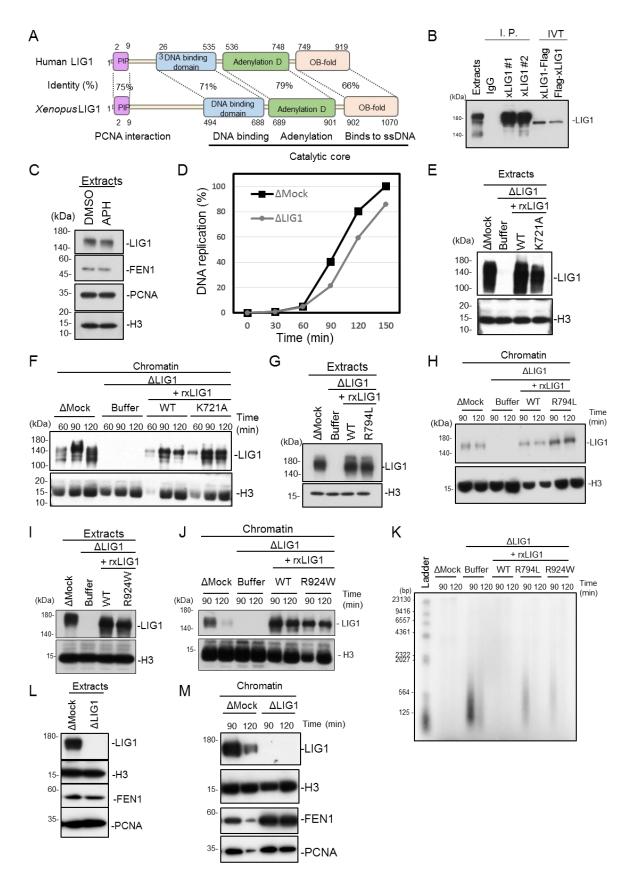
SUPPLEMENTARY DATA

HPF1-dependent PARP activation promotes LIG3-XRCC1-mediated backup pathway of Okazaki fragment ligation

Soichiro Kumamoto¹, Atsuya Nishiyama^{1*}, Yoshie Chiba¹, Ryota Miyashita¹, Chieko Konishi¹, Yoshiaki Azuma² and Makoto Nakanishi^{1*}


Correspondence may also be addressed to Atsuya Nishiyama. Tel: 81-3-5449-5731; Fax: 81-3-5449-5342; Email: uanishiyama@g.ecc.u-tokyo.ac.jp

¹ Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan

² Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, 66045, U.S.A.

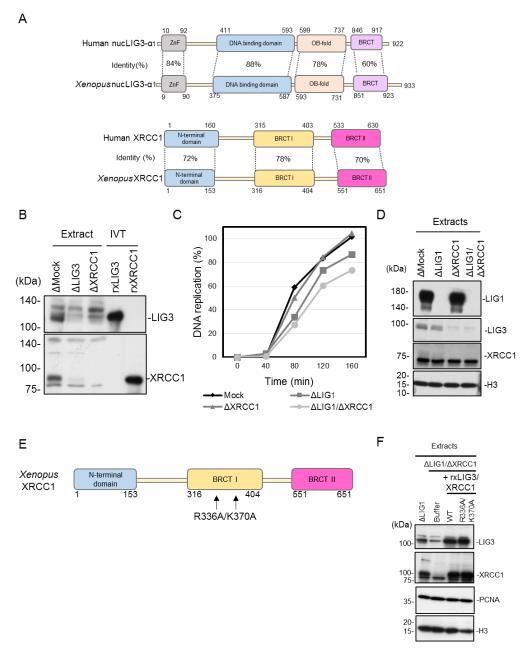

^{*} To whom correspondence should be addressed. Tel: 81-3-5449-5341; Fax: 81-3-5449-5342; Email: mkt-naka@g.ecc.u-tokyo.ac.jp

Figure S1

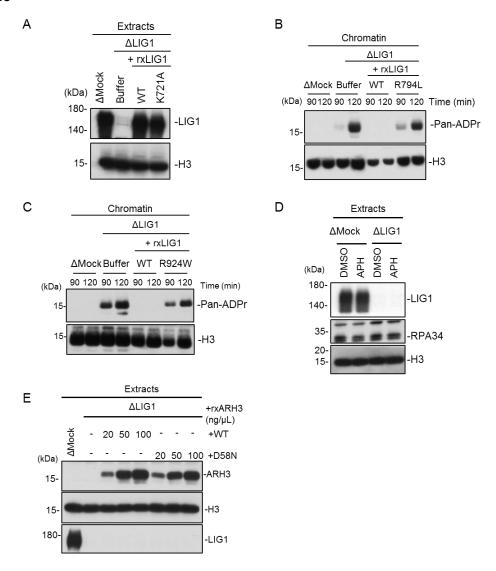

Supplementary Figure 1. (A) Domain structures of Xenopus and Human LIG1. LIG1 is composed of a PCNA-interacting protein (PIP) motif, a DNA binding domain, an adenylation domain and an oligonucleotide/oligosaccharide-binding (OB)-fold domain that are well conserved in humans and Xenopus. (B) Immunoblot analysis of egg extracts, LIG1 immunoprecipitates and reticulocyte lysates translating recombinant FLAG-tagged xLIG1. (C) Immunoblot of extracts used in Figure 1D using the indicated antibodies. (D) DNA replication in xLIG1- and mock-depleted extracts. The relative amounts of DNA synthesis are shown. (E) LIG1-depleted extracts were supplemented with wild-type xLIG1 or xLIG1-K721A and analyzed by immunoblotting using the indicated antibodies. (F) The extracts from (E) were used to replicate sperm nuclei. Chromatin-bound proteins were analyzed by immunoblotting. (G) LIG1-depleted extracts were supplemented with wild-type xLIG1 or xLIG1-R794L and analyzed by immunoblotting using the indicated antibodies. (H) The extracts from (G) were used to replicate sperm nuclei. Chromatin-bound proteins were analyzed by immunoblotting. (I) LIG1-depleted extracts were supplemented with wild-type xLIG1-3×Flag or xLIG1-K924W-3×Flag and analyzed by immunoblotting using the indicated antibodies. (J) The extracts from (G) were used to replicate sperm nuclei. Chromatin-bound proteins were analyzed by immunoblotting. (K) xLIG1-depleted extracts were supplemented with wild-type xLIG1-3×Flag, xLIG1-R794L-3×Flag or xLIG1-R924W-3×Flag. Purified genomic DNA from chromatin was labeled using exonuclease-deficient Klenow fragment and α -32P dCTP and separated in a denaturing agarose gel. (L) Mock- and xLIG1-depleted extracts were analyzed by immunoblotting using the indicated antibodies. (M) The extracts from (L) were used to replicate sperm nuclei. Chromatin-bound proteins were analyzed by immunoblotting.

Figure S2

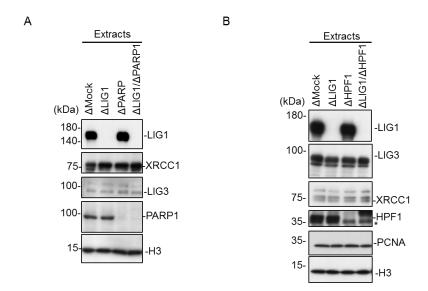

Supplementary Figure 2. (A) Domain structures of *Xenopus* and Human nuclear LIG3 and XRCC1. Nuclear LIG3 is composed of a zinc-finger (ZnF), DNA binding, oligonucleotide/oligosaccharide-binding (OB)-fold and BRCA1 C-Terminal (BRCT) domains that are well conserved in humans and *Xenopus*. XRCC1 is composed of an N-terminal domain, and BRCT I and BRCT II domains that are well conserved in humans and *Xenopus*. (B) Immunodepletion efficiency of xLIG3 and xXRCC1 from *Xenopus* egg extract. IVT; in vitro translation protein. Depleted extracts and IVT proteins were analyzed by immunoblotting using the indicated antibodies. (C) DNA replication in xLIG1-, xXRCC1-, xLIG1/xXRCC1-, and mock-depleted extracts. The relative amounts of DNA synthesis are shown. (D) Immunoblot of the extracts of Figure 2C using the indicated antibodies. (E) Sequences of the wild-type and R336A/K370A mutant BRCT I domain in xXRCC1 are shown. (F) Immunoblot of the extracts of Figure 2D using the indicated antibodies.

Figure S3

Supplementary Figure 3. (A) Immunoblot of extracts used in Figure 3A using the indicated antibodies. (B) xLIG1-depleted extracts were supplemented with either buffer or wild-type xLIG1-3xFlag or xLIG1-3xFlag-R794L. Chromatin-bound proteins were analyzed by immunoblotting using pan ADP-ribose detecting reagent. (C) xLIG1-depleted extracts were supplemented with either buffer or wild-type xLIG1-3xFlag or xLIG1-3xFlag-R924W. Chromatin-bound proteins were analyzed by immunoblotting using pan ADP-ribose detecting reagent. (D) Immunoblot of the extracts of Figure 3D using the indicated antibodies. (E) Immunoblot of the extracts of Figure 3E using the indicated antibodies.

Figure S4

Supplementary Figure 4. (A) Immunoblot of the extracts of Figure 5A using the indicated antibodies. (B) Immunoblot of the extracts of Figure 5B using the indicated antibodies. The asterisk indicates a non-specific band.

Table S1

Supplementary Table 1

	plementary rable i	Б
No.	Sequence 5'-3'	Description
1	GAAACCTTCATTTTACGGCGGGGA	xLIG1 amplification
2	ACTCCAAGGCAACACAATAGGTGG	xLIG1 amplification
3	GGCGCGGATCAGATCTCATGCAACGAACAATAAAGTC	pVL139-xLIG1-Flag3
4	GGGCCCTCTAGAATTCTACTTGTTATCGTCATCCT	pVL139-xLIG1-Flag3
5	GCATATGACGGGGAGCGTGCACAGATAC	xLig1K721A mutation
6	GTATTCACAAGTAAAGGCAGCTTCA	xLig1K721A mutation
7	GCTGCTCAGCCCAAGCTAGGGGCTGAAGTAA	xLig1F8AF9A mutation
8	GGACTTTATTGTTCGTTGCATGAGA	xLig1F8AF9A mutation
9	CTAAAGAGAAAGGATGTGGATGCATCAG	xLig1R794L mutation
10	AGTAGTCAGTACTTGAAATGGCTGA	xLig1K794L mutation
11	TGGACTGGTATCTATGGAGGCTTCTTAC	xLig1R924W mutation
12	TTTCCCTTTCCCAAGGTAAGCTCCA	xLig1R924W mutation
13	GAGTGGGCTTTCTCTGTGTTGTTG	xFEN1 amplification
14	GACATATTGTCAAAGCCTTAGCGC	xFEN1 amplification
15	TGTGTGAGTGAGGGAAATTGCAGG	xLIG3 amplification
16	GTTGATCTGTGATGCCTTCTCCTG	xLIG3 amplification
17	GGGCCCTCTAGAATTTTACACACAATTCTCATCAACAC	pVL139-xLIG3-Flag3
18	GGTGGTGAAGCAGAAATCTGCT	xXRCC1 amplification
19	CTTTGCACTGGCAACATCCAGTTC	xXRCC1 amplification
20	GGCGCGGATCAGATCTCATGCCTGTGATCAAACTGAAGC	pVL139-xXRCC1-Flag3
21	GGGCCCTCTAGAATTCGCCTTGGGCACCACAACGTAAGG	pVL139-xXRCC1-Flag3
22	GCAGCCGACCTCCGTGATAAAGCATTAG	xXRCC1R336A mutation
23	GAATGGATTCTGAAAGCCGCTCAGC	xXRCC1R336A mutation
24	GCATTCAGCCAGGTGAAAGCAGCGGGCG	xXRCC1R370A mutation
25	AGGGGTATTTGCAAAGGCACATATG	xXRCC1R370A mutation
26	CACGTTGTTACTGTAAGAGCCAGTGTGTTCCCTGT	xPARP1 amplification
27	CACTCCGTGATCCATCCTGCCCAACGTATG	xPARP1 amplification
28	AGCGGAAACTCCACTCTTGGTTGA	xPARG amplification
29	GCTGGACATGAGTCAGGACTTCAT	xPARG amplification
30	TTCTCAGAGAGTGCTGCTATTCGC	xHPF1 amplification
31	AAGCCATCTTCCCTCTGAAGTGAC	xHPF1 amplification
32	GCTGCGGAGCTTCCAGAGACAGATGGAAACC	xHPF1Y251AR252
		mutation
		xHPF1Y251AR252
33	CCCAACATCATTCTTATCCACTGGC	mutation
34	TTCTCAGAGAGTGCTGCTATTCGC	xARH3 amplification
35	AAGCCATCTTCCCTCTGAAGTGAC	xARH3 amplification
36	TGTATATGTTAAAACACTCTTTAGT	xARH3D58N mutation
37	AATGACACAGCCATGGCAAGGTCGATTG	xARH3D58N mutation