. We demonstrate the existence 
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of a continuum of quiescent cell states ranging from deep quiescent, non-committed states to more 

committed states. This continuum is actively maintained in uninjured muscle by the spatial pattern 

of Dll4 and Mib1 on fiber-autonomous levels. Depletion of Dll4 and Mib1 in muscle fibers causes 

a contraction of the SC continuum towards more homogeneous primed states. 

The spatial localization of the different factors in the cytoplasm of a single multinucleated 

cell governs the cell state of the QSC. We believe that the expression of Wnt4 along the fiber is 

ubiquitously expressed, thereby inhibiting proliferation of all QSCs. The heterogenous spatial 

expression of Dll4 within the muscle fiber allows the maintenance of a continuum of differentiated 

states, with SCs in a region of low Dll4 expression primed and ready to differentiate when 

subjected to injury in vivo or exposed to mitogen in vitro.   

Although snRNA sequencing shows transcriptional heterogeneity within the myonuclei of 

single muscle fibers (Kim et al., 2020; Petrany et al., 2020), we show that the transcripts of Dll4 

are uniformly expressed along the muscle fiber and the protein expression is heterogeneous. This 

highlights the importance of protein heterogeneity within single muscle fibers. The varied 

expression of Dll4 is established by the E3 ligase, Mib1 that adds ubiquitin groups to Dll4 and 

activates them by a process of endocytosis (Koo et al., 2005; Koo et al., 2007). The formation of 

endosomes might play a role in clustering the Dll4 ligand to present them to the adjacent receptors 

on the QSCs. 

The deletion of Mib1 or Dll4 within the fiber resulted in a loss of 50% of the SC pool, 

whereas, deletion of RBP-Jκ in adult SCs displayed a more robust depletion of the SC pool 

(Bjornson et al., 2012; Mourikis et al., 2012). This suggests that RBP-Jκ might have targets other 

than the Notch signaling pathway. Deletion of RBP-Jκ in SCs also caused the SC pool to 

precociously differentiate. There was some evidence of proliferation, but not in those SCs that 
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eventually differentiated, suggesting a divergent response in some SCs compared to others. Why 

did deletion of RBP-Jκ within the QSC pool result in two different phenotypes? We propose that 

SCs sit along a continuum dictated by the levels of fiber-derived Dll4 captured on the SC. 

Disruption of Dll4 and Mib1 in the muscle fiber re-equilibrates where each SC sits on that 

continuum. With the response dependent on the relative position along the continuum. 

scRNA-seq on cells from regenerating muscle suggests that Dll1 is expressed in a subset 

of differentiating, Myogenin+ cells and is important for self-renewal (Yartseva et al., 2020). In 

vitro experiments with co-culture of primary myoblasts with 3T3 cells overexpressing Dll4 (Low 

et al., 2018), or with endothelial cells (Verma et al., 2018) suggests the importance of the Notch 

ligand Dll4 in self-renewal. Our results provide the first direct demonstration of a Notch ligand 

from a specific cell type that is critical to maintain the adult SC pool in a quiescent and non- 

differentiated state in vivo.  Notch ligands added to SCs in vitro promoted quiescence of myoblasts, 

but did not restore stemness (Sakai et al., 2017). Therefore, quiescence is not equivalent to 

stemness; consistent with the observations that only subsets of QSCs possess self-renewal potential 

in transplantation assay (Chakkalakal et al., 2012; Rocheteau et al., 2012; Sacco et al., 2008).  

Prior work demonstrated that SCs with low levels of Pax7 are less competent for self-

renewal in vivo. Based on the decrease in Pax7 levels after Dll4 depletion from the niche, we 

would have predicted a diminution of the SC pool in response to injury. Instead Pax7 levels were 

increased in the SC pool after injury. Therefore, in the context of muscle regeneration, there is a 

level of plasticity in the SC pool. We do not favor the alternative interpretation that another source 

of cells replenishes the Pax7+ SC compartment. 
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In the future, it would be interesting to investigate spatial heterogeneity of Notch ligands 

in other multinucleated cells and other stem cell niches. Our findings provide proof-of-principle 

for niche-based strategies to modify the fate of stem cells while residing in a quiescent state. 
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Figure 1. Spatial heterogeneous expression of Dll4 on the fiber 

correlates with SC diversity
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Figure 1. (A) Representative images of a high and low Pax7+ SC that has corresponding high and low levels of

Ddx6 protein. (B) A density map of Pax7 intensity in QSCs (n=3). (C) A density map of Ddx6 intensity in QSCs

(n=3). (D) Representative images of regions of muscle fiber expressing heterogeneous levels of Dll4 protein and

the corresponding expression of Pax7 in the adjacent SC. (E) A bivariate plot between the number of Dll4 foci on

fiber adjacent to a SC and the intensity of Dll4 captured by the stem cell (n>3 mice). (F) An XY graph on isolated

wildtype QSCs shows positive correlation between intensity of Dll4 captured by SC and its Pax7 intensity (n=3

mice). Scale bars, 5μm in (A) and 10μm in (D).
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Figure 2. Muscle fiber derived Dll4 maintains a continuum of diverse 

states in the QSC pool
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Figure 2. (A) Schematic representation of the experimental design. (B-F) Representative images of Dll4 and Pax7

expression in Control and MF-Dll4fl/fl fibers and SCs respectively (in B) and quantification of Dll4 intensity in fibers

(in C), Intensity of Dll4 captured by SCs (in D), Pax7 intensity in SCs (in E) and a density map of Pax7 intensity in

SCs (in F) (n=3 mice). (G, H) Ddx6 intensity in SCs (in G) and density map of Ddx6 intensity in SCs (in H) on

Control and MF-Dll4fl/fl fibers (n=3 mice). (I) Number of Pax7+ SCs in tissue sections of Control and MF-Dll4fl/fl fibers

(n=4 mice). Error bars, mean + s.e.m; ***p<0.001, ****p<0.0001; Scale bars, 10μm in (B).
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Figure 3. Niche derived Dll4 constrains the proliferative and commitment 

potential of the QSC pool
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Figure 3. (A) Schematic representation of the experimental design. (B) qRT-PCR for Pax7, MyoD and Myogenin

transcripts in freshly isolated SCs from Control and MF-Dll4fl/fl fibers (n=3). (C, D) Control and Dll4 deleted fibers

were cultured in plating media containing EdU for 30h, the number of Pax7+ SCs (in C) and percent of EdU+ SCs

(in D) per fiber were quantified (n=3). (E, F) Control and MF-Dll4fl/fl fibers were cultured in vitro for 48h, the number

of Pax7+ SCs (in E) and the MyoG+ cells (in F) per fiber were quantified (n=3). (G, H) Representative images (in G)

and quantification (in H) of mean cross-sectional area of Control and MF-Dll4fl/fl TA fibers, injured and regenerated

for 14 days (n>4). (I, J) Density map of Pax7 expression in SCs from Ctrl and MF-Dll4fl/fl contra-lateral TA (in I) and

injured TA (in J), 14d post injury (n=3). (K) Number of Pax7+ SCs in regenerated TA muscle, 14d after injury (n>5).

Error bars, mean + s.e.m; **p<0.01, ***p<0.001, ****p<0.0001; Scale bars, 100μm in (G).
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Figure 4. Niche-derived Mib1 directs spatial patterning and activation of 

Dll4
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Figure 4. (A) Representative images of WT fibers showing regions of high and low Mib1 expression and the

adjacent Pax7+ SC. (B) A bivariate plot showing Mib1 intensity in the fiber and Pax7 intensity in the adjacent SC.

(C-G) Representative images of Dll4 expression in fibers and Pax7 expression in SCs present on Control and

MF-Mib1fl/fl fibers (in C), quantification of Dll4 intensity in fibers (in D), Intensity of Dll4 captured by SCs (in E),

Pax7 intensity in SCs (in F) and a density map of Pax7 intensity in SCs (in G) on Control and MF-Mib1fl/fl fibers

(n=3 mice). Error bars, mean + s.e.m; ****p<0.0001; Scale bars, 5μm in (A) and (C).
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Pax7-nGFP transgenic line

Figure S1. Adult quiescent SCs exist in a continuum of diverse molecular 

and phenotypic states

A

D E

CB

F G

H I

Figure S1. (A) A bivariate plot between Pax7 and Ddx6 intensity in QSCs (n=2). (B, C) FACS sorting strategy of

obtaining GFP+ SCs from a Pax7-nGFP transgenic reporter line (in B) and isolation of GFP low, medium and high

expressing SCs (in C). (D- G) The three sorted populations were fixed immediately and stained for GFP (in D),

Dll4 (in E), in vitro cultured and treated with EdU for 42 hours (in F) and cultured in vitro in low serum for 3 days

and stained for Myogenin protein (in G) (n=3). (H) An XY plot of freshly isolated SCs from Pax7-nGFP transgenic

mouse line shows positive correlation between intensity of Dll4 captured by SC and its GFP (Pax7) intensity (n=3

mice). (I) Dll4 expression along muscle fibers. Each vertical line represents a single fiber and each dot on the line

represents the Dll4 intensity in the fiber adjacent the SC. Error bars, mean + s.e.m; *p<0.05, **p<0.01,

****p<0.0001.
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Figure S2. Dll4 ligand is highly expressed in adult muscle fibers

C

A B

Dll4 transcripts/DAPI

Figure S2. (A) Heatmap of Notch ligands from microarray of muscle fibers isolated from postnatal day 3 (p3),

day 7 (p7), and adult Extensor Digitorum Longus (EDL) muscle (n=2), The expression values are log2

transformed and range from 5.5 (low, blue) to 9.3 (high, red). (B) qRT-PCR of Notch ligands in isolated adult

muscle fibers. The notch ligand transcripts are normalized to GAPDH (n=4); ND, not detected. (C) RNAscope of

Dll4 transcripts on single adult muscle fibers (n=3). Error bars, mean + s.e.m; Scale bars, 10μm in (C).
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Figure S3. Dll4 does not have a cell autonomous role in QSC

A

B

Figure S3. (A) Schematic representation of the experimental design. (B) Number of Pax7+ SCs in TA muscle

sections of Control and SC-Dll4fl/fl fibers (n=3 mice). Error bars, mean + s.e.m; ns, non-significant.
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Figure S4. Loss of niche-derived Mib1 phenocopies Dll4 mutant 

phenotype 
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Figure S4. (A) Schematic representation of the experimental design. (B) qRT-PCR for mib1 transcripts in fibers

of Control and MF-Mib1fl/fl normalized to GAPDH (n=3). (C) Number of Pax7+ SCs in TA muscle sections of

Control and MF-Mib1fl/fl (n=6). (D) qRT-PCR for Pax7, MyoD and Myogenin transcripts in freshly isolated SCs

from Control and MF-Mib1fl/fl fibers, normalized to GAPDH (n=3). (E- G) Representative images of Sdc4 and

MyoG expression in SCs from Control and Mib1 deleted fibers, cultured in vitro in plating media for 42h (in E), the

number of Pax7+ SCs (in F) and the number of MyoG+ cells (in G) per fiber were quantified (n=3). (H, I)

Representative images (in H) and quantification (in I) of mean cross-sectional area of Control and MF-Mib1fl/fl TA

muscle fibers, injured and regenerated for 14 days (n>3). Error bars, mean + s.e.m; *p<0.05, **p<0.01,

***p<0.001, ****p<0.0001; Scale bars, 10 μm in (E) and 100μm in (H).
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Table S1, Related to Figure 1.  

Microarray expression of Notch ligands in p3, p7 and Adult muscle fibers (log2 values) 

 

 p3 p7 Adult 

Dll1 7.179268 7.864147 7.530619 

Dll3 5.568594 5.568594 5.568594 

Dll4 7.124728 7.676524 9.269889 

Jag1 8.456506 8.075812 8.670788 

Jag2 9.312074 8.530521 9.012903 

 

 

 

Table S2, Related to STAR Methods.  

Primers used for qRT-PCR analysis 

 

Primer Forward Sequence 5’ to 3’ Reverse Sequence 5’ to 3’ 

GAPDH GGCAAAGTGGAGATTGTTGC AATTTGCCGTGAGTGGAGTC 

Pax7 GTGGAATCAGAACCCGACCTC GTAGTGGGTCCTCTCAAAGGC 

MyoD CCACTCCGGGACATAGACTTG AAAAGCGCAGGTCTGGTGAG 

Myogenin GAGACATCCCCCTATTTCTACCA GCTCAGTCCGCTCATAGCC 
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EXPERIMENTAL MODEL AND SUBJECT DETAILS 
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Animals 

Mice were housed and maintained in accordance with the guidelines of the Laboratory Animal 

Research Center (LARC) of University of California, San Francisco. C57BL/6 were obtained from 

Jackson Laboratory. Previously published Pax7-nGFP (Rocheteau et al., 2012), HSACreMER 

(McCarthy et al., 2012), Dll4flox/flox (Hozumi et al., 2008), Mib1flox/flox (Koo et al., 2007), Pax7CreER 

(Nishijo et al., 2009) were used in this study. All mice used for experiments were adults, between 

12-16 weeks of age unless otherwise indicated. The control and experimental mice used are 

littermates in all experiments. Approximately equal numbers of male and female mice were used 

in all experiments. Animals were genotyped by PCR using tail DNA. Primer sequences are 

available upon request.  

 

METHOD DETAILS 

Animal Procedures 

Tamoxifen (Sigma) was dissolved in corn oil at a concentration of 20mg/ml. Both control and 

experimental mice were administered tamoxifen at a concentration of 150mg/kg per day for seven 

continuous days by intraperitoneal injection. The mice were left to chase for 30 days before 

analysis. 

 

Muscle Injury 

Control and experimental mice were anesthetized by isofluorane inhalation and 50µl of 1.2% 

BaCl2 was injected into and along the length of the tibialis anterior (TA) muscle. After 14 days of 

regeneration, mice were euthanized, the contra-lateral uninjured TA and injured TA muscle were 

fixed immediately in 4% PFA and frozen in 20% sucrose/OCT medium. 8µm cross-sections of the 
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muscle were made and stained for anti-laminin. 10x images were collected at three regions in the 

mid-belly of each muscle. Only mice that had more than 80% injury in their TA were analyzed. 

All the regenerating fibers in the entire TA section were analyzed for fiber size. The average cross-

sectional area of the fibers was determined using ImageJ software.  

 

Isolation of Single Muscle Fibers 

Single muscle fibers were isolated from the Extensor Digitorum Longus (EDL) muscle of the adult 

mouse as described previously (Eliazer et al., 2019). The single fibers were fixed immediately in 

4% PFA for 10 minutes or cultured in plating media (DMEM with 10% horse serum). 

For in vitro cell cycle entry assays, single muscle fibers from control and Myofiber-Dll4fl/fl mice 

were harvested and cultured in plating media containing EdU (10µm; Carbosynth) for 30 hours. 

For in vitro differentiation assay, the single muscle fibers from control, Myofiber-Dll4fl/fl and 

Myofiber-Mib1fl/fl were cultured in plating media for 48 hours. The fibers were then fixed and 

stained for different antibodies. EdU staining was done using the Click-iT Plus EdU Alexa FluorTM 

594 Imaging Kit (Invitrogen) followed by staining with anti-Pax7 antibody. 

 

Isolation of SCs and Fluorescence Assisted Cell Sorting (FACS) 

Satellite cells were isolated from hindlimb and forelimb muscles as previously described(Eliazer 

et al., 2019). The mononuclear muscle cells were stained for PE-Cy7 anti-mouse CD31 (clone 390; 

BD Biosciences), PE-Cy7 anti-mouse CD45 (clone 30-F11; BD Biosciences), APC-Cy7 anti-

mouse Sca1 (clone D7; BD Biosciences), PE anti-mouse CD106/VCAM-1 (Invitrogen) and APC 

anti-α7 integrin (clone R2F2; AbLab). FACS was performed using FACS Aria II (BD Biosciences) 

by gating for CD31-/CD45-/Sca1-/α7 integrin+/VCAM1+ to isolate SCs. SCs from Pax7-nGFP 
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mouse were sorted for GFP fluorescence. The GFP+ gate was divided into top 15% (GFPhigh 

fraction), middle 45% (Pax7medium fraction) and bottom 15% (Pax7low fraction). The isolated SCs 

were fixed immediately at t0 or cultured in growth media (Ham’s F10 media, 20% FBS, 5ng/ml 

FGF2) containing 10μm EdU for 42h (cell cycle entry assay) or cultured in plating media for 3 

days (differentiation assay). 

 

Immunostaining 

Fixed myofibers were permeabilized with 0.2% TritonX-100/PBS and blocked with 10% goat 

serum/0.2% TritonX/PBS. Primary antibodies used in this study were: mouse anti-Pax7 (DSHB), 

rabbit anti-Laminin (Abcam), rabbit anti-Dll4 (Thermo Fisher Scientific), rabbit anti-Mib1 

(Sigma), rabbit anti-Syndecan4 (Abcam), rabbit anti-DDX6 (Bethyl Laboratories Inc.), rabbit anti-

Myogenin (Santa Cruz Biotechnology) and DAPI (Life Technologies). Primary antibodies were 

visualized with fluorochrome conjugated secondary antibodies (Invitrogen). The stained fibers 

were mounted in Fluoromount-G mounting medium (SouthernBiotech). For most of the staining, 

the images were taken using a 20x Plan Fluor objective of the Nikon Eclipse Ti microscope. Anti-

Pax7 and anti-Ddx6 stained images were obtained with a 40x Plan Fluor objective of the same 

microscope. Dll4 and Mib1 stained images were taken with 40x oil objective of Leica DMi8 

Confocal Microscope. 15μm z-stacks around the Pax7+ SC were taken and the sum projection of 

the images were obtained. The filter settings, gain and exposure values were kept constant between 

experiments. The intensity of expression was determined by manually drawing a region of Interest 

(ROI) on a Pax7 positive SC. This will give the mean pixel intensity of the ROI in all the channels. 

The ROI is copied onto another region where there is no Pax7 positive cell to calculate the 

background intensity. The background intensity is subtracted and the mean intensity is plotted with 
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GraphPad Prism 7. Representative images for antibody staining were taken using Leica DMi8 

Confocal Microscope. 

 

RNAscope 

RNAscope for dll4 was performed on fixed myofibers as previously described (Kann and Krauss, 

2019). Briefly the single muscle fibers are isolated, fixed with 4% PFA and dehydrated with 100% 

methanol. The fibers are then rehydrated with a series of decreasing concentrations of methanol 

and PBS with 0.1% Tween 20 followed by protease digestion, hybridization of the RNA probe, 

amplification of signal and conjugation with fluorophore. 

 

Quantitative PCR (qPCR) 

Total RNA was isolated from single muscle fibers (from EDL muscle), or SCs using Trizol 

(Invitrogen) according to the manufacturer’s protocol. The RNA was DNAse treated using Turbo 

DNA free kit (Life Technologies). cDNA was synthesized from RNA using the Superscript First 

Strand Synthesis System (Invitrogen). qPCR was performed in triplicates from 5ng of RNA per 

reaction using Platinum SYBR Green qPCR Super Mix-UDG w/ROX (Invitrogen) on a ViiA7 

qPCR detection system (Life Technologies). All reactions for RT-qPCR were performed using the 

following conditions: 50oC for 2 min, 95oC for 2 min, 40 cycles of a two-step reaction of 

denaturation at 95oC for 15 min and annealing at 60oC for 30s. The mean Ct values from triplicates 

were used in the comparative 2-ΔΔCt method. To analyze the expression of Notch ligands on the 

adult muscle fiber, 2-ΔCt method was used. The results were normalized to GAPDH mRNA 

controls. The primers used in this study are listed in Supplemental Table S2. 
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Microarray 

Total RNA was isolated from single muscle fibers of the EDL muscle from post-natal day 3 (p3), 

post-natal day 7 (p7) and adult mouse hindlimb using TRIzol reagent (Invitrogen). The processing 

of RNA, hybridization and analysis is previously described (Eliazer et al., 2019). The expression 

values for Notch ligands are log2 transformed and listed in Table S1. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

The density maps for Pax7 and Ddx6 intensity was drawn using R. The Variance of Pax7 and 

Ddx6 intensity levels across the SC pool are calculated as the square of standard deviation. The 

statistical details of experiments can be found in the figure legends. No statistical methods were 

used to predetermine sample size. The investigators were not blinded to allocation during 

experiments and outcome assessment. No animal was excluded from analysis. All data are 

represented as mean + standard error of the mean (s.e.m). Significance was calculated using the 

two-tailed unpaired Student’s t-tests (Graphpad Prism 7). The number of replicates (n) for each 

experiment is indicated in the figure legends. Differences were considered statistically different at 

P<0.05. 

 

DATA AND CODE AVAILABILITY 

The microarray data generated during this study is available at NCBI GEO: GSE135163 

 

References. 

Bischoff, R. (1990). Interaction between satellite cells and skeletal muscle fibers. Development 109, 943-
952. 
Bjornson, C.R., Cheung, T.H., Liu, L., Tripathi, P.V., Steeper, K.M., and Rando, T.A. (2012). Notch signaling 
is necessary to maintain quiescence in adult muscle stem cells. Stem Cells 30, 232-242. 

28

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 20, 2020. ; https://doi.org/10.1101/2020.10.20.347484doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.20.347484


 

Buchan, J.R., and Parker, R. (2009). Eukaryotic stress granules: the ins and outs of translation. Mol Cell 36, 
932-941. 
Chakkalakal, J.V., Christensen, J., Xiang, W., Tierney, M.T., Boscolo, F.S., Sacco, A., and Brack, A.S. (2014). 
Early forming label-retaining muscle stem cells require p27kip1 for maintenance of the primitive state. 
Development 141, 1649-1659. 
Chakkalakal, J.V., Jones, K.M., Basson, M.A., and Brack, A.S. (2012). The aged niche disrupts muscle stem 
cell quiescence. Nature 490, 355-360. 
Crist, C.G., Montarras, D., and Buckingham, M. (2012). Muscle satellite cells are primed for myogenesis 
but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules. 
Cell Stem Cell 11, 118-126. 
De Micheli, A.J., Laurilliard, E.J., Heinke, C.L., Ravichandran, H., Fraczek, P., Soueid-Baumgarten, S., De 
Vlaminck, I., Elemento, O., and Cosgrove, B.D. (2020). Single-Cell Analysis of the Muscle Stem Cell 
Hierarchy Identifies Heterotypic Communication Signals Involved in Skeletal Muscle Regeneration. Cell 
Rep 30, 3583-3595 e3585. 
Dell'Orso, S., Juan, A.H., Ko, K.D., Naz, F., Perovanovic, J., Gutierrez-Cruz, G., Feng, X., and Sartorelli, V. 
(2019). Single cell analysis of adult mouse skeletal muscle stem cells in homeostatic and regenerative 
conditions. Development 146. 
Dumont, N.A., Wang, Y.X., and Rudnicki, M.A. (2015). Intrinsic and extrinsic mechanisms regulating 
satellite cell function. Development 142, 1572-1581. 
Eliazer, S., Muncie, J.M., Christensen, J., Sun, X., D'Urso, R.S., Weaver, V.M., and Brack, A.S. (2019). Wnt4 
from the Niche Controls the Mechano-Properties and Quiescent State of Muscle Stem Cells. Cell Stem Cell 
25, 654-665 e654. 
Fukada, S., Yamaguchi, M., Kokubo, H., Ogawa, R., Uezumi, A., Yoneda, T., Matev, M.M., Motohashi, N., 
Ito, T., Zolkiewska, A., et al. (2011). Hesr1 and Hesr3 are essential to generate undifferentiated quiescent 
satellite cells and to maintain satellite cell numbers. Development 138, 4609-4619. 
Goel, A.J., Rieder, M.K., Arnold, H.H., Radice, G.L., and Krauss, R.S. (2017). Niche Cadherins Control the 
Quiescence-to-Activation Transition in Muscle Stem Cells. Cell Rep 21, 2236-2250. 
Hozumi, K., Mailhos, C., Negishi, N., Hirano, K., Yahata, T., Ando, K., Zuklys, S., Hollander, G.A., Shima, D.T., 
and Habu, S. (2008). Delta-like 4 is indispensable in thymic environment specific for T cell development. J 
Exp Med 205, 2507-2513. 
Kann, A.P., and Krauss, R.S. (2019). Multiplexed RNAscope and immunofluorescence on whole-mount 
skeletal myofibers and their associated stem cells. Development 146. 
Kim, J.H., Han, G.C., Seo, J.Y., Park, I., Park, W., Jeong, H.W., Lee, S.H., Bae, S.H., Seong, J., Yum, M.K., et 
al. (2016). Sex hormones establish a reserve pool of adult muscle stem cells. Nat Cell Biol 18, 930-940. 
Kim, M., Franke, V., Brandt, B., Lowenstein, E.D., Schöwel, V., Spuler, S., Akalin, A., and Birchmeier, C. 
(2020). Single-nucleus transcriptomics reveals functional compartmentalization in syncytial skeletal 
muscle cells. bioRxiv, 2020.2004.2014.041665. 
Kimmel, J.C., Hwang, A.B., Scaramozza, A., Marshall, W.F., and Brack, A.S. (2020). Aging induces aberrant 
state transition kinetics in murine muscle stem cells. Development 147. 
Koo, B.K., Lim, H.S., Song, R., Yoon, M.J., Yoon, K.J., Moon, J.S., Kim, Y.W., Kwon, M.C., Yoo, K.W., Kong, 
M.P., et al. (2005). Mind bomb 1 is essential for generating functional Notch ligands to activate Notch. 
Development 132, 3459-3470. 
Koo, B.K., Yoon, M.J., Yoon, K.J., Im, S.K., Kim, Y.Y., Kim, C.H., Suh, P.G., Jan, Y.N., and Kong, Y.Y. (2007). An 
obligatory role of mind bomb-1 in notch signaling of mammalian development. PLoS One 2, e1221. 
Kopan, R., and Ilagan, M.X. (2009). The canonical Notch signaling pathway: unfolding the activation 
mechanism. Cell 137, 216-233. 
Kuang, S., Gillespie, M.A., and Rudnicki, M.A. (2008). Niche regulation of muscle satellite cell self-renewal 
and differentiation. Cell Stem Cell 2, 22-31. 

29

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 20, 2020. ; https://doi.org/10.1101/2020.10.20.347484doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.20.347484


 

Kuang, S., Kuroda, K., Le Grand, F., and Rudnicki, M.A. (2007). Asymmetric self-renewal and commitment 
of satellite stem cells in muscle. Cell 129, 999-1010. 
Le Borgne, R., and Schweisguth, F. (2003). Notch signaling: endocytosis makes delta signal better. Curr 
Biol 13, R273-275. 
Lepper, C., Partridge, T.A., and Fan, C.M. (2011). An absolute requirement for Pax7-positive satellite cells 
in acute injury-induced skeletal muscle regeneration. Development 138, 3639-3646. 
Low, S., Barnes, J.L., Zammit, P.S., and Beauchamp, J.R. (2018). Delta-Like 4 Activates Notch 3 to Regulate 
Self-Renewal in Skeletal Muscle Stem Cells. Stem Cells 36, 458-466. 
McCarthy, J.J., Srikuea, R., Kirby, T.J., Peterson, C.A., and Esser, K.A. (2012). Inducible Cre transgenic mouse 
strain for skeletal muscle-specific gene targeting. Skelet Muscle 2, 8. 
Mourikis, P., Sambasivan, R., Castel, D., Rocheteau, P., Bizzarro, V., and Tajbakhsh, S. (2012). A critical 
requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state. Stem 
Cells 30, 243-252. 
Nishijo, K., Hosoyama, T., Bjornson, C.R., Schaffer, B.S., Prajapati, S.I., Bahadur, A.N., Hansen, M.S., 
Blandford, M.C., McCleish, A.T., Rubin, B.P., et al. (2009). Biomarker system for studying muscle, stem 
cells, and cancer in vivo. FASEB J 23, 2681-2690. 
Petrany, M., Swoboda, C., Sun, C., Chetal, K., Chen, X., Weirauch, M., Salomonis, N., and Millay, D. (2020). 
Single-nucleus RNA-seq identifies transcriptional heterogeneity in multinucleated skeletal myofibers 
(bioRxiv). 
Rocheteau, P., Gayraud-Morel, B., Siegl-Cachedenier, I., Blasco, M.A., and Tajbakhsh, S. (2012). A 
subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division. Cell 
148, 112-125. 
Sacco, A., Doyonnas, R., Kraft, P., Vitorovic, S., and Blau, H.M. (2008). Self-renewal and expansion of single 
transplanted muscle stem cells. Nature 456, 502-506. 
Sakai, H., Fukuda, S., Nakamura, M., Uezumi, A., Noguchi, Y.T., Sato, T., Morita, M., Yamada, H., Tsuchida, 
K., Tajbakhsh, S., et al. (2017). Notch ligands regulate the muscle stem-like state ex vivo but are not 
sufficient for retaining regenerative capacity. PLoS One 12, e0177516. 
Sambasivan, R., Yao, R., Kissenpfennig, A., Van Wittenberghe, L., Paldi, A., Gayraud-Morel, B., Guenou, H., 
Malissen, B., Tajbakhsh, S., and Galy, A. (2011). Pax7-expressing satellite cells are indispensable for adult 
skeletal muscle regeneration. Development 138, 3647-3656. 
Scaramozza, A., Park, D., Kollu, S., Beerman, I., Sun, X., Rossi, D.J., Lin, C.P., Scadden, D.T., Crist, C., and 
Brack, A.S. (2019). Lineage Tracing Reveals a Subset of Reserve Muscle Stem Cells Capable of Clonal 
Expansion under Stress. Cell Stem Cell 24, 944-957 e945. 
Verma, M., Asakura, Y., Murakonda, B.S.R., Pengo, T., Latroche, C., Chazaud, B., McLoon, L.K., and Asakura, 
A. (2018). Muscle Satellite Cell Cross-Talk with a Vascular Niche Maintains Quiescence via VEGF and Notch 
Signaling. Cell Stem Cell 23, 530-543 e539. 
von Maltzahn, J., Jones, A.E., Parks, R.J., and Rudnicki, M.A. (2013). Pax7 is critical for the normal function 
of satellite cells in adult skeletal muscle. Proc Natl Acad Sci U S A 110, 16474-16479. 
Wen, Y., Bi, P., Liu, W., Asakura, A., Keller, C., and Kuang, S. (2012). Constitutive Notch activation 
upregulates Pax7 and promotes the self-renewal of skeletal muscle satellite cells. Mol Cell Biol 32, 2300-
2311. 
Yartseva, V., Goldstein, L.D., Rodman, J., Kates, L., Chen, M.Z., Chen, Y.J., Foreman, O., Siebel, C.W., 
Modrusan, Z., Peterson, A.S., et al. (2020). Heterogeneity of Satellite Cells Implicates DELTA1/NOTCH2 
Signaling in Self-Renewal. Cell Rep 30, 1491-1503 e1496. 
Zammit, P.S., Relaix, F., Nagata, Y., Ruiz, A.P., Collins, C.A., Partridge, T.A., and Beauchamp, J.R. (2006). 
Pax7 and myogenic progression in skeletal muscle satellite cells. J Cell Sci 119, 1824-1832. 

 

30

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 20, 2020. ; https://doi.org/10.1101/2020.10.20.347484doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.20.347484

	Notch Manuscript v16_Part1
	Notch Manuscript Figures v10
	Supplemental Tables
	Notch Manuscript v16_Part2



