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Summary 

Interpretation of the function of non-coding risk loci for neuropsychiatric disorders and            

brain-relevant traits via gene expression and alternative splicing is mainly performed in bulk             

post-mortem adult tissue. However, genetic risk loci are enriched in regulatory elements of cells              

present during neocortical differentiation, and regulatory effects of risk variants may be masked             

by heterogeneity in bulk tissue. Here, we map e/sQTLs and allele specific expression in primary               

human neural progenitors (n=85) and their sorted neuronal progeny (n=74). Using           
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colocalization and TWAS, we uncover cell-type specific regulatory mechanisms underlying risk           

for these traits. 

Introduction 

Genome wide association studies (GWAS) have identified many common non-coding variants           

associated with risk for brain structure, neurodevelopmental disorders, and other brain-related           

traits​1–7​. However, it is challenging to determine the mechanism of non-coding variants because,             

in general, (1) the genes impacted by non-coding risk variants are unknown, (2) the cell type(s)                

and developmental period(s) where the variants have an effect are not known, (3) and there               

may be limited availability of tissue representing the causal developmental stage and cell type.  

One potential mechanism by which non-coding genetic variation can influence brain traits is             

through alterations in gene expression, or expression quantitative trait loci (eQTLs). Genetic            

variation also impacts transcript splicing ​8,9​, and several studies have implicated genetically           

mediated alterations in splicing as important risk factors for neuropsychiatric disorders​10–12​.  

Most current efforts to explain the function of these risk loci rely on mapping local expression                

and splicing quantitative trait loci (e/sQTLs) in bulk adult brain tissue ​13,14​. However, genetic risk              

loci are enriched in cell types relevant for neocortical differentiation that are not present in the                

adult brain ​15,16​. e/sQTL studies have been performed on human fetal brain bulk cortical             

tissue ​17–19​, but there are advantages to a cell type specific approach given that regulatory              

effects of risk variants may be masked by heterogeneity in bulk tissue ​20,21 

Utilizing a cell type specific ​in vitro model system including neural progenitors (N​donor = 85) and                

their virally labelled and sorted neuronal progeny (N​donor ​= 74) derived from a multi-ancestry              

population, here we investigated how common genetic variants impact brain related traits            

through gene expression and splicing during human neurogenesis. We discovered 2,079/872           

eQTLs in progenitors and neurons, and 5,676/4,590 sQTLs in progenitors and neurons,            
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respectively. Importantly, 66.1%/47% of eQTLs in progenitor/neuron and ​78.8%/76.1% sQTLs          

in progenitor/neuron were unique, and were not found in fetal bulk brain e/sQTLs from a               

largely overlapping sample​18 and in adult bulk e/sQTL data from GTEx pro​ject​22​. We showed              

both eQTLs and sQTLs colocalized with known GWAS loci for neuropsychiatric disorders and             

other brain relevant traits in a cell type specific manner. By integrating the dataset generated               

here with cell type specific chromatin accessibility from the same cell lines​23 and brain structure               

GWAS​5​, we propose a regulatory mechanism whereby genetic variation influences a proxy of             

human intelligence across multiple levels of biology. Furthermore, we genetically imputed           

disease/brain trait susceptibility gene expression and alternative splicing in these cell types            

using transcriptome-wide association study (TWAS), that identified cell type and temporal           

specific risk genes and introns. 

Results 

Transcriptomics of primary human progenitors and neurons 

We established an ​in vitro culture of primary human neural progenitor cell (phNPC) lines              

derived from genotyped human fetal brain tissue (N = 89 unique donors) at 12-19 post               

conceptional weeks (PCW) (14-21 gestation weeks), that recapitulates the developing human           

neocortex​24–27 (Figure 1A, Methods). Immunofluorescence of the cells showed that          

undifferentiated progenitors expressed PAX6 and SOX2 (90-95%), consistent with a          

homogenous culture of radial glia ​28,29 (Figure 1A). At 5 weeks post-differentiation, phNPC            

cultures were transduced with a virus which expresses EGFP in neurons (AAV2-hSyn1-EGFP),            

which enabled us to isolate neurons via FACS sorting at 8 weeks post-differentiation (Figure              

1A, Supplementary Figure 1A-B, Methods).  

 

We acquired transcriptomic profiles of progenitors and neurons via RNA-sequencing (Methods;           

Supplemental Figure 1C), where we observed that gene expression profiles were more            
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correlated between libraries generated from the same donor thawed at different times as             

compared to libraries across different donors (Supplementary Figure 2A). After correction for            

technical confounds (Supplementary Figure 2B), progenitors and neurons clustered separately          

by principal component analysis (PCA) of global gene expression, indicating global           

transcriptomic differences by cell type (Figure 1B).  

 

Assessing fidelity of phNPC cultures 

Next, we evaluated cell type specificity of progenitors and neurons by evaluating the expression              

of literature based marker genes​30​. Progenitors exhibited higher expression of ventricular radial            

glial (​TAGLN2​), outer radial glial (​HOPX​), and pan radial glial markers (​SOX2​) (Figure 1C).              

Conversely, neurons had higher expression of known neuronal markers (​CTIP2​ and ​RBFOX3​).  

 

In order to identify gene expression differences between each cell type, we performed a              

differential gene expression (DGE) analysis. We found 1,281 genes upregulated in progenitors,            

and 2,276 genes upregulated in neurons (|log2FC| > 1.5 and FDR < 0.05; Figure 1D,               

Supplementary Table 1). We identified genes involved in cell cycle and neurotransmission            

upregulated in progenitors and neurons, respectively (Figure 1D). Gene ontology confirmed           

enrichment of differentially expressed genes in these expected pathways (Figure 1E). 

 

We next evaluated how well the ​in vitro progenitors and neurons we generated model ​in vivo                

neurodevelopment. We implemented the transition mapping (TMAP) approach for a global           

assessment of transcriptomic overlap between ​in vitro cultures and ​in vivo post-mortem human             

brain samples, as described in our previous work​25 (Methods). We compared the transition from              

progenitor to neurons with laser capture microdissection of cortical laminae from postmortem            

human fetal brain at 15-21 PCW​31​. We observed the strongest overlap in the transition from               

progenitors to neurons with the transition from outer subventricular zone (oSVZ) to intermediate             
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zone (IZ) or subplate zone (SP) (Figure 1F). Likewise, we also performed TMAP analysis for               

different fetal developmental periods​14,32​. We also observed the highest match with the transition             

from 8-9 PCW to 13 PCW or 16-17 PCW (Supplementary Figure 3). These results support the                

in vivo​ fidelity of our culture system representing neurogenesis during mid-fetal development. 

 

Cell type specific local expression quantitative loci (eQTL) analysis 

To investigate the impact of genetic variation on gene expression, we performed a local eQTL               

analysis by testing the association of each gene’s expression levels with genetic variants             

residing within +/-1 Mb window of its transcription start site (TSS)​33,34 (Figure 2A, see Methods) .                

We implemented a linear mixed effects model to stringently control for population stratification             

using a kinship matrix as a random effect with inferred technical confounders as fixed effects,               

separately for each cell type (λ​GC for progenitor = 1.028 and λ​GC for neuron = 1.007; see                 

Methods, Supplementary 2G). After retaining associations which were lower than 5% false            

discovery rate with a hierarchical multiple testing correction ​35,36 (Methods), we obtained           

conditionally independent eQTLs (Supplementary Figure 4A and 4B, see Methods). We           

identified 1,741 eGenes with 2,079 eSNP-eGene pairs in progenitors and 840 eGenes with 872              

eGene-eSNP pairs in neurons (Supplementary Table 2). 75.8%/54.2% of progenitor/neuron          

primary eQTLs were shared with m-value > 0.9 (Supplementary Figure 5A-B). In agreement             

with previous local eQTL studies​18,34,37–39​, the distribution of primary eSNPs relative to TSS             

revealed that index eSNPs with higher significance were often closer to the TSS of the eGene                

that they regulate for both cell types (Figure 2B). We found that 73.6%/75.9% of primary eSNPs                

were within 100 kb of the TSS, and 13%/12.7% of primary eSNPs were in the promoter of the                  

eGene (2kb upstream of TSS) in progenitors/neurons, respectively. eGenes were mostly           

(70.8%/54.5%) protein-coding, though lincRNAs were detected as well (6.5%/11.6%) in          

progenitors/neurons, respectively (Figure 2C).  
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We determined if eSNPs were enriched (see Methods) in chromatin states of the fetal human               

brain ​16,40 (Figure 2D, Methods). Both progenitor and neuron specific eSNPs were enriched in             

promoters, enhancers and actively transcribed sites present in the fetal brain, but depleted             

mostly in quiescent chromatin regions. We also measured enrichment of cell type specific             

chromatin accessibility QTLs within cell type specific eQTLs​15 and bulk fetal eQTLs​18 from a              

partially overlapping sample, as well as adult bulk cortex eQTLs​22 (Figure 2E). We observed              

that variants associated with chromatin accessibility within a peak (caSNP) in progenitors were             

enriched most strongly in progenitor eQTLs. Neuron caSNPs showed a similar pattern,            

suggesting that genetic variants may alter the regulatory landscape in a parent cell type, leading               

to expression changes only after differentiation. These observations supported the notion that            

genetic variation within functional regulatory elements in the tissue and cell-type of interest             

impact gene expression. 

 

Exploring cell type and temporal specificity of eQTLs 

We aimed to determine the utility of our cell type specific eQTL study by comparison to                

pre-existing bulk brain eQTL studies. Comparing our results to a bulk fetal cortical wall eQTL               

dataset from a previous study using a partially overlapping set of donors​18​, we observed              

26%/45% of eSNP-eGene pairs in progenitors/neurons were common with bulk fetal cortical            

eQTL data, where we considered genetic variants with pairwise LD r​2 > 0.8 as marking same                

loci between two datasets (Figure 2F, odds ratio test p-value: 5.06e-23). This indicates that both               

cell type specific eQTLs, but especially progenitor eQTLs in our cell type specific system offer               

novel regulatory mechanisms which can provide additional information beyond existing prenatal           

datasets​17–19​. 

 

We next explored the temporal specificity of cell type specific eQTLs by utilizing adult brain bulk                

cortical eQTL data from the GTEx project​22​. We observed 18.9%/28.3% of eSNP-eGene pairs in              
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progenitors and neurons, respectively, were also found in adult brain eQTL data            

(Supplementary 5C). That suggests largely independent genetic mechanisms regulating genes          

from development to adulthood ​19​. 

 

Cell type specific allele specific expression  

We performed cell type specific allele specific expression (ASE) analysis to understand allelic             

effects on gene expression within heterozygous individuals as a complementary approach to            

eQTL mapping ​34,41 (Figure 3A). We found 6,402 and 8,698 ASE sites in progenitors and              

neurons, respectively (Figure 3B, see Supplementary 6A-B for MA plot, Supplementary Table            

3). Next, we determined the number of eQTLs supported by ASE sites. We observed that 53%                

of progenitor and 45.5% of neuron eGenes (with comparable filtering criteria with ASE)             

overlapped with genes that had ASE sites (see Methods, Figure 3C). Importantly, 32.7%/34.3%             

of progenitor/neuron specific eQTLs, respectively, were supported by ASE, indicating that we            

could detect genetic variants altering gene expression with an independent within-donor method            

that is not subject to cross donor technical confounding, like population stratification (​42​; Figure              

3D). Both progenitor and neuron eQTLs shared with genome-wide significant ASE sites were             

highly concordant in effect size and direction (progenitor, r=0.83; neuron, r=0.849), while the             

eQTLs shared with nonsignificant ASE sites were still concordant but to a lesser degree              

(progenitor, r=0.54; neuron, r=0.517) (Figure 3E).  

 

We also identified allele specific effects supporting eQTLs colocalized with GWAS for            

neuropsychiatric disorders. For example, we found a progenitor eSNP (rs1051168) regulating           

NMB gene expression (p-value: 2.78e-09) colocalized with a SCZ index SNP (rs12908161) (see             

Methods for colocalization approach, Figure 3F). Variant rs1051168 was also supported by an             

ASE site (FDR = 1.01e-8), where the risk allele for SCZ (G) was associated with decreased                

NMB expression. NMB gene is a bombesin-related peptide highly expressed in the central             
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nervous system​43 and was associated with schizophrenia risk through a previous fetal brain             

eQTL based genetic imputation ​44,45​. Our observation proposes a cell type specific eQTL            

mechanism that was also supported by allele specific ​NMB expression to understand the             

regulatory mechanism underlying a schizophrenia GWAS risk locus. 

 

Cell-type specific splicing quantitative trait loci (sQTL)  

Given the impact of genetic variation on alternative splicing ​9,10,18,46​, we next performed a splicing              

quantitative loci (sQTL) analysis separately within progenitors and neurons. We quantified           

alternative intron excisions as percent spliced in (PSI) by implementing the Leafcutter software,             

an annotation free approach that allows for discovery of novel isoforms​47​. We found             

34,449/35,285 intron excisions present more often in progenitors/neurons, respectively (see          

Methods, Supplementary table 4). As a specific example, we found a differential alternative             

splicing site within the ​DLG4 gene encoding the postsynaptic density protein 95 (PSD-95). An              

exon skipping splice site supporting nonsense mediated decay (splice 1, ENST00000491753)           

was upregulated in progenitors; while another splice site supporting multiple protein coding            

transcripts (splice 2) was upregulated in neurons (Figure 4B). Post-transcriptional repression of            

PSD-95 expression in neural progenitors via nonsense mediated decay at splice 1 site has              

been previously experimentally validated ​48,49​, giving strong confidence in the cell type specific            

splicing calls.  

 

For the sQTL analysis, we implemented an association test between PSI of each intron excision               

and genetic variants located within a 200 kb window from the start and end of the splice      ±            

junctions (Figure 4A). We retained significant associations which were lower than 5% false             

discovery rate by implementing a hierarchical multiple testing correction (see Methods), and            

applied conditional analysis to identify independent sQTLs. We identified 4,708 intron excisions            

associated with 5,676 sSNPs-intron junction pairs in progenitors and 4,039 intron excisions            

8 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.10.21.349019doi: bioRxiv preprint 

https://paperpile.com/c/8nEEmk/xKLqO
https://paperpile.com/c/8nEEmk/bFmlC+I3p3j
https://paperpile.com/c/8nEEmk/OrJQs+W2oFK+s8dnZ+1zBJT
https://paperpile.com/c/8nEEmk/GpE3x
https://paperpile.com/c/8nEEmk/v6Pnd+H8pNH
https://doi.org/10.1101/2020.10.21.349019
http://creativecommons.org/licenses/by/4.0/


associated with 4,590 sSNPs-intron junction in neurons (Supplementary Figure 7A-B,          

75.7%/71.2% of progenitor/neuron primary sQTLs were shared with m-value > 0.9,           

Supplementary Table 5). We observed that genetic variants closer to splice junctions exhibited             

a greater impact on splicing (44.4% of primary progenitor sSNPs and 42.4% of primary neuron               

sSNPs were within 10kb of the splice junctions, Figure 4C). As an example of an sSNP within a                  

splice junction, we found that the indel variant rs11382548 creates a canonical splice acceptor              

sequence and then impacts two different intron excisions supporting alternative 3’ splice sites             

(Figure 4D) for ​TMEM216​. Deletion of the A nucleotide at a canonical splice acceptor site of the                 

last exon of ​TMEM216 leads to disruption of the alternative splicing event for transcript              

ENST00000334888, and increased usage of transcript ENST00000398979 and        

ENST00000515837 in both progenitors and neurons. This splice variant may be relevant to             

neurogenesis because knockdown reduces division of both apical and intermediate progenitor           

cells during corticogenesis​50​. 

 

Interestingly, many splice sites were previously unannotated in the gene models we used             

(Ensembl Release 92). We detected 8.8%/11.3% cryptic at the 5’ end; 12%/12% cryptic 3’end;              

8.9%/10.6% both cryptic ends for intron excision within progenitors/neurons. We next sought to             

determine if sQTLs are enriched in known functional genomic elements. We observed sQTLs             

show a strong and significant enrichment in splice sites, introns and 5’/3’ UTR sites (Figure 4E).  

 

We also found that cell type specific sQTLs in progenitors and neurons were enriched for RNA                

binding sites from CLIP-seq databases of 74/76 different RNA-binding proteins (RBP)​51 (Figure            

4F, Supplementary table 6). Strikingly, 22/24 of those proteins were specifically enriched in             

progenitor and neuron specific sQTLs, respectively. Among RBP binding sites specifically           

enriched for progenitor sQTLs, we found LIN28B, known to play a role in neural progenitor               

proliferation and differentiation ​52​. On the other hand, for neurons, we detected enrichment of the              

9 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.10.21.349019doi: bioRxiv preprint 

https://paperpile.com/c/8nEEmk/VwWFr
https://paperpile.com/c/8nEEmk/h53qA
https://paperpile.com/c/8nEEmk/7ajCQ
https://doi.org/10.1101/2020.10.21.349019
http://creativecommons.org/licenses/by/4.0/


NPM1 regulating neuronal survival ​53​. These observations suggest that sQTLs alter the function            

of RBPs with cell type specific splicing roles during neural development. 

 

In order to examine if variants associated with alternative splicing also alter expression of the               

same genes, we compared cell type specific sQTLs with cell type specific eQTLs. Only              

17.6%/9.5% of sGenes, the genes that harbor intron excisions, were also eGenes for             

progenitors and neurons eQTLs, respectively (Supplementary 7C, upper panel). Furthermore,          

we also found that only 2.9% and 1.4% of sGene-sSNP pairs overlapped with eGene-eSNP              

pairs for progenitors and neurons, respectively (Supplementary 7C, lower panel), indicating that            

sQTLs generally function through independent mechanism from eQTLs. 

 

We next examined the impact of cell-type specificity on identification of sQTLs (see Methods;              

Figure 4G). We found 33%/38% of intron excisions, and 17%/23.5% of sSNP-intron excision             

pairs in progenitor and neuron specific sQTLs, respectively were shared with bulk cortical fetal              

tissue sQTLs (Figure 4G). We observed a smaller overlap of progenitor sQTLs with bulk cortical               

fetal tissue as compared to neuron sQTLs indicating that cell-type specificity allowed for novel              

discovery of progenitor sQTLs (Figure 4G, odds ratio test p-value: 1.7e-15). Also, we found              

6%/2.4% of sSNP-intron junction pairs in progenitors and neurons, respectively shared with            

adult brain bulk cortical sQTL data from GTEx project​22 (Supplementary 7D), showing temporal             

specificity of cell type specific sQTLs. 

 

Regulatory mechanisms of brain related GWAS 

 

We sought to explain the regulatory mechanism of individual loci associated with            

neuropsychiatric disorders, brain structure traits, and other brain-relevant traits by leveraging           

genetic variants regulating cell-type specific gene expression and splicing. We co-localized           
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GWAS loci of these traits with cell-type specific eQTLs and sQTLs using a conditional analysis               

to ensure the loci were shared across traits​54 (Supplementary Figure 8A; see Methods for the               

list of GWAS used for this analysis).  

 

We discovered 41, 13, and 20 GWAS loci that co-localized specifically with progenitor eQTL,              

specifically with neuron eQTLs, or with both cell types, respectively (Figure 5A, Supplementary             

Table 7). These observations show that the same genetic variants impact gene expression,             

neuropsychiatric traits, and brain structure in a cell type specific manner. Importantly, 98             

colocalized loci-gene pairs per trait were not found using fetal bulk cortical tissue eQTLs where               

tissue heterogeneity may have masked their detection (Figure 5B).  

 

Next, we leveraged our cell-type specific chromatin accessibility QTL (caQTL) dataset​23           

together with eQTLs in order to explain the regulatory mechanism underlying GWAS loci             

associated with brain relevant traits. As a specific example, we found a colocalization of a locus                

within the ​CENPW gene across caQTLs, eQTLs, GWAS for Global Surface Area (GSA) and for               

Educational Attainment (EA) (Figure 5C). The progenitor index eSNP rs4897179 that was not             

detected in bulk cortical fetal tissue eQTLs (nominal p-value = 3.26e-07 in progenitors, nominal              

p-value = 0.068 in neurons, and nominal p-value = 0.08 in fetal cortical bulk tissue), for the                 

CENPW eGene, was colocalized with variant rs9388490, which is the index SNP for both GSA               

and EA GWAS (nominal p-value = 4.954e-12 in GSA GWAS, and nominal p-value = 1.43e-08 in                

EA GWAS). Also, we found that a SNP (rs9388486) located within a chromatin accessible peak               

region 107 bp upstream of TSS of the ​CENPW gene was colocalized with the index eSNP. We                 

therefore consider rs9388486 as the potential causal variant, and noted that the C allele              

disrupts the motifs of the transcription factors CREM, ATF2, ATF4 and ATF1 (Figure 5D).              

CENPW ​is required for appropriate kinetochore formation and centriole splitting during mitosis​55​,            

and increased CENPW levels lead to apoptosis in the developing zebrafish central nervous             
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system​56​. Overall, these observations propose a cell type specific mechanism whereby the C             

allele at variant rs9388486 disrupts transcription factor binding and diminishes accessibility at            

the ​CENPW gene promoter, resulting in decreased ​CENPW gene expression levels in            

progenitors, presumably altering neurogenesis or reducing apoptosis, leading to increased          

cortical surface area and higher cognitive function. 

 

We also aimed to examine cell type specific splicing QTLs colocalized with GWAS loci. We               

observed 28, 23, and 29 GWAS loci in total that co-localized with specifically progenitor/neuron              

sQTLs and sQTLs present in both cell types (Figure 6A, Supplementary table 7). Similar to               

eQTL colocalizations, we observed that 124 different colocalized loci-intron junction-trait          

combinations were detected only with cell type specific sQTL, but not fetal cortical bulk sQTLs               

(Figure 6B). Interestingly, we detected a progenitor sSNP (rs3740400, nominal p-value:           

3.29e-10) associated with an unannotated exon skipping splicing event for the ​AS3MT​, that was              

not detected in fetal bulk sQTL data (nominal p-value: 0.005), was colocalized with an index               

GWAS SNP for schizophrenia ​1 (rs11191419) (Figure 6C). The risk allele for schizophrenia (T)             

was associated with more usage of this splicing site. A transcript supported by the same exon                

skipping event was discovered previously in the adult brain, that was regulated by variant              

rs7085104 in LD with rs3740400 ​57​. Here, we demonstrate genetically regulated upregulation of            

this transcript in neural progenitors, but not early born neurons, which shows a novel              

developmental basis for this previously identified association. We also observed that another            

progenitor specific sSNP (rs1222218) regulating a novel alternative exon skipping event for            

ARL14EP gene, was colocalized with SCZ index SNP (rs1765142) (Figure 6D). The risk allele              

for SCZ led to more frequent skipping of the exon, supporting expression of a novel isoform.                

ARL14EP gene has been shown to play a role in ​axonal development in the mouse neurons​58​.                

Here, we propose a novel transcript of this gene with expression in progenitors as a risk factor                 

for SCZ.  
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Genetic imputation of cell type specific GWAS susceptibility genes and alternative           

splicing 

 

Next, we imputed genes and alternative splicing associated with brain related traits by             

integrating the polygenic impact of cell type specific regulatory variants with GWAS risk variants              

in a transcriptome-wide association study (TWAS) approach ​59,60,116​. We found 1,703/973 genes           

and 6,728/6,799 intron junctions as significantly cis-heritable in progenitors/neurons (heritability          

p-value < 0.01). Given the difference in population structure between our dataset and European              

neuropsychiatric GWAS, we tested the impact of different LD estimates on the TWAS results              

(see Methods; Fig 7A and 7C Supplementary 9A,B). We observed a high overlap between              

these two analyses with the majority of genes/introns detected being shared regardless of LD              

structure (Supplementary 9C). We found the cis heritable impact of 124/102 genes in             

progenitor/neuron and 359/467 intron junctions in progenitor/neuron significantly correlated with          

at least one neuropsychiatric disorders or other brain related-traits (Supplementary Table 8). Of             

those significant TWAS genes/introns, to separate conditionally independent genetic predictors          

from the co-expressed ones, we performed a conditional analysis​61,62​, and defined those            

predictors as jointly independent. We performed cell-type specific TWAS on both gene            

expression and splicing for schizophrenia (jointly independent genes: 23 progenitor, 36 neuron;            

jointly independent introns: 59 progenitor, 64 neuron), IQ (jointly independent genes: 25            

progenitor, 30 neuron; jointly independent introns: 38 progenitor, 65 neuron), and neuroticism            

(jointly independent genes: 13 progenitor, 20 neuron; jointly independent introns: 40 progenitor,            

32 neuron) (Figure 7A and Supplementary Figure 10A; see Supplementary 9D for the full list of                

traits tested). Also, for each trait, we found novel loci not discovered in colocalization analysis,               

indicating that the polygenic effect of multiple loci on gene expression/splicing provides            

additional power to identify genetically regulated genes compared to a single-marker testing            

approach.  
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We next explored the cell type and temporal specificity of our TWAS approach for genes and                

introns junctions by performing TWAS analysis by using weights calculated from bulk cortical             

fetal tissue ​18​, and adult brain eQTLs from the Common Mind Consortium​13,62 (CMC)            

(Supplementary 9D and Supplementary Table 9 for performance comparison). Most TWAS           

findings were specific to a cell type or temporal e/sQTL dataset, rather than broadly detected,               

indicating that different developmental or cell type e/sQTL datasets contribute complementary           

information about genes influencing risk for neuropsychiatric disorders or other brain traits. We             

observed an example supporting the cell type and temporal specificity of our analysis at the               

B3GALNT2 gene locus using TWAS for IQ (Figure 7B). Despite IQ GWAS falling short of the                

genome-wide significance threshold at this locus, we detected that genetically imputed           

expression of the ​B3GALNT2 ​gene in progenitors was significantly correlated with IQ.            

Importantly, neither IQ TWAS in fetal bulk tissue nor in CMC adult brain tissue were found to be                  

significantly associated with ​B3GALNT2 gene expression (Figure 7B). The gene was also not             

significantly cis-heritable within neurons. Mutations in the ​B3GALNT2 gene play a role in             

glycosylation of α-dystroglycan and were associated with intellectual disability in individuals with            

congenital muscular dystrophy​63,64​. Overall, here we showed that an increase in genetically            

imputed ​B3GALNT2 gene expression in progenitors is associated with lower IQ, suggesting this             

gene’s early cell type specific impact on cognitive function. 

 

Within the cell-type specific splicing TWAS, for ​MRM2 gene, we found an intron junction more               

frequently spliced that was associated with increased risk for schizophrenia specifically in            

progenitor cells (TWAS-Z: 6.538), but it was not significantly cis-heritable within neuron, fetal             

bulk or adult bulk data (Supplementary Figure 10B). MRM2 is a mitochondrial rRNA             

methyltransferase ​65​, and was found to be associated with intellectual disability​66 and           
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mitochondrial encephalopathy​65​. Here, we propose a cell type specific developmental basis for            

alternative splicing of the ​MRM2​ gene associated with risk for schizophrenia. 

Discussion 

Here, we investigated the influence of genetic variation on brain related traits within a cell               

type specific model system recapitulating a critical time period of human brain development,             

neurogenesis. Our analysis discovered features of gene regulation that will be           

complementary to previous eQTLs and sQTLs identified in bulk human brain in that: (1) we               

identified thousands of novel eQTLs, ASEs, and sQTLs during brain development that are             

enriched in regulatory elements present during neurogenesis; (2) most e/sQTLs in           

progenitors/neurons were not identified in previous bulk tissue post-mortem tissue datasets           

from fetal bulk cortical tissue indicating the importance of cell-type specificity for identifying             

genetic influences on gene regulation; (3) ​using this resource, we are able to propose              

cell-type specific variant-gene/transcript-trait(s) pathways to further explore molecular and         

developmental causes of neuropsychiatric disorders; (4) by integrating the polygenic effects           

across traits and gene expression, we are able to impute cell type specific gene              

expression/alternative splicing dysregulation in individuals with neuropsychiatric disorders in         

time periods prior to disease onset. 

 

As one example of a cell-type specific variant-gene-trait pathway, we discovered a locus             

near the ​CENPW gene colocalized across cell-type specific caQTL, eQTL, brain size, and             

cognitive function. Through the integration of multi-omic gene-to-trait databases, we          

hypothesize that the C allele at rs9388486 leads to decreased TF binding of up to 4                

transcription factors (ATF1/2/4, CREM) in progenitors, resulting in decreased chromatin          

accessibility at the promoter peak, decreased expression of ​CENPW​, leading to increased            
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cortical surface area, and increased cognitive function. The ​CENPW gene has a strong role              

in proliferation, as it is required for kinetochore formation during mitosis​67​. This is consistent              

with progenitor proliferation influencing surface area, as described in the radial unit            

hypothesis​68​. Increased levels of ​CENPW may cause death of progenitor cells either by             

directly being an apoptotic inducer or by triggering apoptosis in response to an imbalance in               

cell homeostasis with excessive mitotic activity​56​. ​In all, we demonstrate how integration            

across multi-level biological data can be used to propose functional mechanisms underlying            

complex traits, and future studies may be able to develop computational models to propose              

causal pathways across multi-omic QTL data ​9,69,70​. Such information will be crucial to both             

design efficient functional validation experiments as well as to leverage GWAS loci to             

advance treatment targets for neuropsychiatric disorders.  

 

Though the most commonly proposed regulatory mechanism by which non-coding genetic           

variation influences complex traits is through gene expression levels​33​, our data also            

support mechanisms by which genetic variants associated with cell-type specific alternative           

splicing influence complex brain-relevant traits. Importantly, we observed sQTLs impacting          

previously unannotated cell-type specific alternative splicing events that are also          

colocalized with brain relevant GWAS. For example, we found a progenitor specific sSNP             

regulating one unannotated exon skipping splice site for the ​AS3MT ​gene. Previous work             

has shown that a transcript supported by that splice site was associated with risk for               

schizophrenia in adult neurons​57​. Here, we propose that this alternative splicing event for             

the ​AS3MT gene also occurred earlier in development and contributes to schizophrenia            

risk.  
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Our cell type specific TWAS analysis identified that alteration in expression of multiple             

genes and transcripts are associated with risk for different neuropsychiatric conditions. We            

followed a unique TWAS approach allowing us to explore cell type and temporal specificity              

by leveraging existing fetal brain bulk and adult e/sQTLs together with the cell-type specific              

data we generated here. This type of analysis allows the imputation of the genetically              

regulated component of differential expression within cell types years prior to disease            

onset. As such, it allows the knowledge of gene expression differences that cannot be              

gained from post-mortem tissue of cases versus controls, which must be acquired after             

diagnosis. This window into developmental gene expression differences may be particularly           

important to understand disease risk, as these results are not subject to confounding by              

medication use or the altered experiences of the environment of individuals living with a              

neuropsychiatric illness​71​. Nevertheless, further support for such data could be gained from            

iPSC lines modeling early developmental time periods from large populations of cases vs             

controls. 

 

With our cell-type specific model, we propose how and when genetics influence brain related              

traits through gene expression and splicing. ​Future cell type specific eQTLs acquired using             

flow cytometry or scRNA-seq from the developing post-mortem brain will be useful to             

validate the ​in vivo impact of genetic variants discovered here using an ​in vitro system.               

Nevertheless, this ​in vitro system has particular utility in that, in the future it may be used to                  

determine the impact of genetic variation in response to activation of specific pathways or              

response to environmental stimuli. By pursuing cell-type, temporal, and environmental          

specificity of eQTLs, we expect that a greater degree of mechanisms underlying risk for              

neuropsychiatric disorders and brain-relevant traits can be uncovered. 
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Data and code availability 

Data will be available within to dbGaP upon publication, and codes are available here              

https://bitbucket.org/steinlabunc/expression_splicing_qtls_public/src/master/. 

Figure Legends 

Figure 1: Fidelity of primary human neural progenitors (phNPC) and their differentiated            

neuronal progeny. 

(A) Experimental design of the study. Immunolabeling of progenitors and neurons showed that             

progenitors expressed radial glia markers including SOX2 (90-95%) in red and PAX6 (90-95%)             

in green, and neurons were positive for EGFP (green) expressed under the control of neuronal               

specific SYN promoter (scale bar is 100 m). RNA-sequencing performed for progenitors cells       μ       

(purple) and neuronal progeny (green).  

(B) Principal component analysis of progenitor and neuron transcriptomes indicates cell type            

specific clustering. Each dot represents a donor from either progenitors (purple) or neurons             

(green). 

(C) Heatmap showing cell type specific expression of literature based progenitor (PAN-RG:            

Pan-radial glia, V-RG: ventricular radial glia, O-RG: outer radial glia) and neuronal markers             

listed on the y-axis. The x-axis indicates progenitor (purple) or neuron (green) cells from each               

donor. The color of heatmap indicates the relative gene expression normalized for each gene              

between 0 and 1. 

(D) MA plot showing differentially expressed genes in progenitor versus neurons: log2FC > 0              

and adjusted p-value < 0.05 indicates genes more expressed in neurons shown in green,              

log2FC < 0 and adjusted p-value < 0.05 indicates genes more expressed in progenitors shown               

in purple and genes not significantly differentially expressed between two cell types are shown              

in grey. Blue lines indicates |log ​2​FC| > 1.5. 
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(E) Gene ontology (GO) analysis showing pathways enriched for genes upregulated in            

progenitors (left, in purple), and for genes upregulated in neurons (right, in green). The x-axis               

shows adjusted -log10(p-values) for enrichment and each GO term is listed in the y-axis. 

(F) Comparison of the transitions between mitotic and postmitotic regions of in vivo cortical              

laminae in the developing cortex and in vitro progenitor and neurons with rank-rank             

hypergeometric overlap (RRHO) maps. The extent of overlap between ​in vivo and ​in vitro              

transcriptome was represented by each heatmap colored based on -log10(p) value from a             

hypergeometric test. Each map shows the extent of overlapped upregulated genes in the             

bottom left corner, whereas shared downregulated genes are displayed in the top right corners              

(ventricular zone - VZ; inner and outer subventricular zone - i/oSVZ, intermediate zone - IZ;               

subplate - SP; inner and outer cortical plate - i/oCP, marginal zone - MZ) 

 

Figure 2: ​ Cell type specific local expression quantitative loci (eQTL) analysis. 

(A) A schematic showing that variants within +/- 1MB cis window from the transcription start site                

(TSS) of each gene were tested for the association with gene expression.  

(B) ​Distance of primary eSNPs from the TSS in progenitors (left) and in neurons (right). 

(C)​ Biotypes of progenitor eGenes in purple and of neuron eGenes in green. 

(D) Enrichment of progenitor eSNPs (left), and neuron eSNPs (right) within chromatin states in              

fetal brain from chromHMM listed on the y-axis. The x-axis shows the effect size of enrichment                

with 95% upper and lower confidence interval and the plot is color-coded based on              

-log10(p-value) value from enrichment analysis. Significant enrichments are shown with an           

asterisk. Enrichment was tested using eQTLs thresholded at the eigenMT-BH p-value. 

(E) Enrichment of cell type specific caSNPs within cell type specific, fetal bulk and adult bulk                

eQTLs with QTLenrich. Adjusted enrichment fold change per data is shown with 95% upper and               

lower confidence interval. Each dot is colored based on -log10(p-value) and significant            

enrichments are shown with an asterisk. Dashed blue line indicates x = 1. 
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(F) Overlap percentage of cell type specific eSNP-eGene pairs shared with fetal bulk eQTLs.              

Odds ratio test p-value is shown. 

 

Figure 3: ​Cell type specific allele specific expression analysis. 

(A) A schematic illustrating allele specific expression (ASE) in a heterozygous individual for a              

variant of interest. 

(B) ​Overlap between progenitor and neuron specific ASE sites. 

(C) ​Overlap between eGenes and genes with ASE (progenitors in purple, neurons in green). 

(D) Overlap between cell type specific eSNPs and ASE sites (progenitors in purple, neurons in               

green). 

(E) Comparison of the effects of shared ASE sites and eQTLs in progenitors (left in purple) and                 

neurons (right in green). Nonsignificant ASE sites are shown as darker colors for both cell               

types, and significant ASE sites are shown as lighter colors. Correlation coefficient (r) values              

are indicated in colors for each category and the red dashed line indicates x = y. 

(F) ​Genomic tracks are color-coded based on LD r​2 relative to the variant rs1051168 at the left                 

showing regional association of variants with schizophrenia (SCZ) and ​NMB gene in progenitor             

and neurons. Progenitor eSNP rs1051168 associated with ​NMB gene expression was           

colocalized with SCZ index variant rs12908161 (4th row), that is also a progenitor specific ASE               

site. Box plots showing VST normalized ​NMB gene expression (upper plot), and allele specific              

expression (lower plot) across rs1051168 genotypes in progenitors. 

 

Figure 4: ​Cell type specific splicing quantitative loci (sQTL) analysis. 

(A) ​A schematic illustrating splicing QTL mapping. Association of variants locating within 200 kb              

distance from each end of intron junctions were tested. The T allele is associated with more                

frequently splicing of the shorter intron junction. 
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(B) Differential splicing of two intron junctions within the ​DLG4 gene. Splice 1             

(chr17:7191358-7192945) supports a previously validated nonsense mediated decay transcript         

(ENST00000491753) with higher expression in progenitors, whereas splice 2         

(chr17:7191358-7191893) has higher expression in neurons.  

(C) ​Density plot showing the distribution of primary sSNPs relative to the two edges of intron                

junctions (progenitor in purple in upper panel, neuron in green in lower panel). 

(D) ​Two intron junctions supporting an alternative 3’ splicing site for ​TMEM216 gene regulated              

by variant rs11382548 located at the splice site. The regional association of variants to two               

introns is shown in the genomic track at the left colored by pairwise LD r​2 relative to variant                  

rs11382548. Box plots show quantile normalized PSI values for splice 1           

(chr11:61397975-61398261) and splice 2 (chr11:61397975-61398270) across variant       

rs11382548. 

(E) ​Enrichment of cell type specific sQTLs in functional genomic annotations at eigenMT-BH             

threshold used to define significant sQTLs. Each annotation is listed in the y-axis, and the x-axis                

shows the effect size of enrichment test, where data points are colored by -log10(p-value) from               

enrichment test and asterisks are used to denote significance (progenitor at the left, neuron at               

the right). 

(F) ​Enrichment of cell type specific sQTLs within RNA-binding protein (RBP) sites based on a               

CLIP-seq dataset. The top 30 RBPs based on -log10(enrichment p-value) are listed on the              

y-axis, and the x-axis shows the effect size from enrichment test, where data points colored by                

-log10(p-value) from the enrichment test and cell type specific RBP are colored with purple for               

progenitors at the left, and as green for neuron at the right). 

(G) Overlap percentage of cell type specific sSNP-intron junction pairs shared (pink) with fetal              

bulk sQTLs. Odds ratio test p-value is shown. 

 

Figure 5: ​Colocalization of cell type specific eQTLs with GWAS for brain related traits.  
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(A) Number of GWAS loci colocalized with progenitor (purple), neuron (green) specific eQTLs             

or both cell types (orange). Each GWAS trait is listed on the y-axis.(SA: surface area, TH:                

thickness) 

(B) ​Overlap of colocalized GWAS loci-gene pairs per trait combinations across progenitor,            

neuron and fetal bulk eQTL colocalizations for the traits listed in Figure 5A. 

(C) Genomic track showing regional association of variants with educational attainment (EA),            

global surface area (GSA) and ​CENPW gene expression in progenitors and neurons.            

Progenitor eSNP rs4897179 (3rd row) was coincident with index SNP (rs9388490) for both EA              

(1st row) and GSA GWAS (2nd row), and conditioning progenitor eSNP rs4897179 on             

rs9388490 showed colocalization of the two signals (5th row). Also, rs4897179 was colocalized             

with another variant rs9388486 located in the chromatin accessibility peak at the promoter of              

CENPW gene (6th and 8th rows). Genomic tracks were color-coded based on LD r​2 relative to                

the variant rs9388486. 

(D) ​Plot showing the chromatin accessibility peak (chr6:126339531-126340960) in progenitors          

across different genotypes of variant rs9388486, where allele C decreases chromatin           

accessibility (upper left). C allele of variant rs9388486 disrupted binding motifs of transcription             

factors including CREM, ATF1, ATF2 and ATF4 (bottom left). A schematic showing that             

potential transcription factor has decreased preference to bind at the C allele, which results in               

lower ​CENPW​ expression, increase in global surface area and educational attainment (right). 

(E) Box plots showing chromatin accessibility across rs9388486 genotypes in progenitors           

(purple) and neurons (green) (upper panel). Box plots showing VST normalized ​CENPW gene             

expression across rs9388486 genotypes in progenitors (purple) and neurons (green) (bottom           

panel). 

 

Figure 6: ​Colocalization of cell type specific sQTLs with GWAS for brain related traits. 

(A) Number of GWAS loci colocalized with progenitor (purple), neuron (green) specific sQTLs or              
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both cell types (orange). Each GWAS trait is listed on the y-axis (SA: surface area, TH:                

thickness). 

(B) ​Overlap of colocalized GWAS loci-intron junction pairs per trait across progenitor, neuron             

and fetal bulk sQTL colocalizations for the traits listed in Figure 6A. 

(C) Genomic tracks showing regional association of variants with SCZ and an unannotated             

exon skipping splice site (chr10:102869593-102872448) for ​AS3MT gene in progenitors and           

neurons. The splice site was associated with progenitor sSNP (rs3740400) colocalized with            

SCZ GWAS index SNP (rs11191419). Genomic tracks were color-coded based on LD r​2 relative              

to the variant rs3740400. Sashimi plots showing the gene model of ​AS3MT and the genomic               

position of unannotated splice site (blue) overlapping with ​AS3MT gene. Average INT            

normalized PSI values for the splice site are shown for each genotype group. Schizophrenia              

risk allele T regulates the exon skipping event in progenitors. Boxplots showing INT normalized              

PSI values for splice across rs3740400 genotypes in progenitors and neurons.  

(D) Genomic tracks color-coded based on pairwise LD r​2 relative to the variant rs1222218               

showing regional association of variants with SCZ and an unannotated alternative splicing event             

for ​ARL14EP gene in progenitors and neurons. A cryptic exon skipping splice site             

(chr11:30323202-30332866) was associated with progenitor sSNP (rs1222218) colocalized with         

SCZ GWAS index SNP (rs1765142). Sashimi plots with the gene model of ​ARL14EP and the               

genomic position of the unannotated splice site (blue) overlapping with ​ARL14EP gene.            

Average INT normalized PSI values for the splice site are shown for each genotype group.               

Schizophrenia risk allele G regulates the exon skipping event in progenitors. Boxplots showing             

INT normalized PSI values for splice across rs1222218 genotypes in progenitors and neurons.  

 

Figure 7: ​Prediction of gene expression human during development via TWAS. 

(A) ​Manhattan plots for schizophrenia, IQ, and neuroticism TWAS for progenitors (purple-grey,            

top) and neurons (green-grey, bottom) where the LD matrix used was based on a European               
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population. Each dot shows -log10(TWAS p-value) for each gene on the y-axis, genes were              

color-coded based on discovery also in colocalization analysis (orange), defined as the nearest             

gene to GWAS loci (dark pink), being in both these two categories (blue), and discovered only                

in TWAS analysis (black). Only joint independent genes are labelled (positively and negatively             

correlated genes represented by triangle and square, respectively).  

(B) ​IQ TWAS results for the ​B3GALNT2 gene, regional association of variants to IQ trait shown                

at the top, and statistics from each TWAS study shown at the bottom (red line used for                 

genome-wide significant threshold 5 x 10 ​-8​). 

Supplementary Figure 1: ​Study pipeline and immunostaining of progenitors and neurons 

(A)​ Flow cytometry results showing sorting of EGFP positive neurons in pink. 

(B) Immunostaining images indicates outer radial glia marker HOPX in green, proliferation            

marker Ki67 in yellow and pan-radial glia marker SOX2 in red were expressed in progenitors,               

and neuronal marker TUJ1 was expressed in neurons from 8 week differentiated cultures (scale              

bar is 100 m, DAPI in blue).μ  

(C) Computational pipeline used in our study: RNA-sequencing pipeline including steps for gene             

expression, allele specific expression and splicing at the left and genotyping pipeline that             

resulted in genetic mapping of different phenotypes derived from RNA-sequencing data.  

Supplementary Figure 2: ​ Quality control of RNA-seq data and covariate selection 

(A) Replicate correlation of RNA-seq libraries across donors and within donors. Gene            

expression profiles were more correlated between libraries generated from the same donor            

thawed at different times as compared to libraries across different donors for both progenitors              

(left, p-value=0.001775 ) and neurons (right, p-value=0.0189).  

(B) Principal component analysis (PCA) before and after batch correction of neuron for the              

machine (Sony SH800S in blue, FACS Aria II in red, progenitors not sorted in grey) used for                 

sorting. 
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(C) Correlation of technical confounders with top 10 principal components of gene expression             

in progenitor, neurons and all data (asterisk indicates significant correlation). 

(D) Correlation of technical confounders with top 10 principal components of splicing in             

progenitor, neurons and all data (asterisk indicates significant correlation). 

(E) Multidimensional scaling (MDS) of global genotypes showing the multi-ancestry donors in            

our study. MDS1 vs MDS2 values plotted where each red circle represents a unique donor in                

our study and each different color represents different ancestry from HapMap3 (ASW: African             

ancestry, CEU:Northern and Western European ancestry, CHB: Han Chinese ancestry, CHD:           

Chinese in metropolitan Denver, GIH: Gujarati Indians in Houston, JPT: Japanese in Tokyo,             

LWK: Luhya in Webuye, MEX:Mexican ancestry, MKK: Maasai in Kinyawa, TSI: Toscani in             

Italy, YRI: Yoruba in Ibadan) 

(F) ​Covariate selection analysis for eQTLs with number of eGene vs. number of global gene               

expression PCs (left, progenitors in purple, neurons in green), and for sQTLs with number of               

significant intron vs. number of global splicing PCs (right, progenitors in purple, neurons in              

green). Blue arrows indicate the number of PCs used in each dataset. 

(G) ​Comparison of genomic inflation factor (λ​GC​) without controlling for population structure and             

technical confounders (no control), only controlling for technical confounders by adding global            

gene expression PCs, controlling for both population structure (10 MDS of global genotype) and              

technical confounders, and controlling for kinship matrix in addition to the previous covariates.  

Supplementary Figure 3: 

(A) ​Comparison of the transitions between every two developmental points of in vivo developing              

cortex and ​in vitro progenitor and neurons with rank-rank hypergeometric overlap (RRHO)            

maps. The extent of overlap between in vivo and in vitro transcriptome was represented by               

each heatmap colored based on -log10 p value from a hypergeometric test with step size = 200.                 

Each map shows the extent of overlapped upregulated genes in the bottom left corner, whereas               

shared downregulated genes are displayed in the top right corners. 
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Supplementary Figure 4: ​Conditional eQTL analysis 

(A) A schematic showing the conditional eQTL procedure. Conditionally independent SNPs            

were found conditioning ​on the genetic variant with the most significant association, and             

iteratively applying the same algorithm until there were no further significant associations with             

local variants.  

(B) Number of eGenes on the x-axis regulated by number of conditionally independent eSNPs              

on the y-axis indicated by eQTL order.  

(C) Number of intron junctions on the x-axis regulated by number of conditionally independent              

sSNPs on the y-axis indicated by sQTL order.  

Supplementary Figure 5: ​Cell type and temporal specificity of eQTLs 

(A)​ Overlap between progenitor and neuron eQTLs for eSNP-eGene pairs and eGenes. 

(B) ​Posterior probability of shared effect size (m-value). Upper pie shows percentage of neuron              

eQTLs shared with primary progenitor eQTLs, and lower pie shows percentage of progenitor             

eQTLs shared with primary neuron eQTLs at m-value > 0.9. 

(C) Overlap between progenitor/neuron eQTLs and adult brain cortex eQTLs for eSNP-eGene            

pairs. 

Supplementary Figure 6: ​Cell type specific allele specific expression 

(A)​ MA plot showing allele specific expression for progenitor (purple) and neuron (green). 

(B) ​Percentage of all ASE sites used in the analysis that overlaps with exonic regions. 

Supplementary Figure 7: ​Cell type and temporal specificity of sQTLs 

(A) Overlap of intron junctions, sGenes that are the genes intron junctions span and              

sSNP-intron junction pairs for progenitor vs neuron sQTLs 

(B) ​Posterior probability of shared effect size (m-value). Upper pie shows percentage of neuron              

sQTLs shared with primary progenitor sQTLs, and lower pie shows percentage of progenitor             

sQTLs shared with primary neuron sQTLs at m-value > 0.9. 
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(C) ​Comparison of cell type specific sQTL vs eQTLs, progenitor in purple and neuron in green.                

Overlap between sGenes and eGenes, upper panel; overlap between sGene-sSNP and           

eGene-eSNP pairs, lower panel. 

(D) ​Overlap between progenitor(in purple)/neuron (in green) sQTLs and adult brain cortex            

sQTLs (in red) for intron junction-sSNP pairs. 

Supplementary Figure 8: ​Colocalization of cell type specific e/sQTLs with GWAS traits 

(A) A schematic summarizing colocalization analysis including steps (1) to define coincident            

e/sQTLs with GWAS based on LD r​2 calculated either for European or study population, and (2)                

conditioning e/sQTLs on coincident GWAS index SNP.  

Supplementary Figure 9 

(A) Manhattan plots for schizophrenia, IQ and neuroticism TWAS for progenitors (purple-grey,            

top) and neurons (green-grey, bottom) where LD matrix was calculated based on the population              

included in our QTL study. Each dots show -log10(TWAS p-value) for each gene on the y-axis,                

genes were color-coded based on being discovered also in colocalization analysis (orange),            

defined as the nearest gene to GWAS loci (dark pink), being in both these two categories                

(blue), and discovered only in TWAS analysis (black). Some of the jointly independent genes              

are labelled (positively and negatively correlated genes represented by triangle and square,            

respectively, full list is available in Table S8).  

(B) ​Manhattan plots for schizophrenia, IQ and neuroticism TWAS for progenitors (purple-grey,            

top) and neurons (green-grey, bottom) where the LD matrix was calculated based on the              

population included in our QTL study. Each dots showing -log10(TWAS p-value) for each intron              

junctions on the y-axis, introns were color-coded based on discover also in colocalization             

analysis (orange), and being joint independent (asteriks)(positively and negatively correlated          

splicing represented by triangle and square, respectively).  

(C) Comparison of TWAS genes and introns performed by using different LD matrices based on               

European (LD European) and population included in our QTL study (LD Study). 
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(D) Overlap of cell type specific TWAS genes/introns (from the analysis where LD was              

estimated from European population) with fetal brain bulk and adult brain bulk TWAS             

genes/introns.  

Supplementary 10: ​Prediction of alternative splicing events during human development via           

TWAS. 

(A) Manhattan plots for schizophrenia, IQ and neuroticism TWAS for progenitors (purple-grey,             

top) and neurons (green-grey, bottom) where LD matrix calculated based on a European             

population. Each dot shows the -log10(TWAS p-value) for each intron junctions on the y-axis,              

introns were color-coded based on discovery also in colocalization analysis (orange), and being             

jointly independent (asteriks), where positively and negatively correlated splicing represented by           

triangle and square, respectively.  

(B) ​SCZ TWAS results for intron junction (splice, chr7:2235564-2239418) of the ​MRM2 gene,             

regional association of variants, that were used to test polygenic impact on introns to SCZ are                

shown on the left. Gene-model for ​MRM2 is shown on the right with matching introns and                

statistics from each TWAS study shown at the bottom (red line used for genome-wide              

significant threshold of 5 x 10 ​-8​). 

Supplementary Tables 

Table S1: Differential gene expression analysis progenitor vs neurons (FDR < 0.05): gene is              

the ensemblID, logFC is the expression fold change logFC > 0 indicates a gene more frequently                

expressed in neurons than progenitors; AveExpr is the average vst normalized expression of all              

samples. t is the expression fold change divided by its standard error​72​. P.Value is the nominal                

p-value from the testing differential expression; adj.P.Val is the Benjamini-Hochberg FDR           

adjusted p-value; B is log-odds for the differentially expressed gene in limma ​. 

Table S2: List of cell type specific conditionally independent eQTLs for progenitor, neurons and              

fetal bulk: snp is the variant tested in QTL; beta is the beta coefficient; pval is the nominal                  
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p-value; gene is the ensemblID of the gene tested; rank is the eQTL order; chr is the                 

chromosome number, BP is the genomic position of the variant; Cond.beta is the beta after               

conditional analysis; Cond.pval is the p-value after conditional analysis; A1 is the effect allele;              

rsid is the rs id of the allele matching in 1000 Genome Phase 3. 

Table S3: Allele specific expression analysis (FDR < 0.05). SNP is the variant tested for allele                

specific expression analysis, baseMean is the average of the normalized count values divided             

by size factors from DESeq2 ​73​; log2FoldChange is the expression fold change logFC > 0              

indicates reads more frequently expressed in donors with reference allele than donors with             

alternative allele; lfcSE is the standard error estimate for log2FoldChange; stat is the test              

statistics performed in DESEq2; pvalue is the nominal p-value from the testing differential             

expression; padj is the Benjamini-Hochberg FDR adjusted p-value; refAllele is the reference            

allele of the variant. 

Table S4: Differential splicing analysis progenitor vs neurons (FDR < 0.05): intron is the splice               

junction, logFC is the expression fold change logFC > 0 indicates a gene more frequently               

expressed in neurons than progenitors; AveExpr is the average vst normalized expression of all              

samples. t is the expression fold change divided by its standard error​72​. P.Value is the nominal                

p-value from the testing differential expression; adj.P.Val is the Benjamini-Hochberg FDR           

adjusted p-value; B is log-odds for the differentially expressed intron in limma; chr is the               

chromosome, start is the start position of the junction; end is the end position of the junction;                 

clusterID is the cluster identified from Leafcutter, cluster is the clusterID combined with             

chromosome number, verdict is the annotation status; gene is the gene symbol of the gene that                

introns junctions overlap with; ensemblID is the ensemblID of that gene; transcripts is the              

transcripts where intron junction overlap with; constitutive.score: degree of the junction shown in             

each transcript. 
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Table S5: List of cell type specific conditionally independent sQTLs for progenitor, neuron and              

fetal bulk sQTLs: snp is the variant tested; beta is the beta coefficient, pval is the nominal                 

p-value; intron is the intron junction as chromosome:start position:end position format; rank is             

the order of sQTL after conditional analysis; chr is the chromosome, start is the start position of                 

the junction; end is the end position of the junction; clusterID is the cluster identified from                

Leafcutter, cluster is the clusterID combined with chromosome number, verdict is the annotation             

status; gene is the gene symbol of the gene that introns junctions overlap with; ensemblID is the                 

ensemblID of that gene; transcripts is the transcripts where intron junction overlap with;             

constitutive.score: degree of the junction shown in each transcript; Cond.beta is the beta             

coefficient after conditional analysis (for primary QTLs, it is identical to beta); Cond.pval is the               

p-value after conditional analysis (for primary QTLs, it is identical to pval), A1 is the effect allele;                 

rsid is the rs id of the allele matching in 1000 Genome Phase 3. 

Table S6: Enrichment of RNA binding protein sites within cell type specific sQTLs. PThresh is               

the p-value threshold used for enrichment; OR is the odd ratio; Pvalue is enrichment p-value;               

Beta is the beta coefficient after enrichment test via GARFIELD​91​; SE is the standard error;               

CI95_lower is the lower bound of 95% confidence interval; CI95_upper is the upper bound of               

95% confidence interval; NAnnotThesh is the is the number of annotated variants at the p-value               

threshold; NAnnot is the total number of variants after pruning; NThresh is the number of variant                

passing p-value threshold after pruning; N is the number of variants remained after pruning;              

linkID is the ID in annotation file; Annotation is the RNA-binding protein; Tissue is the the type of                  

tissue used; Type is the cell type used for enrichment test. 

Table S7: Colocalization of GWAS for neuropsychiatric disease and other brain related traits             

with cell type specific e/sQTLs and fetal bulk e/sQTLs: e/sQTLsnp is the e/sSNP; inibeta is the                

beta coefficient before conditioning on GWAS SNP; pval is the nominal p-value prior to              

conditional analysis, gene/intron is the ensemblID of gene/intron junction associated with the            
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e/sSNP; A1 is the effect allele for e/sQTL index SNP; GWASsnp is the variant e/sSNP               

colocalized with; Condbeta is the beta estimate of e/sQTL after conditional analysis; Condpval             

is the p-value after conditional analysis; r2 is the linkage disequilibrium (LD) r​2​; pop is the                

population used to estimate LD r​2 (European population, with “European” or the population used              

in the QTL study with “Study”); symbol of the symbol of the gene (for eQTLs); biotype is the                  

biotype of the gene for eQTLs; trait is the trait for GWAS. 

 

Table S8: List of cell type specific/fetal bulk/adult bulk TWAS gene and introns for              

neuropsychiatric disease and other brain related traits. Output from FUSION​60​: ID is the gene              

ensemblID or intron id; CHR is the chromosome number; HSQ is the heritability;             

BEST.GWAS.ID is the GWAS SNP in the locus with the most significant association;             

BEST.GWAS.Z is the z-score of the best GWAS SNP; EQTL.ID is the best e/sQTL in the locus;                 

EQTL.R2 is the cross-validation R​2 of the best e/sQTL in the locus; EQTL.Z is the z-score of the                  

best e/sQTL in the locus; EQTL.GWAS.Z is the GWAS Z-score for this e/sQTL; NSNP is the                

number of SNPs in the locus; NWGT is the number of snps with non-zero weights; MODEL is                 

the best performing model; MODELCV.R2 is the the cross-validation R​2 of the best performing              

model; MODELCV.PV is the p-value from the cross-validation of the best performing model;             

TWAS.Z is the TWAS z-score; TWAS.P is the TWAS p-value; trait is the GWAS trait; pop is the                  

population used to estimate LD; joint_independent is the status if a gene/intron jointly             

independent (YES, if it is independent; NO, if it is not independent; NA, if it was not tested for                   

the trait). 

 

Table S9: Summary of heritability (p-value < 0.01) and cross validation r​2 from prediction              

models across cell type specific/fetal bulk/adult bulk for gene and intron TWAS: hsq is the mean                

heritability of the genes/introns; hsq.se is the mean standard error of estimated heritability;             

hsq.pv is the mean p-value of the heritability; emmax.rsq is the mean cross-validation R​2              

32 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.10.21.349019doi: bioRxiv preprint 

https://paperpile.com/c/8nEEmk/YMRrn+WY6Dj
https://doi.org/10.1101/2020.10.21.349019
http://creativecommons.org/licenses/by/4.0/


training via EMMAX with p-value as emmax.pval; lasso.rsq is mean the cross-validation R​2 via              

LASSO with p-value as lasso.pval; enet.rsq is mean the cross-validation R​2 via elastic net with               

p-value as enet.pval; blup.rsq is mean the cross-validation R​2 via BLUP with p-value as              

blup.pval; bslmm.rsq is the mean cross-validation R​2 via BSLMM with p-value as bslmm.pval;             

top1.rsq is the mean cross-validation R​2 via standard marginal eQTL Z-scores computation with             

p-value as top1.pval. 95 % confidence intervals per parameter are shown their below. 

Methods 

Cell Culture 

Generation of human neural progenitor cells was previously described ​15,25​. Briefly, human fetal 

brain tissue was acquired from the UCLA Gene and Cell Therapy Core following IRB 

regulations from approximately 14-21 gestation weeks (inferred to be 12-19 postconceptional 

weeks). Presumably cortical tissue was selected by visual inspection, subjected to single cell 

dissociation, and cultured as neurospheres. Neurospheres were plated on laminin/fibronectin 

and polyornithine coated plates for an average of 2.5 ± 1.8 s.d. passages, and cryopreserved 

as primary human neural progenitors (phNPCs). 

Cryopreserved phNPCs were transferred to UNC Chapel Hill, after material transfer agreement, 

where all downstream culture and analyses were completed. Donors processed for ATAC-seq 

(described previously​15​) and RNA-seq (described here) were cultured simultaneously. The 

overall design of the experiment and media used for culture was previously described ​15​. Briefly, 

we cultured 89 unique donors for subsequent RNA-seq library preparation. We first randomly 

assigned the approximately 8-9 donors into 10-12 rounds for a feasible cell culture workload. 

We thawed one round every three weeks. To reduce batch effects, we processed each round 

on the same day of the week and designated the same person to do each task as much as 

possible. Cells were isolated at two time points: progenitor and their differentiated and virally 
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labeled neuronal progeny. Progenitors were cultured in proliferation media including growth 

factors for 3 weeks, and we lifted them with trypsin to prepare RNA-seq libraries. Differentiation 

was performed for 5 weeks, after which the culture was transduced with ​ ​AAV2-hSyn1-eGFP 

(​https://www.addgene.org/50465/​) virus at 20,000 multiplicity of infection (MOI) to label neurons 

and then differentiated for another 3 weeks. FACS sorting (using either BD FACS Aria II or 

Sony SH800S) at 84 days post-differentiation was used to isolate EGFP labelled neurons 

(Supplementary 1A). After cells were isolated as either progenitors or neurons, we added 

Qiazol and stored the mixture at -80°C for randomized RNA isolation to reduce batch effects.  

 

Immunofluorescence labeling and imaging  

At the progenitor stage or after 8 weeks of differentiation, we fixed the cells by incubating them 

in 4% PFA, and performed permeabilization with 0.4% Triton in PBST. We used 10% goat 

serum dissolved in PBST for blocking. We incubated blocked samples with primary antibodies 

dissolved in PBST solution with 3% goat serum at 4°C overnight followed by  washing 3 times 

with PBST. Samples were subject to incubation in fluorophore-conjugated secondary 

antibodies, for 1 hour at room temperature, then they were stained with DNA-binding dye DAPI 

with 10 minutes incubation. We used antibodies with concentrations listed as following: SOX2 

(1:400, rabbit, Millipore #AB5603), Ki67 (1:1000, rat, Invitrogen #14-5698-82), TUJ1 (1:2000, 

mouse, Biolegend #801202), Alexa Fluor 568 (1:1000, goat anti-rabbit, Invitrogen #A11036), 

Alexa Fluor 647 (1:1000, goat anti-rat, Invitrogen #A21247), Alexa Fluor 488 (1:1000, goat 

anti-mouse, Invitrogen #A11001). 

 

RNA-seq Library Preparation 

We isolated RNA from progenitors and neurons using Qiagen miRNeasy Minelute kit, quantified 

RNA concentration with a Qubit 2.0 fluorometer, and assessed RNA integrity via eRIN scores 

using the Agilent Tapestation. ​ ​We prepared libraries for sequencing using Kapa Biosystems 
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KAPA Stranded RNA-seq with Riboerase (HMR) kit by loading 50 ng of total RNA into the initial 

reaction. We followed the manufacturer's  instructions for fragmentation and PCR steps. To 

obtain ~350 bp average insert size, we fragmented cDNA at 85°C for 6 min. Final library 

concentrations were determined using Qubit 2.0 fluorometer and pooled to a normalized input 

library.  Pools were sequenced on a  NovaSeq S2 flowcell using 150 bp PE reads with an 

average read depth of 99M per sample. 

 ​RNA-sequencing data processing  

We merged fastq files from the same library when sequenced on multiple flow cells and 

trimmed the adapters using sequences provided by Illumina with Cutadapt/1.15 ​74​. Quality 

control of each library was performed with FastQC (https://www.bioinformatics.babraham.ac. 

uk/projects/fastqc/).  For alignment, we first integrated the sequence of AAV2-hSyn1-eGFP 

plasmid ​(https://www.addgene.org/50465/)​ used for labeling neurons into GRCh38 release92 

reference genome (​https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.38/​). Then, we 

aligned the fastq files to this combined reference genome by implementing STAR/2.6.0a 

aligner​75​. 

 

We processed aligned data further with different steps based on downstream analyses 

(Supplementary Figure 1C). To estimate gene expression levels, we quantified reads with the 

union exon based approach using featureCounts, where for each gene, all overlapping exons 

were merged to form union exons, and the reads mapped to those union exons with the same 

strandedness were counted ​76​. Gene models were identified using the GTF file 

Homo_sapiens.GRCh38.92 

(​http://ftp.ensembl.org/pub/release-92/gtf/homo_sapiens/Homo_sapiens.GRCh38.92.gtf.gz​) 

merged with AAV2-hSyn1-eGFP plasmid.  
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For allele specific expression and splicing quantification, we remapped the aligned data with 

WASP software(v2018-07)​77​ to reduce reference mapping bias. First, we identified reads 

overlapping with bi-allelic SNPs within our acquired genotype data. Following this, the genotype 

of any reads overlapping with a SNP was swapped with the other allele, and re-mapped. WASP 

discarded re-mapped reads that did not map to the same genomic position. As a final step, we 

implemented  script provided in the WASP software which removes duplicate readsmdup.pyr  

randomly,  regardless of their mapping score. 

 

Mycoplasma contamination test 

Adapter trimmed reads (see above) were mapped using STAR to a combined reference 

including the GRCh38 release 92 human reference genome, AAV2-hSyn1-eGFP plasmid, and 

over 1400 mycoplasma genomes. Alignment parameters allowed for simultaneous mapping of 

reads to one or more human and mycoplasma genomes. No sample exceeded 0.11% of total 

reads mapping to any mycoplasma genome, indicating none of our cultures were contaminated 

with mycoplasma. This mapping was only used for mycoplasma contamination analysis and not 

for subsequent analyses. 

 

Genotype processing 

We performed genotyping using Illumina HumanOmni2.5 or HumanOmni2.5Exome platform, 

and exported SNP genotypes to PLINK format following the procedure previously described ​15​. 

Briefly, we converted SNP marker names from Illumina KGP IDs to rsIDs using the conversion 

file provided by Illumina. We performed quality control with PLINK v1.90b3 software (Chang et 

al., 2015) (Supplemental Figure 1C) as follows. We filtered out SNPs with the following criteria: 

variant missing genotype rate > 5% , deviations from Hardy-Weinberg equilibrium−− eno 0.05)( g  

at p<1x10 ​-6​ , minor allele frequency < 1% . We also filtered out−− we 1x10 )( h −6 −− af  0.01)( m  

individuals with missing genotype rate > 10% . We obtained 1,760,704 directly−− ind 0.10)( m  
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genotyped variants surviving our QC procedure. Lastly, we called sex from genotype data using 

PLINK v1.90b3 software based on heterozygosity on the X chromosome. When there was an 

ambiguity for sex assessment based on genotype data, we checked Xist gene expression. We 

estimated the population structure of our study cohort by implementing multidimensional scaling 

(MDS) for genotype data of our samples and genotype data from HapMap3 ( 

https://www.sanger.ac.uk/resources/downloads/human/hapmap3.html ​ ). We followed the 

protocol from ENIGMA consortium 

(​ http://enigma.ini.usc.edu/wp-content/uploads/2012/07/ENIGMA2_1KGP_cookbook_v3.pdf ​). 

By plotting MDS1 vs MDS2, we visually show each donor’s ancestry relative to known 

populations (Supplemental Figure 2E).  

 

Imputation 

After filtering genotype data, we pre-phased the data with SHAPEIT v2.837 ​78​. For our 

imputation reference panel, we used 1000 Genomes Project Phase 3 that contains a total of 

37.9 million SNPs in 2,504 individuals with multiple ancestries, including those from West 

Africa, East Asia and Europe ​79​). Imputation was implemented using Minimac4 software ​80 

(v1.0.0). On the X chromosome, we separately performed pre-phasing and imputation steps for 

the pseudoautosomal region and non-pseudoautosomal regions. Following imputation, we 

retained any variants with missing genotype rate lower than 0.05, Hardy-Weinberg equilibrium p 

value lower than 1 x 10 ​-6​ and minor allele frequency (MAF) bigger than 1%. We retained SNPs 

with sufficient imputation quality (R​2​ > 0.3), and obtained approximately 13.6 million SNPs in 

total. 

 

Sample quality control  

One library with missing eRIN score and one library with missing final cDNA concentration from 

neurons were removed.​ ​In order to detect sample swaps or mixing between samples, we 
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evaluated consistency of genotypes called from the RNA-seq and genotyping array via 

VerifyBamID v1.1.3 ​81​. We removed RNA-seq libraries file with [FREEMIX] > 0.04 or [CHIPMIX] 

> 0.04 ( = 8). Also, we corrected samples where we detected swaps ( = 7). AfterN library N library  

quality control, we retained 85 unique donors for progenitors, and 74 unique donors for neurons 

for subsequent analyses. 

 

Replicate correlation and determination of technical factors correlating with gene 

expression 

Quantified RNA-seq reads with featureCounts were imported to generate a gene count matrix in 

DESeqDataSet format from DESeq2 R package​73​. ​We filtered out the lowly expressed genes 

(those where fewer than 10 read counts of a gene were observed in fewer than 5% of samples), 

and normalized the data via variance stabilizing transformation (vst()) function from DESeq2 R 

package ​73​. We included genes on the X and Y chromosomes and genes transcribed from 

mitochondrial DNA meeting the expression criteria. We subset the normalized gene expression 

matrix into progenitor and neuron specific samples. To identify major axes of variation in gene 

expression across samples, we computed principal components of gene expression with 

prcomp() function from stats R package for each cell-type separately, and reported the 

proportion of variance explained by each component. 

 

We recorded biological and technical variables for each sample which may potentially impact 

gene expression: cell type, postconception week, sex, tissue acquisition date, researcher 

extracting RNA and preparing libraries, RNA input amount, index number and bases, final 

cDNA concentration, BioAnalyzer run date, average basepair of BioAnalyzer cDNA, sequencing 

pool, cell input, Qiazol lot number and addition date, eRIN, RNA extraction date, RNA 

tapestation date, Qiagen extraction kit lot number, FACS sorting date and time, total live cells 

during sorting, FACS machines used, researcher performing FACS sorting, papain lot number 
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and addition date, differentiation rank (a qualitative assessment of cell health evaluated under 

the microscope), well location in the 6-well plate, date to plate for differentiation, researcher 

washing and differentiating cells and date, virus addition date, researcher adding virus, PBS lot 

number used for cell proliferation and differentiation, laminin, polyornithine lot numbers used for 

proliferation and differentiation, donor ID, round, media lot numbers used for proliferation, 

passage number, split dates, researcher performing each split, rank for proliferation (qualitative 

assessment of cell health), trypsin lot number used for splitting cells, and fibronectin lot number. 

To identify technical covariates impacting expression levels, we assessed if any recorded 

biological or technical variables were significantly correlating with first 10 expression PCs 

separately for each cell type. We observed that different FACS machines (Sony SH800S with 

N​donor​ = 8; FACS Aria II with N​donor​= 66) used to isolate GFP labelled neurons had a strong 

impact on global gene expression in neurons (PC1: r = 0.59, p-value = 1.782e-08; PC2: r = 

0.58, p-value = 3.972e-08) (Supplementary Figure 2C). To remove the impact of sorter on 

global neuron expression profiles prior to differential expression analysis, we implemented 

 function ​72​. Then, we combined the gene expression matrix fromimma : emoveBatchEf fectl : r  

batch corrected neurons with progenitors gene expression data.  

 

We cultured several donors multiple times during the course of the experiment in order to 

quantify cell culture induced noise. We calculated Pearson’s correlation of gene expression 

between libraries from the same donors (N​correlation​ = 11 in both progenitors and neurons), and 

between each library across donors in a pairwise manner (N​correlation​ = 11,556 for progenitors; 

N​correlation​ = 9,312 for neurons). For neurons, we used gene expression values after batch 

correction with the limma R package for the sorter type, as described above. We performed an 

unpaired two-sided t-test for statistical assessment of mean difference between these two 

categories after fisher’s z transformation of correlation r values. 
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Differential gene expression analysis 

We identified differentially expressed genes between progenitors and neurons by using vst 

normalized expression values corrected for sorter with limma R package ​72​.  To perform a paired 

differential gene expression analysis which inherently controls for donor related differences, we 

established the following  design matrix:

 . Following this, we adjusted podel.matrix(~ ellT ype as.factor(DonorID) IN , data)m C +  + R   

values for each gene via multiple test correction with the ​Benjamini-Hochberg procedure ​82​, and 

defined significant differentially expressed genes as adjusted p value < 0.05. 

 

Gene Ontology analysis 

We performed gene ontology enrichment analysis by using the gprofiler2 package as the ​R 

interface to the g:Profiler tools​ by using GO:BP database ​83​. For differentially expressed genes, 

after performing DGE analysis, we categorized the genes into two groups as upregulated in 

progenitors (logFC < -1.5 and adjusted p value < 0.05), and upregulated in neurons (logFC > 

1.5 and adjusted p value < 0.05) (Figure 1E). For each enrichment analysis, we applied multiple 

correction test, and considered only pathway enrichments with adjusted p value lower than 5% 

false discovery rate as statistically significant. 

 

Transition Mapping (TMAP) 

To evaluate the transcriptomic similarity between our ​in vitro​ culture system and the ​in vivo 

brain, we performed  transition mapping analysis as described in our previous work​25,84​. To 

evaluate transcriptomic similarity to cortical laminae in the developing brain, we used previously 

published laminar expression data from laser capture microdissected of prenatal human brain 

(Miller et al., 2014, H376.IIIB.02. female, 16 pcw, brainspan.org). In our comparison, genes 

were retained which showed expression in either cell-type and were present on the array in 

which the ​in vivo​ data was acquired. We used gene symbols to find ensemblIDs, and used 
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ensemblIDs to match with ​ in vitro​ data. When multiple probes were present for a given gene on 

the array, the probe with the highest expression per gene was used. We quantile normalized 

the gene expression, and we performed in vivo differential gene expression via limma between 

every two laminae. Similarly, we performed differential expression analysis in our ​in vitro 

cultures as described above. We applied transition mapping via RRHO2 R package with 

“stratified approach” to avoid misinterpretation of the discordant overlaps​85​. In this algorithm, 

firstly genes were ranked based on their degree of differential expression (DDE) (i.e., 

) separately for ​in vivo​ and ​ in vitro​ data. Following ranking, alog10(p alue) × signed ef fect size− − v  

hypergeometric test was applied to assess enrichment for each overlap between two datasets 

for a series of arbitrary cutoffs set through the highest degree to the lowest. By employing a 

stratified algorithm, we computed the degree of overlap. Finally, we visualized hypergeometric 

test -log10(p values) as a heatmap (Figure 1F).  

 

To compare transcriptomic overlap between our ​in vitro​ system and developmental time points 

of the human brain, we downloaded gene expression data from a spatiotemporal atlas of the 

human brain ​14,32​, ​RNA-Seq Gencode v3c summarized to gene ​s, brainspan.org). Only 

expression data for cortical regions were included, and the intersection of genes between ​in 

vitro​ with ​in vivo​ was defined as a gene list for subsequent analyses. We applied the same 

transition mapping procedure described above. Specifically, we estimated gene expression 

differences between developmental periods described in ​32​. Because there were multiple 

samples from the same donor for each period for the ​in vivo​ data, we added donor id as a 

random effect within the design matrix for DGE analysis. Ranked genes by their DDE were 

subjected to the RRHO test, and -log10 based p-values were converted into a heatmap plot 

(Supplementary 3A). 
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Cell type specific local eQTL mapping 

To perform local eQTL analysis, we conducted an association test between gene expression 

(retaining genes if at least 10 counts of the gene were present in more than 5% of the samples 

of that cell type, resulting in 24,767 and 27,638 genes for progenitors and neurons, 

respectively) with genetic variants within  1 Mb window of gene TSS for both autosomal±  

chromosomes and X chromosome, for progenitors and neurons separately. Each gene TSS 

was defined as the transcription start site of the gene isoform with most upstream exon based 

on GTF file Homo_sapiens.GRCh38.92 

(​http://ftp.ensembl.org/pub/release-92/gtf/homo_sapiens/Homo_sapiens.GRCh38.92.gtf.gz​). 

 

We removed variants of low allele frequency in order to prevent one donor from strongly 

influencing association results. For variant selection, PLINK v1.90b3 software  function− reqx− f  

was implemented to obtain donor counts per genotype group for each variant. We included only 

variants with at least 2 heterozygous donors and no homozygous minor allele donors, or at 

least 2 minor allele homozygous donors for autosomal chromosomes, and for X chromosome 

we retained the variants with at least 2 haploid allele counts in addition to this criteria.  

 

For eQTL mapping, we established a linear mixed effects regression model to control for 

population stratification and cryptic relatedness with EMMAX software ​86​. To compute the kinship 

matrix, we implemented  algorithm creating the identity by statemmax in      10e − k − v − h − s − d  

(IBS) kinship matrix by excluding all genetic variants located on the same chromosome as the 

tested variant from non-imputed genotype data for each single variant association test (MLMe 

method; see Price et al., 2010). We used additional ancestry control by including the first 10 

MDS components from genotype data ​87​.  In order to control for unmeasured technical variables 

impacting gene expression, we sequentially added gene expression PCs and re-ran the genetic 
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associations via EMMAX. For neurons, we included a covariate for FACS sorter for each run 

given its strong impact on gene expression.  

The full association model for neurons was:

xpression SNP 0 MDS of  global genotype inship matrix ACS sorter Cs of  global gene expressione ~  + 1 + k + F + P  

The full model for progenitors was: 

xpression SNP 0 MDS of  global genotype inship matrix Cs of  global gene expressione ~  + 1 + k + P  

For each run, we adjusted nominal values of all gene variant associations, and defined 

significant associations with nominal p value lower than  5% false discovery rate (FDR)​82​.  We 

found that 10 PCs and 12 PCs of gene expression resulted in a maximum number of eGenes 

discovery in progenitors and neurons, respectively (Supplementary 2F). Our final eQTL model 

was: 

Neuron:

xpression SNP 0 MDS of  global genotype inship matrix ACS sorter 2 PCs of  global gene expressione ~  + 1 + k + F + 1  

Progenitors: 

xpression SNP 0 MDS of  global genotype inship matrix 0 PCs of  global gene expressione ~  + 1 + k + 1  

In order to stringently control our association results for both number of variants and genes 

tested, we further implemented a hierarchical correction procedure called eigenMT-BH​36​. Using 

this method, as Step 1, we adjusted the nominal p values of the all cis SNPs  separately for 

each gene to compute locally adjusted p values with eigenMT method ​35​  In Step 2,  locally 

adjusted minimum p values for all genes were then subjected to BH procedure to obtain globally 

adjusted p values.  In Step 3, we defined eGenes as genes with globally adjusted p value lower 

than 0.05. Then, to find other independent SNPs for those eGenes, we set the significance 

threshold as the maximum nominal p value from step 1 that had corresponding globally 

adjusted p value lower than 0.05.  

We performed conditional analysis by using this threshold p-value gathered from the 

eigenMT-BH multiple correction method to identify independent significant eQTLs. To identify 
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conditionally independent eQTLs, for each eGene (a gene significantly associated with at least 

one variant), we iteratively included the hard call genotype  of the variant with strongest 

association with eGene as a covariate, and re-ran the regression model specified above 

(​Supplementary 4A​). We defined a variant as “conditionally independent” from the variant 

conditioned on, if the association of the variant with the eGene was still significant based on the 

initial threshold p-value. Then, we conditioned on those variants that met threshold p value 

condition at the first round plus the primary variant, and identified third conditionally 

independent eQTLs. We applied this procedure iteratively until no additional significant eQTLs 

remained ​88,89​. 

 

Comparison of degree of controlling population structure between EMMAX vs FastQTL 

We applied FastQTL ​90​ method in nominal pass mode for different models (1) without controlling 

for either for population structure or technical confounders (2) controlling for only technical 

confounders, (3) controlling for 10 MDS of global genotype and global gene expression PCs. 

Following this analysis, we compared genomic inflation factors (λ​GC​) across those three groups 

to our data where we controlled for 10 MDS of global genotype and global gene expression, as 

well as the cryptic relatedness with kinship matrix. 

 

Bulk Fetal brain eQTL mapping 

We utilized bulk fetal cortical wall eQTL data described previously (Walker et al., 2019). We 

re-analyzed data in this study with the following modifications to harmonize with the eQTL 

approach implemented in this study: (1) we controlled for population stratification using a linear 

mixed effects model as described above, and (2) we included 23 additional donors which were 

genotyped after the publication of the previous manuscript. We used rRNA-depleted RNA-seq 

data from flash frozen human fetal brain cortical wall tissues derived from 240 donors at 14-21 

gestation weeks (inferred to be 12-19 post conception weeks). We excluded 4 donors for 
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sample swap and contamination based on verifyBAMID analysis, and one donor with sex 

ambiguity, resulted in 235 unique donors for eQTL analysis (35 of unique donors shared with 

cell type specific data). Gene based annotations of the genome were derived from Homo 

sapiens gene ensembl version 92 (GRCh38) for eQTLs. We included only genes with at least 

10 counts in 5% of donors. We normalized the data with the VST method to be used as 

phenotype in eQTL analysis. We also extracted genomic DNA from the same donors, and 

performed genotyping on a dense array (Illumina Omni 2.5+Exome) and imputation to a 

common reference panel (1000 Genomes Phase 3; described above). Variants were retained in 

the analysis if there were at least 2 heterozygous donors and no homozygous minor allele 

donors, or if there were at least 2 minor allele homozygous donors as for cell type specific 

eQTLs, as described above.  

 

We performed local eQTL analysis to test the association between each gene’s expression and 

variants within the ±1 Mb window of the transcription start site of each gene. We applied linear 

mixed model association software, EMMAX (Kang et al., 2008) to control for population 

stratification and cryptic relatedness (as described above for cell type specific eQTL analysis). 

We used the linear mixed effects regression model testing association between expression of 

each gene and nearby genetic variants, controlling for 10 MDS genotype components, 10 PCs 

of gene expression, and a kinship matrix as random effect excluding the chromosome 

genotypes testing with the MLMe approach (Price et al., 2010). After association, nominal 

p-values were corrected for hierarchical multiple testing using the eigenMT-BH method as 

described above, and we obtained independent eQTLs performing conditional analysis as 

described for cell type specific eQTLs above.  

 

Enrichment of eQTLs and sQTLs within functional genomic annotations 
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To identify enrichment of eQTLs and sQTLs within functionally annotated genomic regions, we 

implemented GARFIELD software to control for the distance to TSS, LD and minor allele 

frequency (MAF) of QTLs​91​. We used functional genomic annotations from 25 chromatin states 

given in the ChromHMM BED files of Roadmap Epigenomics project from human male fetal 

brain ​40,92​ lifted over from hg19 to hg38, splice sites, introns, 5’ and 3’ UTR. We extracted 5’ and 

3’ splice sites (splice donor and splice acceptor sites) from Homo_sapiens.GRCh38.92 GTF file 

implementing hisat2_extract_splice_sites.py algorithm of hisat2 software (Kim, Langmead, and 

Salzberg 2015), and defined  exon-intron boundaries as the region between those splice sites. 

5’ and 3’ UTR were also defined based on the coordinates in the same GTF file. For all 

e/sQTLs, we extracted the p-value from the strongest association for each variant  (with 

minimum p-value) in the case that one variant was associated with multiple genes/intron 

junctions. To create annotations files, we considered a variant overlapping with a functional 

element if the variant itself or any of the variants in high LD within 500kb (r​2​ > 0.8) overlapped 

with each of annotation categories. LD pruning ​91​ was performed at r​2​ > 0.01 within GARFIELD 

software. Following this, a logistic regression model controlling for the distance to TSS, LD 

proxies and MAF binned for five quantiles was performed with GARFIELD software for 

enrichment at eigenMT-BH p value thresholds defined in e/sQTL analysis. The effective number 

of annotations were estimated and multiple testing adjusted p values were computed by the 

software to identify enrichment of e/sQTLs within defined annotations. 

 

RNA binding protein motif analysis 

We performed sQTL enrichment in RNA binding protein binding sites via GARFIELD as 

described above. In this analysis, we used BED files including RNA binding protein sites  from a 

CLIP-seq database as annotation files​51​, and assessed significant enrichment of cell type 

specific sQTLs for binding sites of each RBP. 
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Enrichment of cell type chromatin accessibility QTLs and GWAS SNPs within eQTLs 

We applied QTLEnrich v2 ​22​ to find enrichment of cell type specific caQTLs​15​ within cell type 

specific, fetal bulk​1​8​ and adult bulk eQTLs​22​. We extracted only variants within the chromatin 

accessibility peaks from caQTL data, and used the variant with the smallest p-value if the 

variant associated with open chromatin regions. We estimated LD using the study population 

used for our QTL study, and performed enrichment with 0.05 p-value cut off. 

Allele specific expression analysis pipeline 

To identify sites with Allele Specific Expression (ASE), we applied the ASEReadCounter 

algorithm from GATK tools​93​ to the RNA-seq data remapped with WASP to reduce mapping 

bias and to discard duplicate reads. For each donor, we counted allele specific reads 

overlapping with bi-allelic variants identified in the genotypeVCF files. We retained only variants 

with at least 5 heterozygous donors, and at least 10 counts from either allele. ASE can be 

falsely called when genotyping errors are present in the dataset. We used two approaches to 

identify and remove potential genotyping errors: (1) We detected wrongly called variant 

genotypes by assessing concordance between genotypes called by DNA versus RNA​41​. We 

removed variants that were called homozygous based on the genotype data when at least 10 

counts of the alternate allele were present in the RNA-seq data, (2) we discarded variants 

where at least 7 heterozygous donors  based on genotype data have zero counts for one of the 

alleles, which may indicate a donor falsely called as heterozygote when in truth the donor is a 

homozygote (given that (1/2)^7 = 0.008, meaning that probability of having all donors receiving 

an imprinted allele from either mother or father is low) . Because ASEReadCount does not 

disambiguate the strandedness of reads, it is not possible to confidently assign reads 

overlapping with multiple gene annotations to a specific gene ​76​. Therefore, if a variant 

overlapped with more than one gene annotation, we removed the variant by implementing 

findOverlaps function from IRanges R package ​94​ for genes based on their genomic coordinates 
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defined GTF file Homo_sapiens.GRCh38.92 

(​http://ftp.ensembl.org/pub/release-92/gtf/homo_sapiens/Homo_sapiens.GRCh38.92.gtf.gz​). 

To evaluate allelic imbalance, we used DESeq2 with the design: 

. Excluding homozygous donors, we computed the log2 foldesign   RNAid Alleled =  ~ 0 +  +   

change of non-reference allele counts over reference allele counts and used a Wald test to 

detect allelic imbalance. Multiple test correction was performed with the Benjamini and 

Hochberg method, and we defined significant ASE sites as those with adjusted p-values lower 

than 0.05.  

 To compare eQTLs with ASE sites (Figure 3C-D),  we extracted eQTLs associations with the 

same filtering criteria of variants used for ASE analysis (at least 5 heterozygous donors and 

overlapping with at least 10 RNA-seq reads). We also extracted eGenes (defined based on 

significant eigenMT-BH global p value) with at least 10 counts per donor.  

 

Quantification of Intron Excisions 

To identify alternatively excised introns, separately for each cell type, we extracted exon-exon 

junctions from WASP-mapped RNA-seq data in BAM format via regtools unctions extractj  

function where reads map to a minimum of 6 nt of each exon ​95​. Next, we processed those 

junctions that are called ​intron excisions​ or ​exon-exon junctions​ with the pipeline provided by 

Leafcutter software ​47​. Firstly, intron excisions with shared splice junctions were clustered 

together applying an iterative procedure until each cluster has at least 50 reads across donors 

and introns with maximum 50 kb length, separately for progenitors and neurons. For differential 

splicing analysis, we performed clustering by combining exon-exon junctions files from each cell 

type. For each cluster, intron excisions supported by at least one count in more than 5 donors 

(within each set of donors contributing to the 3 different sQTL analyses for that cell type 

(progenitor, neuron) or tissue class (fetal brain bulk); or for differential splicing analysis across 

donors from both cell types used (progenitor + neuron) were retained. We further calculated 
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intron excision ratios, and filtered out introns represented in less than 40% of donors (within 

each set of donors contributing to the 3 different sQTL analyses for that cell type (progenitor, 

neuron) or tissue class (fetal brain bulk); or for differential splicing analysis across donors from 

both cell types used (progenitor + neuron)) with  algorithm. Werepare_phenotype_table.pyp  

referred to each intron excision ratio as ​percent spliced in​ (PSI) that corresponds to the usage 

of each intron compared to other introns in the same cluster. Standardized and quantile 

normalized intron excision ratios, and global alternative splicing PCs computed with those ratios 

were used for downstream analysis. 

 

Differential splicing analysis 

To perform differential splicing analysis, we used quantile normalized PSI values as input to the 

limma package(​72​). Identical to differential expression analysis, neuron splice ratios were 

corrected for batch including FACS machine used for sorting with imma : emoveBatchEf fectl : r  

function. Batch corrected neuron splice ratios were combined with progenitor data. We 

implemented a paired differential splicing analysis inherently controlling donor related 

differences with  design matrix: . Weodel.matrix(~ ellT ype as.factor(DonorID) IN , data)m C +  + R   

defined intron junctions with adjusted p values from via multiple test correction with 

Benjamini-Hochberg procedure (​82​) lower than 0.05 as significant differentially spliced introns.  

 

Splicing QTL mapping 

We performed cell type specific splicing QTL analysis by testing the association of PSI with the 

genetic variants located within 200 kb window from starting and end points of the splice±  

junctions for autosomal chromosomes and the X chromosome. Identical to local eQTL analysis, 

we used only genetic variants that met the following criteria: if there were at least 2 

heterozygous donors and no homozygous minor allele donors, or if there were at least 2 minor 
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allele homozygous donors. Furthermore, we controlled for population stratification and cryptic 

relatedness as described above for local eQTL mapping. 

We used standardized and normalized intron excision ratios (percent spliced in) calculated by 

leafcutter as the phenotype for sQTL mapping. EMMAX (​86​) was used to test for association 

between SNPs within a cis-region of +/- 200kb of the intron cluster and intron ratios within 

cluster. We controlled for population stratification and cryptic relatedness as described above 

for eQTL mapping. Also, we controlled for unmeasured technical variables impacting alternative 

splicing by sequentially adding global splicing PCs to the genetic associations via EMMAX. 

Again for neurons, we additionally controlled for FACS sorter for each run given its strong 

impact on splicing as well.  

The full model for neurons was:

ntron SNP 0 MDS of  global genotype inship matrix ACS sorter Cs of  global splicingi ~  + 1 + k + F + P  

The full model for progenitors was: 

ntron SNP 0 MDS of  global genotype inship matrix Cs of  global splicingi ~  + 1 + k + P  

For every run, we adjusted nominal values of all PSI variant associations, and defined 

significant associations with lower than at 5% false discovery rate (FDR) (​82​).  We found that 1 

PC and 1 PC across the PSI matrix resulted in a maximum number of intron excisions with at 

least one significant association  in progenitors and neurons, respectively (Supplementary 

Figure 2F). Our final sQTL model was: 

Neuron:

SI  SNP 0 MDS of  global genotype inship matrix ACS sorter  PCs of  global splicingP ~  + 1 + k + F + 1  

Progenitors: 

SI  SNP 0 MDS of  global genotype inship matrix  PCs of  global splicingP ~  + 1 + k + 1  

Implementing a hierarchical correction procedure called eigenMT-BH (​36​, as step (1), we 

adjusted the p values of the all cis SNPs strongest association separately for each intron 

excision to compute locally adjusted p values with the eigenMT method (​35​), and then locally 
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adjusted minimum p values for all intron excisions were subjected to the BH procedure giving 

globally adjusted p values. Intron excision with corresponding global p value lower than 0.05 

were considered as significant alternative splicing events. In order to find other independent 

significant sQTLs in addition to the ones associated with lowest p values, we applied conditional 

analysis at eigenMT-BH p-value threshold as described for eQTL analysis. 

 

For bulk fetal cortical tissue sQTL mapping, we applied the same strategy used for cell type 

specific sQTLs, and found the  following model maximized significant intron junctions 

discovery: 

ntron SNP 0 MDS of  global genotype inship matrix ACS sorter  PCs of  global splicingi ~  + 1 + k + F + 5  

After calculating eigenMT-BH threshold p value, we performed conditional analysis to define 

independent significant sQTLs. 

To find genes overlapping with intron excision, we annotated intron junctions by using 

Leafcutter based on genomic coordinates and gene model provided in GTF file 

Homo_sapiens.GRCh38.92. Intron junctions assigned as cryptic 5’, cryptic 3’, novel annotated 

pair were considered as novel splicing events for the genes overlapped with junctions. For 

unannotated splice sites for ​AS3MT​ and ​ARL14EP​ genes, we additionally checked  for overlap 

with known splice sites up to Ensembl Release 100. 

 

Estimation of m-values for cross cell comparison 

We estimated m-values to assess cell type specificity of SNP-gene or SNP-intron excision pairs 

with Metasoft ​96​). Prior to software implementation, we extracted e/sQTLs from the neuron data 

corresponding to primary progenitor e/sQTLs to see overlap of sharing significant progenitor 

e/sQTLs with neuron eQTLs. Similarly, we extracted e/sQTLs from the progenitor data 

corresponding to primary neuron e/sQTLs to see overlap of sharing significant neuron eQTLs 

with progenitor e/sQTLs. We estimated standard errors via dividing beta estimates from 
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EMMAX by t-statistics for each association p value. We considered associations shared across 

different QTLs for the m-value > 0.9.  

 

 

 

Comparison of cell type specific vs fetal and adult bulk brain e/sQTLs 

We considered an overlap of e/sQTLs between two datasets when the index e/sSNPs were in 

LD (r​2​>0.8 where LD was calculated in our sample population) and  the 

eSNP-eGene/sSNP-intron pairs were shared. To determine the total number of 

eSNP-eGene/sSNP-intron pairs as the universe for enrichment analyses, we pruned all variants 

associated with each gene per gene for r​2​ > 0.01 by using PLINK command 

. To determine if different proportions of sharing werelink − ndep airwise 50 5 0.01p − i − p  

observed between two cell types, we performed an odds ratio test described here (​97​). 

 

To test temporal specificity of cell type specific e/sQTL data, we downloaded GTEx data adult 

brain e/sQTL data (​22​). We called loci from the two datasets as colocalized when, (1) index adult 

brain e/sQTLs are found within LD buddies of cell type specific e/sQTLs at LD r​2​ > 0.8 (where 

LD is calculated using either the European population from 1000 Genomes or our study’s 

population), and (2) when the cell-type specific e/sQTL data conditioned on index adult brain 

e/sQTLs, the index brain e/sQTL no longer survives the global significance threshold. 

 

LD-thresholded colocalization with brain disorders and traits GWAS 

 

To find eQTLs and sQTLs colocalized with index GWAS loci, we performed LD-thresholded 

colocalization analysis for each cell type separately​54​. We used summary statistics of GWAS for 

schizophrenia (SCZ)​1​, major depression disorder (MDD)​98​, bipolar disorder (BP)​2​, educational 
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attainment (EA)​99​, neuroticism​100​, IQ​6​, cognitive performance (CP)​99​, 

attention-deficit/hyperactivity disorder​ (ADHD)​101​, Alzheimer's disease (AD)​102​, Parkinson’s 

disease (PD)​103​, Insomnia ​104​, epilepsy​105​, autism spectrum disorder (ASD)​106​, and cortical 

thickness and surface area from ENIGMA project​5​. We liftovered positions of variants in GWAS 

summary statistics from hg19 to hg38 with  function from R rtracklayer package ​107​.lif tOver()  

Variant rsids were assigned with dbSNP151 based on positions of variants in summary 

statistics data. To define index GWAS SNPs at genome-wide significant threshold p value 

(5x10 ​-8​), we implemented a clumping procedure, where we defined two LD-independent GWAS 

signals so as to have pairwise LD r​2​ < 0.5 based on LD matrix computed with European 

population of 1000 Genomes (1000G European phase 3). Prior to clumping, duplicated rsIDs in 

1000G EUR genotype files were assigned with unique names, and BIM files were modified for 

each chromosome. Following a unique id assignment, BIM files were merged back to BED and 

FAM files with --bmerge function of PLINK1.9 software (plink --bfile BED file --bmerge 

modified_BIM file). Since all GWAS we leveraged in our colocalization analysis have been 

conducted in populations of European ancestry, and our study population is multi-ancestry, we 

computed  LD r​2  ​separately within these two different populations. We considered the index 

eQTL or sQTL SNP coincident with the index GWAS SNP if the pairwise LD r​2​ between them 

was greater than 0.8 based on either the LD matrix computed via either European 1000 

Genomes Phase 3 data or our study population. Following that, we performed a conditional 

eQTL/sQTL analysis by conditioning on the coincident index GWAS SNP. If the association of 

index QTL and gene expression or intron excision was no longer significant based on p value 

thresholds defined with eigenMT-BH method for each dataset, we identified that cell type 

specific  and fetal bulk eQTL/sQTL as a colocalized loci with the given GWAS trait 

(Supplementary Figure 8A). Since GTEx raw data is not available publicly, conditional analysis 

was not performed to infer colocalization. 
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Transcription factor motif analysis 

We used motif breaker R to detect the disruption of the transcription motif binding site where 

there was a variant within a chromatin accessibility peak (Figure 5D)​108​.  

 

 

 

TWAS analysis 

We performed transcriptome wide association analysis for progenitor and neurons separately 

with FUSION software (​http://gusevlab.org/projects/fusion/​,​60​). First, we obtained a set of 

variants shared between the genotypes from 1000 Genome European phase 3 ​79​ and our study 

population restricted to variants described for eQTL analysis, and removed monomorphic 

variants within European genotype data. We estimated cis-heritability of genes (including 

variants within 1 MB +/- window of the TSS) and intron junctions (including variants within 

200kb +/- window of two ends of intron junctions) with GCTA software ​109​ by controlling for same 

covariates for global gene expression/splicing and 10 PCs of global genotypes used in e/sQTL 

analysis. VST normalized gene expressions were further subject to quantile normalization for 

heritability estimation. 1,703/973 genes and 6,728/6,799 intron junctions were significantly 

cis-heritable in progenitors/neurons for heritability p-value < 0.01. To determine the method to 

be used to estimate genetic component of gene expression/splicing (weights), we performed 

leave-one-out cross validation ​110​ for the prediction models including LASSO regression ​111​, 

Elastic-net regression ​112​ and EMMAX​86​ within FUSION software. We used the weights 

computed from the prediction model with the highest cross validation R​2​ (the highest 

performance) per gene/intron junction for downstream analysis for progenitor, neuron and fetal 

bulk brain tissue. For adult brain bulk tissue data, we obtained the weights of genes and intron 

junctions from CommonMind Consortium study​62​.  
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Before running TWAS analysis, we prepared GWAS summary statistics for schizophrenia 

(SCZ)​1​, major depression disorder (MDD)​98​, educational attainment (EA)​99​, neuroticism​100​, IQ​113​, 

Alzheimer's disease (AD)​114​, Parkinson’s disease (PD)​103​, and Global Surface Area (GSA) and 

average thickness from ENIGMA study​5​ with following adaptations: (1) we obtained common 

variants found both in genotype files from our study and in GWAS summary statistics; (2) we 

calculated z-score by dividing the beta coefficient by the standard error if the beta coefficient 

was available in the summary statistics, or dividing the natural logarithm of odds ratio by the 

standard error if odds ratio was given in the summary statistics; (3) The sign of the z-score were 

matched based on the allelic directionality of weights from FUSION software. 

 

To perform TWAS analysis, we tested the association between the predicted gene 

expression/splicing (w) and brain traits listed above (Z) by implementing the algorithm 

 where D is the LD matrix as the covariance among all cis-variants from theZ/ZTWAS = w′ √wDw′  

FUSION software ​60,62​. Since the population structure of our dataset was different from 

European neuropsychiatric GWAS, we performed TWAS analysis separately with different LD 

estimates computed based on our study or European population from 1000 Genomes Phase 3 

as the covariance. For variants missing in GWAS summary statistics which existed in our 

study’s genotypes, we implemented IMPG imputation ​115​ allowing 40% of missing variants as 

maximum ratio within the FUSION algorithm. 

 

To identify genes/intron junctions not driven by co-expression, we defined jointly independent 

genes/intron junctions through performing summary-statistic-based joint analysis​61​, where we 

replaced SNPs with genes/intron junctions as described in previous work​62​ within the FUSION 

software. Implementing genes/intron junctions to the model one at a time in decreasing order of 

significance, we evaluated whether the conditional TWAS test remained significant. Those with 

significant conditional TWAS association were defined as jointly independent.  
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