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Abstract: 
We present the expression modifier score (EMS), a predicted probability that a variant has a 
cis-regulatory effect on gene expression, trained on fine-mapped eQTLs and leveraging 
6,121 features including epigenetic marks and sequence-based neural network predictions. 
We validate EMS and use it as a prior for statistical fine-mapping of eQTLs, identifying an 
additional 20,913 putatively causal eQTLs. Incorporating EMS into colocalization analysis 
identifies 310 additional candidate genes for UK Biobank phenotypes. 
 
 
Main text: 
 
Understanding the effects of non-coding variants on gene expression is of fundamental 
importance1. Experimental methods to assess whether an individual variant modifies 
expression of a nearby gene in native chromatin context via direct perturbation are low-
throughput2. Existing computational predictors3-6, which are higher-throughput, thus lack 
large gold standard sets of regulatory variants for training and validation. Here, we leverage 
a novel set of 14,807 putative expression-modifying variant-gene pairs in humans, and use 
6,121 features to directly train a predictor of whether a variant modifies expression.  
 
To define the set of putative expression-modifying variant-gene pairs, we analyzed results of 
recent fine-mapping of eQTLs from GTEx7,8, including the 14,807 variant-gene pairs with 
posterior inclusion probability (PIP) greater than 0.9 according to two methods9,10 across 49 
tissues (Fig. S1, S2). The size of our data set allowed us to quantify the enrichment of putative 
causal variants for several functional annotations, including deep learning-derived variant 
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effect scores from Basenji6 and distance to canonical transcription starting site (TSS), with 
high precision (Fig. S3, S4, S5). 
 
Next, we built a random forest classifier of whether a given variant is a putative causal eQTL 
for a given gene using 807 binary functional annotations11-13, 5,313 Basenji features 
corresponding to functional activity predictors6,14, and distance to TSS. We then scaled the 
output score of the random forest classifier to reflect the probability of observing a positively 
labeled sample in a random draw from all the variant-gene pairs (Fig. S6, Methods), and 
named this scaled score the expression modifier score (EMS). We performed the above 
process for 49 tissues in GTEx v8 individually. For whole blood, the Basenji scores together 
had 55.0% of the feature importance for EMS, and distance to TSS had feature importance 
of 43.1%. The binary functional annotations together had less than 2% of importance (Fig. 
S7). Results were similar for other tissues (Supplementary File 1). 
 
EMS achieved higher prediction accuracy than other genomic scores4,15-18 for putative causal 
eQTLs on a held-out chromosome (top bin enrichment for held-out putative causal eQTLs 
18.3x vs. 15.1x for distance to TSS, the second best, Fisher’s exact test p=3.33 ⋅ 10!", Fig. 
1a; AUPRC=0.884 vs. 0.856 when using distance to TSS, the second best, Fig. S8; 
Methods). EMS was among the top-performing methods in prioritizing experimentally 
suggested regulatory variants from reporter assay experiments19,20, despite not varying 
distance to TSS, the most informative feature (Fig. 1b-c, Fig. S9, Methods). Finally, EMS 
prioritized putative causal non-coding variants for hematopoietic traits in the UK Biobank 
(UKBB) dataset21 with performance comparable to other scores (17.6x for EMS vs 17.1x for 
DeepSEA, the second best; Fig. 1d), although there are known differences between the 
genetic architectures of cis-gene expression and complex traits22. The results were consistent 
when we performed the same set of analyses in different datasets: hematopoietic traits in 
BioBank Japan23 (BBJ) and lymphoblastoid cell line (LCL) eQTL in Geuvadis 24,25 (Fig. S10).  
 
Since EMS is in units of estimated probability, one natural way to utilize EMS for better 
prioritization of putative causal eQTLs is to use it as a prior for statistical fine-mapping. We 
developed a simple algorithm for approximate functionally-informed fine-mapping and applied 
it with EMS as a prior to obtain a functionally-informed posterior, denoted PIPEMS  (Methods). 
We found that PIPEMS identified more putative causal eQTLs than the original PIP calculated 
with a uniform prior, denoted PIPunif. Specifically, 95.4% of variants with PIPunif> 0.9 also had 
PIPEMS> 0.9 (2,152 out of 2,255), while only 33.8% of variants with PIPEMS> 0.9 had PIPunif>
0.9 (1,125 out of 3,277; Fig. 2a). Similarly, credible sets mostly decreased in size (Fig. 2b, 
Supplementary File 2).  
 
We evaluated the quality of PIPEMS by comparing it with PIPunif and a publicly available eQTL 
fine mapping result that uses distance to TSS as a prior7,25 (denoted PIPDAP-G) in two ways 
(Other methods for functionally-informed fine-mapping26,27 would be computationally 
intensive for a data set this size; the recently introduced PolyFun28 is designed for complex 
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traits.). First, PIPEMS had the highest enrichment level of reporter assay QTLs25 (raQTLs) in 
the PIP>0.9 bin (16.8x vs 12.9x in PIPunif and 11.4x in PIPDAP-G, Fisher’s exact test p=1.65 ⋅
10!# between PIPEMS and PIPDAP-G; Fig. 2c). Second, complex trait causal non-coding 
variants were comparably enriched in PIP>0.9 bins (Fig. S11). These results suggest that 
PIPEMS is a valid measure for identifying putative causal cis-regulatory variants. 
 
We next compared the usage of PIPEMS to PIPunif for complex trait gene prioritization, as in 
Weeks et al29. We calculated PIPEMS for 49 GTEx tissues (Fig. S12, S13), resulting in a total 
of additional 20,913 eQTLs with PIPEMS>0.9 (Fig. S14; Supplementary File 3). We then co-
localized the eQTL signals with 95 UKBB phenotypes. Using the gold standard gene set 
described in ref [29], PIPEMS achieved higher precision and higher recall than PIPunif (Table 
1, Methods). Overall, PIPEMS elucidated 310 candidate genes for UKBB phenotypes that 
were not identified with PIPunif (Supplementary File 4). On the other hand, PIPDAP-G showed 
lower precision than PIPEMS and PIPunif but higher recall (Table 1) suggesting the value of 
future studies in investigating different priors in eQTL fine-mapping and the trade-off between 
precision and recall.  
 
An example of PIPEMS resolving a credible set that is ambiguous with PIPunif is shown in Fig. 
2d. Here, four variants upstream of CITED4 are in perfect LD in GTEx, giving PIPunif = 0.25 
for all four (Fig. S15). In UKBB, the four variants are also in high LD, with PIP for neutrophil count 
between 0.133 and 0.181 for all four. Thus, standard colocalization analysis does not identify 
CITED4 as a neutrophil count-related gene (CLPP less than 4.53 ⋅ 10!# for all variants; Methods). 
However, one of the four variants, rs35893233, creates a binding motif of SPI1, a transcription 
factor known to be involved in myeloid differentiation30, and presents epigenetic activity in 
myeloid-related cell types, such as showing the highest basenji score for cap analysis gene 
expression (CAGE) activity in acute myeloid leukemia (AML). This variant has >25x greater EMS 
than the other three variants (1.73 ⋅ 10!$	vs 6.11 ⋅ 10!%, 1.00 ⋅ 10!%	and 8.62 ⋅ 10!&, 
respectively), enabling PIPEMS to narrow down the credible set to the single variant (PIPEMS = 
0.956 for rs35893233). Integrating EMS into the co-localization analysis thus allows identification 
of CITED4 as a neutrophil count-related gene (CLPP=0.173). Additional examples are described 
in Fig. S16.  
 
Limitations of our approach include (1) limited power to call putative causal variants in high 
LD regions or with low minor allele frequency, (2) the simplifications of thresholding and 
ignoring effect size and direction, and (3) the lack of a comprehensive set of features. EMS 
for all variants in GTEx v8 are publicly available for 49 tissues. Our study provides a powerful 
resource for deciphering the mechanisms of non-coding variation. 
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Figure 1. Performance evaluation of EMS. Comparison of the different scoring methods, in 
prioritizing putative causal whole blood eQTLs in GTEx v8 (a), massive parallel reporter assay 
(MPRA) saturation mutagenesis hits19 (b), reporter assay QTLs20 (raQTLs) (c), and putative 
hematopoietic trait causal variants in UKBB (d) in different score percentiles. Distance to TSS is 
not defined for reporter assays (Methods). 
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Figure 2. Increasing the number of putative 
causal eQTLs with EMS. a. Number of variant-
gene pairs in different PIP bins using a uniform 
prior vs. EMS prior. b. Number of variants in the 
95% credible set (CS) identified by fine-
mapping with uniform prior vs. EMS prior. c. 
Enrichment of reporter assay QTLs (raQTLs) in 
PIP bins for different fine-mapping methods. d. 
An example of a putative causal eQTL 
prioritized by EMS (rs35873233, an upstream 
variant of CITED4). From top to the bottom: PIP 
with uniform prior (PIPunif), EMS, PIP with EMS 
as a prior (PIPEMS); Basenji score for CAGE 
activity in acute myeloid leukemia, H3K27me3 
narrow peak in K562 cell line (red if the variant 
is in the peak, blue otherwise), sequence 
context32 of the alternative allele aligned with 
the binding motif33 of SPI1, and PIP for 
neutrophil count in UKBB8,19 with uniform prior.  
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Table 1. Precision and recall of the gene prioritization task for three different PIPs 

Method Tool Prior Precision Recall 

PIPEMS SuSiE EMS 0.556 0.052 

PIPunif SuSiE Uniform 0.525 0.039 

PIPDAP-G DAP-G Distance to TSS 0.500 0.078 
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Methods: 
 
The Expression Modifier Score (EMS) 
Fine-mapping of GTEx v8 data is described in Ulirsch et. al8 and is summarized in the 
Supplementary Methods. We constructed a binary classification task by labeling the variant-
gene pairs with PIP>0.9 for both of the two fine-mapping methods (SuSiE9 and FINEMAP10) as 
positive, and the ones with PIP<0.0001 for both methods as negative. Each variant-gene pair was 
annotated with 6,121 features (distance to TSS annotated in the GTEx v8 dataset, 12 non-cell 
type specific binary features from the LDSC baseline model13, 795 cell type specific binary 
features from the Roadmap Epigenomics Consortium12, where variants falling in narrow peak are 
annotated as 1, and others are 0, and 5,313 deep-learning derived cell type-specific features 
generated by the Basenji model6,14; Supplementary File 5). The 152 most predictive features 
were selected based on different prediction accuracy metrics such as F1 measure and mean 
decrease of impurity (MDI) for each feature (Supplementary Methods). A combination of random 
search followed by grid search was performed to tune the hyperparameter for a random forest 
classifier that maximizes the AUROC of the binary prediction in the held-out dataset 
(Supplementary File 6). Finally, for each prediction score bin, we calculated the fraction of 
positively labeled samples and scaled the output score, to derive the EMS. Further details are 
described in the Supplementary Methods. 
 
Performance evaluation of EMS 
To evaluate the performance of EMS, for each chromosome, we trained EMS using all the other 
chromosomes to avoid overfitting. CADD v1.4 and GERP scores were annotated using the hail 
annotation database (https://hail.is). ncER scores were downloaded from 
https://github.com/TelentiLab/ncER_datasets. In order to annotate the DeepSEA v1.0 and 
Fathmm v2.3 non-coding scores, we mapped hg38 coordinates to hg19 using the hail liftover 
function, removed variants that do not satisfy 1 to 1 matching, and followed their web instructions 
(https://humanbase.readthedocs.io/en/latest/deepsea.html, and http://fathmm.bio 
compute.org.uk) to score the variants. Insertions and deletions were excluded for Fathmm scores. 
For DeepSEA, we calculated the e-values from the individual features, following ref [4]. We 
computed the area under the receiver operating characteristic curve and the precision recall curve 
(Fig. S8) as well as enrichments of different variant-gene pairs or variants as described in the 
next sections (Fig. 1). 
 
Computation of enrichment 
Enrichment of a specific set of variant-gene pairs (e.g. putative causal eQTLs in the GTEx whole 
blood dataset) in a score bin is defined as the probability of drawing a variant-gene pair in the set 
given that the variant-gene is in the score bin, divided by the overall probability of drawing a 
variant-gene pair in the set. The error bar denotes the standard error of the numerator, divided by 
the denominator (we assumed the standard error of the denominator is small enough, since the 
total number of variant-gene pairs is typically large; >100,000,000 for all the variant-gene pairs in 
GTEx). When testing binary functional features as in Fig. S3, S4, the score is the individual 
functional feature, and the set is defined by the specific PIP bin.  
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Enrichment analysis of eQTL, complex trait, and reporter assay data 
Saturation mutagenesis data19 was downloaded from the MPRA data access portal 
(http://mpra.gs.washington.edu). An MPRA hit was defined as having a Bonferroni-significant 
association p-value (lower than 0.05 divided by the total number of variant-cell type pairs) for at 
least one cell type, regardless of the effect size and direction. The raQTL data20 was downloaded 
from https://osf.io/w5bzq/wiki/home/. EMS was re-scaled to have a constant distance to TSS (200 
bp, roughly representing the scale of typical distance to TSS in plasmids5), which is expected to 
significantly decrease the performance of EMS compared to in native genome. Similarly, when 
comparing EMS with other scores for enrichments of MPRA hits or raQTLs, distance to TSS was 
not used for the comparison. 
 
Fine-mapping of UKBB traits is described in Ulirsch et al8. To focus on non-coding regulatory 
effects, we annotated the variants in VEP v85 and filtered out coding and splice variants for the 
UKBB dataset. For each (non-coding) variant, we calculated the maximum PIP over all the 
hematopoietic traits, as well as the maximum Whole-Blood EMS over all the genes in the cis 
window of the variant, since a variant can have different regulatory effect on different genes, for 
different phenotypes. A variant was defined as putative hematopoietic trait-causal if it has SuSiE 
PIP higher than 0.9 in any of the hematopoietic traits. In UKBB and raQTL dataset, we focused 
on the variants that exist in the GTEx v8 dataset to reduce the calculation complexity.  
 
For all four datasets, the variants (or variant-gene pairs in GTEx) other than putative causal ones 
were randomly downsampled to achieve a total number of variants to be exactly 100,000, to 
reduce the computational burden while keeping enough number of variants to observe statistical 
significance. GTEx enrichment, MPRA hits enrichment, raQTL enrichment and UKBB enrichment 
are thus defined as the enrichment of putative causal eQTLs, MPRA hits, raQTLs and putative 
hematopoietic-trait causal variants in the downsampled dataset respectively. 
 
Approximate functionally-informed fine-mapping using EMS 
In the Sum of Single Effects (SuSiE) model, for a given gene, the vector 𝑏 of true SNP effects on 
that gene is modeled as a sum of vectors with only one non-zero element each: 

𝑏	 = .𝑏'

(

')*

 

||𝑏'||+ 	= 	1 
where 𝑏 and 𝑏' are vectors of length 𝑚 and 𝑚 is the number of variants in the locus. Intuitively, 
each 𝑏' corresponds to the contribution of one causal variant. One output of SuSiE is a set of 𝑚-
vectors 𝛼*, . . . , 𝛼(, with 𝛼((𝑣) equal to the posterior probability that 𝑏'(𝑣) ≠ 0; i.e., that the 𝑙-th 
causal variant is the variant 𝑣. Credible sets are computed for each 𝑙 from 𝛼', and credible sets 
that are not “pure” -- i.e., that contain a pair of variants with absolute correlation less than 0.5 -- 
are pruned out. The 𝛼' are also used to compute PIPs. 
 
Our algorithm for approximate functionally-informed fine-mapping takes the approach of re-
weighting the posterior probability calculated using the uniform prior, analogous to ref [31], and 
proceeds as follows. For each gene and each tissue, we start with 𝛼*, . . . , 𝛼( computed by SuSiE 
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using the uniform prior. For each 𝑙, if 𝛼' corresponds to a pure credible set, we re-weight each 
element of 𝛼' by the EMS of the corresponding variant, and we normalize so that the sum is equal 
to 1, obtaining 	𝛼8'. In other words, letting 𝑤*,...,𝑤, denote the EMSs for the 𝑚 variants, we 
define	𝛼8'(𝑣) for the variant 𝑣 to be 

	𝛼#!(𝑣) 	=
𝑤"𝛼!(𝑣)

∑ 𝑤#𝛼!(𝑢)$
#%&

 
if 𝛼' corresponds to a pure credible set; otherwise, we set 𝛼8' = 𝛼'. We then use the updated 	𝛼8*, . . .,
𝛼8( to compute updated PIPs and credible sets as in the original SuSiE method. See 
Supplementary Methods for further details. 
 
Performance evaluation of PIPEMS and application to gene prioritization 
PIP using distance to TSS as a prior (PIPDAP-G) was downloaded from the GTEx portal 
(https://gtexportal.org/). The raQTL data was downloaded from https://osf.io/w5bzq/wiki/home/, 
and the negative variants were randomly downsampled to a total of 100,000 variants. The number 
of putative causal eQTLs is defined as the number of variant-gene-tissue pairs with PIPEMS>0.9. 
For complex trait causal non-coding variant prioritization, a threshold of PIP>0.1 was chosen to 
account for low sample size. We defined a gene prioritization task using 49 tissues in GTEx and 
95 complex traits in UKBB using the following steps (further details are described in Weeks et 
al.26): 
 
Across all traits, we identified 1 Mb regions centered at unresolved credible sets (no coding variant 
with PIP>0.1) that additionally contained at least one “gold standard gene” (protein-coding variant 
with PIP>0.5) for the same trait. There were 2,897 such regions and 1,161 gold standard genes. 
Our intuition is that the gene with the fine-mapped protein-coding variant is most likely to be the 
primary causal signal, and that a nearby non-coding signal is more likely to act through this gene 
(i.e. via regulation) than through a different gene. 
 
For each gene-region pair, we defined the co-localization posterior probability (CLPP) for the gene 
to be the maximum of the product of the eQTL PIP and trait PIP, across all tissues and all variants 
in the unresolved credible set. A gene is prioritized if it has CLPP > 0.1 and it has the maximum 
CLPP in its region. We compute the precision as the number of correctly prioritized genes (where 
the prioritized gene is also the gene with the primary, protein-coding signal) divided by the total 
number of prioritized genes. We compute recall as the number of correctly prioritized genes 
divided by the total number of gold standard genes. The total number of candidate genes is 
defined as the number of gene-trait pairs presenting CLPP>0.1 in at least one tissue and variant. 
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