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Abstract 
 

Real-time fMRI neurofeedback is an increasingly popular neuroimaging technique that allows 

an individual to gain control over his/her own brain signals, which can lead to improvements 

in behavior in healthy participants as well as to improvements of clinical symptoms in patient 

populations. However, a considerably large ratio of participants undergoing neurofeedback 

training do not learn to control their own brain signals and, consequently, do not benefit from 

neurofeedback interventions, which limits clinical efficacy of neurofeedback interventions. As 

neurofeedback success varies between studies and participants, it is important to identify 

factors that might influence neurofeedback success. Here, for the first time, we employed a big 

data machine learning approach to investigate the influence of 20 different design-specific (e.g. 

activity vs. connectivity feedback), region of interest-specific (e.g. cortical vs. subcortical) and 

subject-specific factors (e.g. age) on neurofeedback performance and improvement in 608 

participants from 28 independent experiments.  

 

With a classification accuracy of 60% (considerably different from chance level), we identified 

two factors that significantly influenced neurofeedback performance: Both the inclusion of a 

pre-training no-feedback run before neurofeedback training and neurofeedback training of 

patients as compared to healthy participants were associated with better neurofeedback 

performance. The positive effect of pre-training no-feedback runs on neurofeedback 

performance might be due to the familiarization of participants with the neurofeedback setup 

and the mental imagery task before neurofeedback training runs. Better performance of patients 

as compared to healthy participants might be driven by higher motivation of patients, higher 

ranges for the regulation of dysfunctional brain signals, or a more extensive piloting of clinical 

experimental paradigms. Due to the large heterogeneity of our dataset, these findings likely 

generalize across neurofeedback studies, thus providing guidance for designing more efficient 

neurofeedback studies specifically for improving clinical neurofeedback-based interventions. 

To facilitate the development of data-driven recommendations for specific design details and 

subpopulations the field would benefit from stronger engagement in Open Science and data 

sharing. 
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Introduction 
 

Real-time functional magnetic resonance (fMRI) neurofeedback is a non-invasive technique 

that enables healthy individuals and patients to voluntarily regulate neural signals. In the last 

decades, this method has gained growing popularity in the neuroimaging community and, to 

date, a wide range of real-time fMRI neurofeedback studies have collectively demonstrated the 

feasibility of volitional regulation through real-time fMRI neurofeedback (see Thibault, 

MacPherson, Lifshitz, Roth, & Raz (2018)). Further, many of these studies have also shown 

behavioral changes in healthy individuals, as well as clinical improvements in patient 

populations after neurofeedback training. In healthy participants, real-time fMRI 

neurofeedback training has been specifically linked to improvements in attention (e.g. 

DeBettencourt, Cohen, Lee, Norman, & Turk-Browne, 2015; Pamplona et al., 2020), emotion 

regulation (Koush et al., 2015; Paret & Hendler, 2020; Zich et al., 2020), memory (e.g. 

Scharnowski et al., 2015; Sherwood, Kane, Weisend, & Parker, 2016; Zhang, Yao, Zhang, 

Long, & Zhao, 2013), motivation (e.g. Zhi et al., 2018), motor performance (e.g. Bray, 

Shimojo, & O’Doherty, 2007; Scharnowski et al., 2015; Sitaram et al., 2012; Zhao et al., 2013), 

speech performance (Rota et al., 2009), and visual perception (e.g. Scharnowski, Hutton, 

Josephs, Weiskopf, & Rees, 2012; Shibata, Watanabe, Sasaki, & Kawato, 2011). In clinical 

populations, real-time fMRI  neurofeedback training has been shown to both improve clinical 

measures and normalize pathological neural characteristics in patients suffering from a wide 

range of disorders, such as alcohol and nicotine addiction (Canterberry et al., 2013; Hanlon et 

al., 2013; Hartwell et al., 2016; Karch et al., 2015; Kim, Yoo, Tegethoff, Meinlschmidt, & Lee, 

2015; X. Li et al., 2013), anxiety (Morgenroth et al., 2020), borderline personality disorder 

(Paret et al., 2016), depression (Linden et al., 2012; Quevedo et al., 2020; Young et al., 2017, 

2014), obsessive compulsive disorder (Buyukturkoglu et al., 2015), phobia (Zilverstand, 

Sorger, Sarkheil, & Goebel, 2015), post-traumatic stress disorder (Gerin et al., 2016; Nicholson 

et al., 2017), schizophrenia (Bauer et al., 2020), obesity (Frank et al., 2012), chronic pain 

(deCharms et al., 2005; Guan et al., 2014), Huntington’s disease (Papoutsi et al., 2018), 

Parkinson’s disease (Buyukturkoglu et al., 2013; Subramanian et al., 2011), tinnitus (Emmert, 

Kopel, et al., 2017; Haller, Birbaumer, & Veit, 2010), and visuo-spatial neglect (Fabien 

Robineau et al., 2019). 

 

Critically however, not all participants undergoing real-time fMRI neurofeedback training 

optimally benefit from the aforementioned improvements on behavioral and clinical measures, 
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due to variations in their success on acquiring neural control. Previous real-time fMRI 

neurofeedback studies have reported relatively high rates of non-responders, i.e., participants 

who fail to regulate their brain signals in the desired direction (Bray et al., 2007; Chiew, 

LaConte, & Graham, 2012; deCharms et al., 2005; Johnson et al., 2012; Ramot, Grossman, 

Friedman, & Malach, 2016; F. Robineau et al., 2014; Scharnowski et al., 2012; Yoo, Lee, 

O’Leary, Panych, & Jolesz, 2008). Averaging across these studies, the non-responder rate of 

real-time fMRI neurofeedback studies is estimated to lie around 38% (Haugg et al., 2020). 

Here, it should be noted that, to date, no standard thresholds for identifying non-responders are 

available and definitions of non-responders often vary between studies. Generally, even real-

time fMRI neurofeedback participants who were eventually able to gain control over their own 

brain signals still showed large variability in their neurofeedback regulation performance 

(Haugg et al., 2020). Similar estimations and observations have also been reported in the 

electroencephalogram (EEG) neurofeedback literature, where the so-called “neurofeedback 

inefficacy problem” refers to the variability in neurofeedback success and comprises a well-

known issue (Alkoby, Abu-Rmileh, Shriki, & Todder, 2017). Therefore, the fields of both 

EEG- and fMRI-based neurofeedback would greatly benefit from methodologically advanced 

investigations that can reveal the factors responsible for the unexplained variability of 

neurofeedback success.   

 

Interestingly, previous studies have demonstrated that the proportion of responders varies 

between different neurofeedback studies. Of importance, this suggests that some 

neurofeedback study-specific parameters might be more beneficial for neurofeedback success 

than others. Previously, few empirical studies have investigated the influence of neurofeedback 

design parameters on neurofeedback success. Specifically, two independent studies found that 

using an intermittent feedback display was superior over using a continuous feedback display 

(Hellrung et al., 2018; Johnson et al., 2012), while conversely, a third study reported this effect 

only for a single session of neurofeedback, but not for multiple neurofeedback sessions 

(Emmert, Kopel, et al., 2017). In another study, Papoutsi and colleagues investigated the 

influence of activity- versus connectivity-based neurofeedback on neurofeedback success, but 

did not find a significant difference between activity- and connectivity-based neurofeedback 

(Papoutsi et al., 2020). Interestingly, Kim et al. reported increased neurofeedback efficacy 

when combining connectivity-based information with activity-based neurofeedback (Kim et 

al., 2015). Focusing on subject-specific psychological factors in a systematic review, Cohen 

Kadosh and colleagues observed that attention and motivation might be important factors for 
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determining neurofeedback success (Cohen Kadosh & Staunton, 2019). However, an empirical 

validation of these suggestions is still needed. Other empirical studies observed a relationship 

between subject-specific questionnaires and neurofeedback success, yet these questionnaires 

were highly specific for the trained target region and participant population, and therefore do 

not generalize to other neurofeedback studies (Emmert, Breimhorst, et al., 2017; Koush et al., 

2015).  

 

Taken together, these empirical studies contribute invaluable information regarding the optimal 

design of neurofeedback studies. However, many critical factors that might influence 

neurofeedback success have not been investigated yet. For instance, it is not known whether a 

large number of neurofeedback training runs is beneficial for neurofeedback success, an 

essential question in the field of fMRI-based  neurofeedback due to the high cost of scanning 

hours. This also includes the question of whether neurofeedback training should be performed 

across several training days to facilitate neurofeedback learning through sleep consolidation. 

Other important factors are the inclusion of reinforcers such as monetary rewards (Sepulveda 

et al., 2016) and social rewards (Mathiak et al., 2010), or the highly debated question of whether 

participants should receive precise or more open instructions regarding regulation strategies 

(Sitaram et al., 2016). Ultimately, the number of possible factors that might influence 

neurofeedback performance and the number of conceivable interactions between these factors 

are immense and it would not be feasible to untangle them and optimize design empirically. 

Further, statistical power and generalizability across different study designs are limited in 

original empirical studies. 

 

On balance, ‘big data’ approaches encompassing a wide range of neurofeedback participants 

and studies constitute an unprecedented opportunity that can be used to investigate a large 

number of factors that might influence neurofeedback success. In addition, big data methods 

allow correcting for possible interactions and usually result in relatively generalizable findings. 

To date, however, big data investigations encompassing a large number of participants are still 

rare in the field of real-time fMRI neurofeedback. The existing ones have either descriptively 

summarized the field (Heunis et al., 2020; Thibault et al., 2018), or investigated the influence 

of pre-training brain activation levels on neurofeedback success (Haugg et al., 2020). Here, for 

the first time, we employ machine learning methods to compute the influence of a wide range 

of different subject- and study-specific factors on real-time fMRI neurofeedback success. In 

particular, we investigated the influence of 20 different factors on neurofeedback success in 
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608 participants undergoing neurofeedback training across 28 independent studies. The 

investigated factors included three subject-specific factors, six region of interest (ROI)-based 

factors, and eleven paradigm-specific factors. 

 

Identifying factors that influence neurofeedback success can help to design more effective 

neurofeedback studies in the future. This can improve neurofeedback studies investigating 

healthy participants and, more importantly, it can, further, improve clinical neurofeedback 

interventions. Future designs with increased effectiveness will allow participants to train their 

target brain regions more efficiently, thus reducing cognitive exhaustion and overall costs. 

Critically, increasing the effectiveness of neurofeedback designs is an important step towards 

the alleviation of clinical symptoms, by enabling the development of advanced, personalized 

treatments for psychiatric and neurological disorders. Taken together, our research aim is to 

utilize big data approaches in an effort to guide future empirical investigations that utilize real-

time fMRI neurofeedback.  

 

Material and methods 
 

Included studies 

Data for this mega-analysis could not be gathered from publications alone as single subject 

data were needed. Therefore, we contacted corresponding authors from real-time fMRI 

neurofeedback studies via i) the mailing list of the real-time functional neuroimaging 

community (https://utlists.utexas.edu/sympa/subscribe/rtfin), ii) neuroimaging conferences, 

and iii) direct email communication, in order to ask for data contributions. To ensure 

generalizability and to generate a dataset sufficiently large for machine learning analyses, we 

included fMRI-based neurofeedback studies of any training type (activity- as well as 

connectivity-based neurofeedback), any target brain region(s), and any participant populations. 

We received data contributions from authors of 28 independent studies (Auer, Schweizer, & 

Frahm, 2015; Emmert, Kopel, et al., 2017; Hellrung et al., 2018; Kim et al., 2015; Kirschner 

et al., 2018; Kohl et al., 2019; MacInnes, Dickerson, Chen, & Adcock, 2016; Marins et al., 

2015; Marxen et al., 2016; McDonald et al., 2017; Megumi, Yamashita, Kawato, & Imamizu, 

2015; Nicholson et al., 2017; Pamplona et al., 2020; Papoutsi et al., 2020, 2018; Scharnowski 

et al., 2012, 2015; Sorger, Kamp, Weiskopf, Peters, & Goebel, 2018; Spetter et al., 2017; Yao 

et al., 2016; Young et al., 2017; Zich et al., 2020), covering a wide range of trained brain 

regions, different study designs, and participant populations. Table 1 provides an overview of 
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all studies that contributed data to this mega-analysis. In total, we collected data from 608 

participants, including 229 patients and 379 healthy participants.  
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Author (year) ROI(s) participants 

neurofeedbac

k type 

Auer et al. (2015) SMC healthy (N=16) activity 

Emmert et al. (2017) auditory cortex tinnitus (N=11) activity 

Hellrung et al. 

(2018) amygdala healthy (N=34) activity 

Hellrung et al. (in 

prep) amygdala healthy (N=16) activity 

Hellrung et al. (in 

prep) insula healthy (N=11) activity 

Keynan et al. (in 

prep) amygdala healthy (N=33) activity 

Kim et al. (2015) 

ACC, mPFC, OFC, PCC, 

precuneus tobacco use disorder (N=14) 

connectivity, 

activity 

Kirschner et al. 

(2018) VTA 

healthy (N=27), cocaine use 

disorder (N=24) activity 

Kirschner et al. (in 

prep) VTA schizophrenia (N=14) activity 

Kohl et al. (2019) dlPFC overweight (N=16) activity 

Kohl (pilot data) dlPFC overweight (N=9) activity 

Liew et al. (in prep) left PMC, left SMA healthy (N=10) connectivity 

MacInnes et al. 

(2016) VTA healthy (N=19) activity 

Marins et al. (2015) left PMC healthy (N=14) activity 

Marxen et al. (2016) amygdala healthy (N=32) activity 

McDonald et al. 

(2017) default mode network 

healthy (N=68), psychiatric 

disorders (N=72) activity 

Megumi et al. 

(2015) left lateral parietal, left M1 healthy (N=12) connectivity 

Nicholson et al. 

(2017) amygdala PTSD (N=14) activity 

Pamplona et al. 

(2020) 

default mode network, 

sustained attention network healthy (N=15) activity 

Papoutsi et al. 

(2018) SMA Huntington's disease (N=10) activity 

Papoutsi et al. 

(2020) SMA, left striatum Huntington's disease (N=16) 

connectivity, 

activity 

Scharnowski et al. 

(2015) SMA, PHC healthy (N=7) activity 

Scharnowski et al. 

(2012) visual cortex healthy (N=10) activity 
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Sorger et al. (2017) individually different healthy (N=10) activity 

Spetter et al. (2017) dlPFC, vmPFC obesity (N=8) connectivity 

Yao et al. (2016) anterior insula healthy (N=18) activity 

Young et al. (2017) amygdala depression (N=18) activity 

Zich et al. (2020) amygdala, dlPFC adolescents (N=27) connectivity 

 

Table 1: Overview of studies included in the mega-analysis. We received data from 28 

independent neurofeedback studies, including 608 participants (229 patients and 379 healthy 

participants). 24 studies used activity-based neurofeedback, 6 studies used connectivity-based 

neurofeedback. Abbreviations: ACC – Anterior Cingulate Cortex, dlPFC – dorsolateral 

Prefrontal Cortex, mPFC – medial Prefrontal Cortex, M1 – Primary Motor Cortex, OFC – 

Orbitofrontal Cortex, PCC – Posterior Cingulate Cortex, PMC – Pre-Motor Cortex, PHC – 

Parahippocampal Cortex, SMA – Supplementary Motor Cortex, SMC – Somatomotor Cortex, 

SPL – Superior Parietal Lobe, VTA – Ventral Tegmental Area. 

 

 

Neurofeedback success measures 

To assess neurofeedback success, we asked authors to provide the average feedback value for 

each neurofeedback training run. Feedback values were defined as the measures that 

determined the feedback given to the participants during neurofeedback training. 

Consequently, the type of feedback values varied between different neurofeedback studies (e.g. 

percent signal change values, beta values, Bayes factors, correlations values etc.). Based on 

these feedback values, we then defined two general measures for neurofeedback success that 

would allow for comparisons between participants of different studies and, more importantly, 

for pooling all participants together: 

 

● Neurofeedback performance: General neurofeedback performance for each participant 

was calculated based on the ratio of successful neurofeedback training runs as 

compared to unsuccessful neurofeedback training runs. Successful  neurofeedback 

training runs were defined as runs showing feedback values with positive signs for up-

regulation and negative signs for down-regulation. For the classification analyses, 

participants who showed more than 50% of successful neurofeedback training runs 

were labelled as successful, the others as unsuccessful. 
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● Neurofeedback improvement:  Neurofeedback improvement of each participant was 

calculated based on the slope of the neurofeedback learning curve, i.e. the slope of the 

regression line over the feedback values of all neurofeedback training runs. For 

classification analyses, successful participants were then defined as participants with a 

slope greater than 0, non-successful participants showed a slope smaller or equal 0. 

 

Investigated factors influencing neurofeedback performance and neurofeedback 

improvement 

We investigated the influence of 20 different factors on neurofeedback success. These 

continuous and categorical factors included: 

 

● Three subject-specific factors: (1) age of the participant in years, (2) sex of the 

participant, (3) health status of the participant (healthy participant or patient); 

● Six region of interest (ROI)-based factors: (1) ROI(s) is/are cortical or subcortical, (2) 

ROI(s) is/are a sensory brain region, (3) ROI(s) is/are part of the default mode network 

(DMN), (4) ROI(s) is/are part of the salience network, (5) ROI(s) is/are part of the 

motor network, (6) ROI(s) consist(s) of one brain region or more brain regions; 

● Eleven experimental design-specific factors: (1) use of connectivity- vs activity-based 

measure for feedback computation, (2) use of continuous vs intermittent feedback 

presentation, (3) use vs no use of functional localizer for defining the trained ROI(s), 

(4) up- vs down-regulation, (5) use of precise strategy suggestions vs no or open 

strategy suggestions, (6) use of external (monetary) reward vs no external reward given, 

(7) use of pre-training no-feedback run (functional runs prior to NFB training, where 

participants are already asked to modulate their brain signals, however, no feedback 

over regulation performance is provided) vs no pre-training no-feedback run, (8) length 

of a single neurofeedback training run in seconds, (9) length of a single neurofeedback 

regulation block in seconds), (10) number of performed neurofeedback training runs, 

(11) neurofeedback training on one day vs across several days 
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Multivariable predictions of neurofeedback performance and neurofeedback 

improvement 

Individual machine learning analyses were performed in Python (v3.8.3) to identify factors that 

predict participant-specific neurofeedback performance as well as neurofeedback 

improvement, using multivariable classification models. For the machine learning models, an 

Extra Trees (ExtraTreesClassifier, scikit-learn library v0.23.1; Pedregosa et al., 2011) 

approach was used, which is a computationally efficient non-linear classification method. Extra 

Trees implements an ensemble of Extremely randomized trees (Geurts, Ernst, & Wehenkel, 

2006). Ensemble methods improve the performance of base predictors, e.g. decision trees, by 

accumulating the predictions of the base predictors via, e.g., majority voting. To obtain diverse 

predictions from the same base predictors processes that introduce randomness are applied 

when building the base predictors.  

 

The model performance – the prediction accuracy – was estimated using a nested cross-

validation (CV) procedure (Cawley & Talbot, 2010). In the main CV loop, a shuffle-split data 

partitioning with 10% of the studies in the testing-set was repeated 100 times, resulting in 100 

Extra Trees models (300 trees per model). Feature scaling (z-scoring) and hyper-parameter 

tuning was carried out within the main CV loop, using the training-data of the current CV loop 

only. Hyper-parameter tuning was implemented in an inner (nested) CV procedure, so a 

separate CV was carried out for each repetition of the outer CV loop. The inner CV loops used, 

again, a shuffle-split partitioning scheme with 10% of the studies in the inner testing set and 

50 repetitions. To control model complexity, we restricted the maximum number of possible 

interactions of a decision tree in the Extra Trees ensembles by controlling the number of 

maximum leaf nodes per tree. The candidate maximum number of leave nodes was randomly 

drawn between 2 and 32 (50 random draws, RandomizedSearchCV, scikit-learn, v0.23.1). The 

maximum number of leave nodes that led to the lowest squared error was subsequently used in 

the outer CV loop. 

 

After hyper-parameter tuning, an Extra Trees model was trained in the main (outer) CV loop 

using the obtained hyper-parameter and 300 trees with no maximum features. Further, 

minimum samples split was set to 2, minimum samples leaf to 1, and minimum weight fraction 

leaf to 0.0. No maximum depth and no maximum samples were chosen, minimum impurity 

decrease was 0.0, ccp alpha was 0.0, and the class weight was computed from training data. 
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The obtained model was then tested on the respective hold-out set of the main CV loop. The 

hold-out set (10% of the studies) was explicitly not used in the inner CV loop. In each repetition 

of the main CV loop, model prediction accuracy was computed. To counter unbalanced classes 

(more samples in one class than in the other) weighted accuracy was used (Hastie, Tibshirani, 

& Friedman, 2001). For that purpose an additional model was trained and tested on a shuffled 

version of the data in each CV loop.  

 

After obtaining the results of the 100 repetitions of the outer CV loop, we assessed whether the 

models performed statistically significantly better than chance level by applying a bootstrap 

test (100,000 bootstrap samples; Efron, 1979). For this test, the null-hypothesis was that the 

difference between accuracy and chance level is on average smaller or equal to zero (Table 2). 

 

Further, we analyzed the importance of each factor for the overall model performance. In 

specific, the factor importance was estimated by  summing up contributions per factor, over 

the decision tree splits. The total importance of a feature was then computed as the 

normalized importance of that feature averaged over the trees in the ensemble (Hastie et al., 

2001). Correlation of features leads to a split of this importance measure among these 

features (see Figure S1 in Supplementary Material for correlation map). To determine 

whether a feature’s contribution was statistically significant, we tested that feature’s 

importance against the feature importance obtained by a model that was trained with the same 

parameters, but shuffled data. The null-hypothesis tested per feature was that the median 

difference in feature importance is smaller or equal to zero. The null-hypothesis was tested 

with a bootstrap test (100,000 bootstrap samples per feature; Efron, 1979). Obtained p-values 

were Bonferroni-corrected for multiple comparisons. 

 

The entire analysis (computing the models and the contributions of factors) was carried out two 

times. First, to predict neurofeedback performance and a second time to predict neurofeedback 

improvement.  
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Results 
 

Neurofeedback success 

When investigating neurofeedback performance, we observed that 69.41% of all participants 

were labelled as successful, meaning that for them, more than 50% of all neurofeedback 

training runs were successful. Only 9.70% of participants were characterized by 25% or less 

successful runs. On average, participants presented 72.36% successful neurofeedback runs. For 

neurofeedback improvement over runs, we observed an average slope of 0.09 across all 

participants. Here, 59.70% of the participants showed a positive slope and, therefore, were able 

to improve their neurofeedback performance over time (see Figure 1).  

 

 

 

Figure 1: Distribution of neurofeedback success. Left: More than half (51.48%) of all 

participants undergoing neurofeedback training performed 75% or more of successful runs. 

Only 9.70% of the participants performed 25% successful runs or fewer. Right: 59.70% of 

all participants undergoing neurofeedback training show positive slopes of their learning 

curves, indicating an improvement over time.  

 

Prediction accuracy of neurofeedback performance and neurofeedback 

improvement 

The Extra Trees machine learning model was able to predict neurofeedback performance from 

the investigated factors with an average accuracy of 60.3%, which is significantly better than 

the average accuracy at chance level with 51% (p<.001). However, no prediction better than 

chance was revealed for neurofeedback improvement (Table 2).  
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Average of weighted 

accuracy ± standard 

deviation 

Average of 

weighted accuracy 

at chance level 

p value of smaller or 

equal chance level 

1. Predicting 

neurofeedback 

performance 
60.3% ± 12.3 51.0% p < 0.001 

2. Predicting 

neurofeedback 

improvement 
48.1% ± 9.0 48.4% p = 0.614 

 

Table 2: Extra Trees prediction accuracy for the neurofeedback performance and the 

neurofeedback improvement target. 

 

As only the neurofeedback performance measure could be predicted with a better than chance 

accuracy, only the influence of factors on neurofeedback performance, but not neurofeedback 

improvement, are valid to be interpreted.  Consequently, normalized model-based feature 

importance was only calculated for the neurofeedback performance target, but not for the 

neurofeedback improvement target (see Figure 2). Two factors contributed significantly to the 

prediction result: whether a study included a pre-training no-feedback run (median relative 

importance 59.3%; Figure 2) and whether a participant was a patient or a healthy participant 

(median relative importance 31.1%; Figure 2). More specifically, including a pre-training no-

feedback run, as well as performing a study with patients increases the chance for a successful 

neurofeedback run.  
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Figure 2: Distribution of feature importance for predicting neurofeedback 

performance. A Significant normalized model-based feature importance was observed for 

the feature pre-training no-feedback run and for the feature patient versus healthy participant. 

B Participants who performed a pre-training no-feedback run were more successful during 

neurofeedback than participants without a pre-training no-feedback run. C Patients were 

more successful than healthy participants. 
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Discussion 
 

In this study, we investigated the influence of 20 different factors on neurofeedback 

performance and improvement, including three subject-specific factors, six ROI-based factors, 

and eleven paradigm-specific factors. When targeting neurofeedback performance, our 

classification model achieved an accuracy of 60.3%, which was significantly better than chance 

level. In contrast, classification for the neurofeedback improvement target did not reach an 

accuracy level above chance level. Overall, we observed considerably high neurofeedback 

success rates across all 28 studies, with around 60% of all participants showing positive slopes 

and around 70% of all participants showing more than 50% successful neurofeedback runs. 

Our results revealed two factors that showed high model importance for the neurofeedback 

performance classification, suggesting that they may significantly influence neurofeedback 

performance.   

 

Factors that influence neurofeedback performance 

The first significant factor influencing neurofeedback performance is the presence or absence 

of a pre-training no-feedback run. Here, significantly higher ratios of successful neurofeedback 

runs were found for studies that included a pre-training no-feedback run in their study design. 

Pre-training no-feedback runs are functional runs prior to neurofeedback training, where 

participants are already asked to modulate their brain signals, however, no feedback regarding 

regulation performance is provided (e.g. see Kim et al., 2015; Kirschner et al., 2018; MacInnes 

et al., 2016; Young et al., 2017). These no-feedback runs can serve several purposes, for 

instance, helping participants familiarize themselves with the neurofeedback paradigm and 

scanning environment where the following runs will take place. Importantly, they serve as a 

baseline run for comparisons with subsequent neurofeedback training runs and transfer no-

feedback runs after neurofeedback training (Auer et al., 2015; MacInnes et al., 2016). One 

reason for our finding that pre-training no-feedback runs can benefit neurofeedback 

performance might be that prior familiarization with the neurofeedback setup and an additional 

run to practice one’s brain regulation strategies will make it easier for the participants to 

perform well.  

 

The second factor that demonstrated significant model importance for neurofeedback 

performance classification was whether a healthy participant or a clinical patient was 

undergoing neurofeedback training. Specifically, we found that patients showed higher ratios 
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of successful neurofeedback runs than healthy participants. Similar results have already been 

reported in an empirical neurofeedback study where the authors observed significantly higher 

default mode network (DMN) upregulation performance in a heterogeneous group of patients, 

compared to healthy controls (Skouras & Scharnowski, 2019). The authors argued that this 

finding might be linked to higher observed scores in DMN eigenvector centrality in the patient 

group than in the control group, i.e. in the patient group the DMN was more strongly connected 

to the rest of the brain. This is in line with a recent suggestion by Bassett and Khambhati who 

argue that areas which are strongly functionally connected within the brain (such as it is the 

case for the DMN) might be easier to be trained with neurofeedback (Bassett & Khambhati, 

2017). Further, it is also possible that patients show better performance in neurofeedback 

regulation due to more dysfunctional brain patterns as compared to healthy subjects, leaving 

more room for regulation and making ceiling effects less likely. Here, it should be noted that 

neurofeedback performance might still differ significantly between different patient 

populations, due to differences in cognitive deficits which might attenuate attention in general 

and neurofeedback regulation performance in specific (Heeren et al., 2014; Li et al., 2010; 

Lussier & Stip, 2001). Further, the observed differences in neurofeedback performance 

between patients and healthy participants might also be driven by differences in the 

experimental design.  Neurofeedback paradigms in clinical populations have oftentimes been 

piloted more thoroughly, and sometimes even follow a series of several neurofeedback studies 

in healthy populations which serve as pilots or templates for implementing the optimized final 

neurofeedback patient studies. For instance, Kirschner et al. (Kirschner et al., 2018) trained 

participants with cocaine use disorder to regulate their dopaminergic midbrain using a 

paradigm that had been previously successfully applied to healthy participants (Sulzer et al., 

2013). Consequently, high risk studies that are more likely to show a high percentage of 

unsuccessful neurofeedback runs, e.g. studies using a novel analysis method or an ultra-high-

field MRI scanner, might be less often performed with patient populations. Finally, also a 

difference in the participants’ motivation might influence the better performance of patients as 

compared to healthy participants. Many patients undergo neurofeedback training in the hope 

to improve their clinical symptoms while healthy participants mainly participate out of generic 

interest or in order to receive a monetary compensation. Therefore, it is likely that patients put 

more effort into the neurofeedback regulation task than healthy participants. 

 

Taken together, our results indicate that it would be beneficial to include a pre-training no-

feedback run in order to improve neurofeedback performance. Furthermore, our results 
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demonstrate better neurofeedback performance of patients as compared to healthy participants. 

While the participant sample is primarily defined by the biological/clinical question under 

investigation and, thus, does not constitute an open parameter regarding design optimization, 

this finding nevertheless has strong implications for the design of future neurofeedback studies. 

Further, our findings emphasize the clinical potential of neurofeedback interventions: Even in 

cases where only small or moderate effects have been observed in neurofeedback studies on 

healthy participants, effects in patients might be nonetheless considerably stronger and 

clinically relevant, based on the same neurofeedback paradigm. 

 

Features that do not predict neurofeedback performance 

Most of the features included in the machine learning analysis did not play an important role 

with regards to the classification of participants, neither for neurofeedback performance nor 

neurofeedbackimprovement analyses. One reason for this might be that the majority of our 

included features were based on parameters specific for each study’s design, such as 

information on the paradigm or chosen ROI(s), rather than subject-specific features. These 

design-specific features were deliberately chosen for our analysis to identify parameters that 

could be easily modified when designing future neurofeedback studies. However, 

neurofeedback success also varied considerably within single neurofeedback studies (Bray et 

al., 2007; Chiew et al., 2012; deCharms et al., 2005; Haugg et al., 2020; Johnson et al., 2012; 

Ramot et al., 2016; F. Robineau et al., 2014; Scharnowski et al., 2012; Yoo et al., 2008), despite 

all  design-specific parameters being identical for the participants of a study. This indicates that 

subject-specific factors such as biological measures (e.g. heart rate, pulse, stress level), 

personality traits and cognitive measures, intelligence, the ability to perform mental imagery, 

or the subject’s attention and motivation (see (Cohen & Staunton, 2019) for a systematic 

review) might be important factors for successful neurofeedback training. Further, also 

individual brain-based measures, such as functional connectivity (Scheinost et al., 2014), 

eigenvector centrality (Skouras & Scharnowski, 2019), or the connectivity of the trained brain 

region to other higher-order cognitive areas (Bassett & Khambhati, 2017) have been previously 

discussed as possible factors that might influence neurofeedback success.      Due to such 

information not being available for our data, we were not able to assess the effect that these 

parameters might have on neurofeedback success. In the future, more harmonization efforts in 

assessing subject-specific data across differentneurofeedback studies will therefore be 

necessary. 
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A complementary reason why many features included in our analysis were not predictive of 

neurofeedback success was the heterogeneity of the dataset. As we aimed at finding 

generalizable factors that influence neurofeedback success across a wide range of different 

neurofeedback studies, we purposely included diverse studies training different ROIs, different 

participant populations, and using a variety of experimental designs and methods, thus making 

predictions very difficult. It is possible that by investigating more homogeneous subsets of the 

data, certain additional factors might become predictive even though they were not predictive 

when pooling all studies together. However, establishing more homogeneous subsets for solid 

machine learning analyses will require more data than is currently available. 

 

Neurofeedback success target measures 

Our results were most likely not only driven by the included features, but also by the chosen 

target measures for neurofeedback success. To date, no commonly accepted measure for 

neurofeedback success has been established and measures vary between different studies 

(Haugg et al., 2020; Paret et al., 2019; Thibault et al., 2018). For instance, neurofeedback 

feedback values during a single neurofeedback regulation block or run can be assessed with a 

wide variety of different methods, such as percent signal change, beta values, or connectivity 

values. The heterogeneity of feedback values complicates machine learning approaches that 

require a common target feature. Even if we had access to the raw imaging data, post-hoc re-

analyses with an identical analysis pipeline for all studies would not solve this problem, 

because such a measure would not reflect the feedback that was provided to the participants 

during training. Choosing neurofeedback performance and neurofeedback improvement as 

targets for this mega-analysis allowed for pooling this large set of heterogeneous studies, thus, 

increasing statistical power and generalizability. In addition, by using a dichotomous 

classification approach (e.g. positive vs. negative slope), we could, further, account for some 

of the heterogeneity of our data. For instance, when the slope of a neurofeedback learning curve 

is computed based on only two runs, the resulting values are more likely to be actual outliers, 

as compared to when the slope of a neurofeedback learning curve based on 20 runs is calculated 

(Kwak & Kim, 2017). We avoided this problem by using a classification-based instead of a 

regression-based machine learning approach.  
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Furthermore improvement regarding the heterogeneity of the neurofeedback success measures 

might be expected from developing and establishing a commonly accepted model of 

neurofeedback learning. To date, the underlying mechanisms of neurofeedback have not been 

fully determined (Cohen & Staunton, 2019; Sitaram et al., 2016), making it difficult to identify 

the most important attributes of neurofeedback learning, towards creating a comprehensive 

neurofeedback success measure. With more neurofeedback data becoming publicly available 

thanks to the Open Science initiative, another solution might be to only consider studies that 

used exactly the same feedback success measure while still finding enough data to carry out 

similar analyses.  

 

Conclusion 

 

With 59.70% of all participants showing positive slopes and 69.41% of all participants having 

more than 50% of successful neurofeedback runs, our data indicate that neurofeedback training 

is overall successful, although with large room for improvement. Using machine learning on 

the largest neurofeedback data set to date, we were able to identify two measures that might 

influence neurofeedback success and, thus, could lead to improvements in the efficacy of 

neurofeedback interventions: Participants who performed a pre-training no-feedback run prior 

to neurofeedback training and participants who were patients generally performed better.  

Nevertheless, the medium overall predictability of our analyses indicates that further studies 

based on larger datasets and including more features are needed. In the future, our mega-

analysis machine learning approach combined with increased data availability from 

homogeneous studies might allow for identifying more crucial factors, designing more efficient 

neurofeedback studies, improving clinical neurofeedback-based interventions, and 

understanding better how learning with neurofeedback is accomplished.  

 

 

Funding 

 

A.H. was supported by the Forschungskredit of the University of Zurich (FK‐18‐030), F.S. was 

supported by the Foundation for Research in Science and the Humanities at the University of 

Zurich (STWF‐17‐012) and the Schweizerischer Nationalfonds zur Förderung der 

Wissenschaftlichen Forschung (32003B_166566, BSSG10_155915, 100014_178841)  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.10.21.349118doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.21.349118
http://creativecommons.org/licenses/by/4.0/


References 
 

Alkoby, O., Abu-Rmileh, A., Shriki, O., & Todder, D. (2017). Can we predict who will 

respond to neurofeedback? A review of the inefficacy problem and existing predictors 

for successful EEG neurofeedback learning. Neuroscience. 

https://doi.org/10.1016/j.neuroscience.2016.12.050 

Auer, T., Schweizer, R., & Frahm, J. (2015). Training Efficiency and Transfer Success in an 

Extended Real-Time Functional MRI Neurofeedback Training of the Somatomotor 

Cortex of Healthy Subjects. Frontiers in Human Neuroscience, 9(October), 547. 

https://doi.org/10.3389/fnhum.2015.00547 

Bassett, D. S., & Khambhati, A. N. (2017). A network engineering perspective on probing 

and perturbing cognition with neurofeedback. Annals of the New York Academy of 

Sciences, 1396, 126–143. https://doi.org/10.1111/nyas.13338 

Bauer, C. C. C., Okano, K., Gosh, S. S., Lee, Y. J., Melero, H., Angeles, C. de los, … 

Whitfield-Gabrieli, S. (2020). Real-time fMRI neurofeedback reduces auditory 

hallucinations and modulates resting state connectivity of involved brain regions: Part 2: 

Default mode network -preliminary evidence. Psychiatry Research, 284(January). 

https://doi.org/10.1016/j.psychres.2020.112770 

Bray, S., Shimojo, S., & O’Doherty, J. P. (2007). Direct instrumental conditioning of neural 

activity using functional magnetic resonance imaging-derived reward feedback. The 

Journal of Neuroscience, 27(28), 7498–7507. 

https://doi.org/10.1523/JNEUROSCI.2118-07.2007 

Buyukturkoglu, K, Rana, M., Ruiz, S., Hackley, S. A., Soekadar, S. R., Birbaumer, N., & 

Sitaram, R. (2013). Volitional regulation of the supplementary motor area with fMRI-

BCI neurofeedback in Parkinson’s disease: A pilot study. 2013 6th International 

IEEE/EMBS Conference on Neural Engineering (NER). 

https://doi.org/10.1109/NER.2013.6696025 

Buyukturkoglu, Korhan, Roettgers, H., Sommer, J., Rana, M., Dietzsch, L., Arikan, E. B., … 

Ruiz, S. (2015). Self-regulation of anterior insula with real-time fMRI and its behavioral 

effects in obsessive-compulsive disorder: A feasibility study. PLoS ONE, 10(8), 1–26. 

https://doi.org/10.1371/journal.pone.0135872 

Canterberry, M., Hanlon, C. A., Hartwell, K. J., Li, X., Owens, M., LeMatty, T., … George, 

M. S. (2013). Sustained reduction of nicotine craving with real-time neurofeedback: 

Exploring the role of severity of dependence. Nicotine and Tobacco Research, 15(12), 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.10.21.349118doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.21.349118
http://creativecommons.org/licenses/by/4.0/


2120–2124. https://doi.org/10.1093/ntr/ntt122 

Cawley, G. C., & Talbot, N. L. C. (2010). On Over-fitting in Model Selection and 

Subsequent Selection Bias in Performance Evaluation, 11, 2079–2107. 

Chiew, M., LaConte, S. M., & Graham, S. J. (2012). Investigation of fMRI neurofeedback of 

differential primary motor cortex activity using kinesthetic motor imagery. NeuroImage, 

61(1), 21–31. https://doi.org/10.1016/j.neuroimage.2012.02.053 

Cohen, K., & Staunton, G. (2019). NeuroImage A systematic review of the psychological 

factors that in fl uence neurofeedback learning outcomes. NeuroImage, 185(October 

2018), 545–555. https://doi.org/10.1016/j.neuroimage.2018.10.021 

DeBettencourt, M. T., Cohen, J. D., Lee, R. F., Norman, K. A., & Turk-Browne, N. B. 

(2015). Closed-loop training of attention with real-time brain imaging. Nature 

Neuroscience, 18(3), 470–478. https://doi.org/10.1038/nn.3940 

deCharms, R. C., Maeda, F., Glover, G. H., Ludlow, D., Pauly, J. M., Soneji, D., … Mackey, 

S. C. (2005). Control over brain activation and pain learned by using real-time 

functional MRI. Proceedings of the National Academy of Sciences, 102(51), 18626–

18631. https://doi.org/10.1073/pnas.0505210102 

Efron, B. (1979). Bootstrap methods: another look at the jackknife. Annals of Statistics, 7(1), 

1–26. 

Emmert, K., Breimhorst, M., Bauermann, T., Birklein, F., Rebhorn, C., Van De Ville, D., & 

Haller, S. (2017). Active pain coping is associated with the response in real-time fMRI 

neurofeedback during pain. Brain Imaging and Behavior, 11(3), 712–721. 

https://doi.org/10.1007/s11682-016-9547-0 

Emmert, K., Kopel, R., Koush, Y., Maire, R., Senn, P., Van De Ville, D., & Haller, S. (2017). 

Continuous vs. intermittent neurofeedback to regulate auditory cortex activity of tinnitus 

patients using real-time fMRI - A pilot study. NeuroImage: Clinical, 14, 97–104. 

https://doi.org/10.1016/j.nicl.2016.12.023 

Frank, S., Lee, S., Preissl, H., Schultes, B., Birbaumer, N., & Veit, R. (2012). The obese brain 

athlete: Self-regulation of the anterior insula in adiposity. PLoS ONE, 7(8), 3–8. 

https://doi.org/10.1371/journal.pone.0042570 

Gerin, M. I., Fichtenholtz, H., Roy, A., Walsh, C. J., Krystal, J. H., Southwick, S., & 

Hampson, M. (2016). Real-time fMRI neurofeedback with war veterans with chronic 

PTSD: A feasibility study. Frontiers in Psychiatry, 7(JUN), 1–11. 

https://doi.org/10.3389/fpsyt.2016.00111 

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.10.21.349118doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.21.349118
http://creativecommons.org/licenses/by/4.0/


Learning, 63(1), 3–42. https://doi.org/10.1007/s10994-006-6226-1 

Guan, M., Ma, L., Li, L., Tong, L., Zhang, Y., Zheng, D., … Shi, D. (2014). Self-regulation 

of rACC activation in patients with postherpetic neuralgia: A preliminary study using 

real-time fMRI neurofeedback. Ismrm, 22, 5889. https://doi.org/10.7910/DVN/27368 

Haller, S., Birbaumer, N., & Veit, R. (2010). Real-time fMRI feedback training may improve 

chronic tinnitus. European Radiology, 20(3), 696–703. https://doi.org/10.1007/s00330-

009-1595-z 

Hanlon, C. A., Hartwell, K. J., Canterberry, M., Li, X., Owens, M., LeMatty, T., … George, 

M. S. (2013). Reduction of cue-induced craving through realtime neurofeedback in 

nicotine users: The role of region of interest selection and multiple visits. Psychiatry 

Research - Neuroimaging, 213(1), 79–81. 

https://doi.org/10.1016/j.pscychresns.2013.03.003 

Hartwell, K. J., Hanlon, C. A., Li, X., Borckardt, J. J., Canterberry, M., Prisciandaro, J. J., … 

Brady, K. T. (2016). Individualized real-time fMRI neurofeedback to attenuate craving 

in nicotine-dependent smokers. Journal of Psychiatry and Neuroscience, 41(1), 48–55. 

https://doi.org/10.1503/jpn.140200 

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The Elements of Statistical Learning. 

Springer. https://doi.org/10.1111/j.1532-5415.1984.tb02220.x 

Haugg, A., Sladky, R., Skouras, S., McDonald, A., Craddock, C., Kirschner, M., … 

Scharnowski, F. (2020). Can we predict real-time fMRI neurofeedback learning success 

from pretraining brain activity? Human Brain Mapping, 1–16. 

https://doi.org/10.1002/hbm.25089 

Heeren, A., Maurage, P., Perrot, H., De Volder, A., Renier, L., Araneda, R., … Philippot, P. 

(2014). Tinnitus specifically alters the top-down executive control sub-component of 

attention: Evidence from the Attention Network Task. Behavioural Brain Research, 269, 

147–154. https://doi.org/10.1016/j.bbr.2014.04.043 

Hellrung, L., Dietrich, A., Hollmann, M., Pleger, B., Kalberlah, C., Roggenhofer, E., … 

Horstmann, A. (2018). Intermittent compared to continuous real-time fMRI 

neurofeedback boosts control over amygdala activation. NeuroImage, 166(October 

2017), 198–208. https://doi.org/10.1016/j.neuroimage.2017.10.031 

Heunis, S., Lamerichs, R., Zinger, S., Caballero-Gaudes, C., Jansen, J. F. A., Aldenkamp, B., 

& Breeuwer, M. (2020). Quality and denoising in real-time functional magnetic 

resonance imaging neurofeedback: A methods review. Human Brain Mapping, 

(February), 1–29. https://doi.org/10.1002/hbm.25010 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.10.21.349118doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.21.349118
http://creativecommons.org/licenses/by/4.0/


Johnson, K., Hartwell, K. J., Lematty, T., Borckardt, J., Morgan, P., Govindarajan, K., … 

George, M. S. (2012). Intermittent “Real-time” fMRI Feedback is Superior to 

Continuous Presentation for a Motor Imagery Task: A Pilot Study. Journal of 

Neuroimaging, 22(1), 58–66. https://doi.org/10.1111/j.1552-6569.2010.00529.x. 

Karch, S., Keeser, D., Hümmer, S., Paolini, M., Kirsch, V., Karali, T., … Pogarell, O. (2015). 

Modulation of craving related brain responses using real-time fMRI in patients with 

alcohol use disorder. PLoS ONE, 10(7). https://doi.org/10.1371/journal.pone.0133034 

Kim, D.-Y., Yoo, S.-S., Tegethoff, M., Meinlschmidt, G., & Lee, J.-H. (2015). The Inclusion 

of Functional Connectivity Information into fMRI-based Neurofeedback Improves Its 

efficacy in the Reduction of Cigarette Cravings. Journal of Cognitive Neuroscience, 

27(8), 1552–1572. https://doi.org/10.1162/jocn 

Kirschner, M., Sladky, R., Haugg, A., Stämp, P., Jehli, E., Hodel, M., … Herdener, M. 

(2018). EBioMedicine Self-regulation of the dopaminergic reward circuit in cocaine 

users with mental imagery and neurofeedback, 37, 489–498. 

https://doi.org/10.1016/j.ebiom.2018.10.052 

Kohl, S. H., Veit, R., Spetter, M. S., Günther, A., Rina, A., Lührs, M., … Hallschmid, M. 

(2019). NeuroImage Real-time fMRI neurofeedback training to improve eating behavior 

by self-regulation of the dorsolateral prefrontal cortex : A randomized controlled trial in 

overweight and obese subjects. NeuroImage, 191(October 2018), 596–609. 

https://doi.org/10.1016/j.neuroimage.2019.02.033 

Koush, Y., Meskaldji, D.-E., Pichon, S., Rey, G., Rieger, S. W., Linden, D. E. J., … 

Scharnowski, F. (2015). Learning Control Over Emotion Networks Through 

Connectivity-Based Neurofeedback. Cerebral Cortex, bhv311. 

https://doi.org/10.1093/cercor/bhv311 

Kwak, S. G., & Kim, J. H. (2017). Central limit theorem: The cornerstone of modern 

statistics. Korean Journal of Anesthesiology, 70(2), 144–156. 

https://doi.org/10.4097/kjae.2017.70.2.144 

Li, C. T., Lin, C. P., Chou, K. H., Chen, I. Y., Hsieh, J. C., Wu, C. L., … Su, T. P. (2010). 

Structural and cognitive deficits in remitting and non-remitting recurrent depression: A 

voxel-based morphometric study. NeuroImage, 50(1), 347–356. 

https://doi.org/10.1016/j.neuroimage.2009.11.021 

Li, X., Hartwell, K. J., Borckardt, J., Prisciandaro, J. J., Saladin, M. E., Morgan, P., … 

George, M. S. (2013). Volitional Reduction of Anterior Cingulate Cortex Activity 

Produces Decreased Cue Craving in Smoking Cessation: A Preliminary Real-Time 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.10.21.349118doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.21.349118
http://creativecommons.org/licenses/by/4.0/


fMRI Study. Addiction Biology, 18(4), 739–748. https://doi.org/10.1111/j.1369-

1600.2012.00449.x.Volitional 

Linden, D. E. J., Habes, I., Johnston, S. J., Linden, S., Tatineni, R., Subramanian, L., … 

Goebel, R. (2012). Real-time self-regulation of emotion networks in patients with 

depression. PLoS ONE, 7(6). https://doi.org/10.1371/journal.pone.0038115 

Lussier, I., & Stip, E. (2001). Memory and attention deficits in drug naive patients with 

schizophrenia. Schizophrenia Research, 48(1), 45–55. https://doi.org/10.1016/S0920-

9964(00)00102-X 

MacInnes, J. J., Dickerson, K. C., Chen, N. kuei, & Adcock, R. A. (2016). Cognitive 

Neurostimulation: Learning to Volitionally Sustain Ventral Tegmental Area Activation. 

Neuron, 89(6), 1331–1342. https://doi.org/10.1016/j.neuron.2016.02.002 

Marins, T. F., Rodrigues, E. C., Engel, A., Hoefle, S., Basílio, R., Lent, R., … Tovar-Moll, F. 

(2015). Enhancing Motor Network Activity Using Real-Time Functional MRI 

Neurofeedback of Left Premotor Cortex. Frontiers in Behavioral Neuroscience, 

9(December), 1–12. https://doi.org/10.3389/fnbeh.2015.00341 

Marxen, M., Jacob, M. J., Müller, D. K., Posse, S., Ackley, E., Hellrung, L., … Smolka, M. 

N. (2016). Amygdala regulation following fMRI-neurofeedback without instructed 

strategies. Frontiers in Human Neuroscience, 10(APR2016), 1–14. 

https://doi.org/10.3389/fnhum.2016.00183 

Mathiak, K. A., Koush, Y., Dyck, M., Gaber, T. J., Alawi, E., Zepf, F. D., … Mathiak, K. 

(2010). Social reinforcement can regulate localized brain activity. European Archives of 

Psychiatry and Clinical Neuroscience, 260(SUPPL. 2), 132–136. 

https://doi.org/10.1007/s00406-010-0135-9 

McDonald, A. R., Muraskin, J., Dam, N. T. V., Froehlich, C., Puccio, B., Pellman, J., … 

Craddock, R. C. (2017). The real-time fMRI neurofeedback based stratification of 

Default Network Regulation Neuroimaging data repository. NeuroImage, 146(October 

2016), 157–170. https://doi.org/10.1016/j.neuroimage.2016.10.048 

Megumi, F., Yamashita, A., Kawato, M., & Imamizu, H. (2015). Functional MRI 

neurofeedback training on connectivity between two regions induces long-lasting 

changes in intrinsic functional network. Frontiers in Human Neuroscience, 9(March). 

https://doi.org/10.3389/fnhum.2015.00160 

Morgenroth, E., Saviola, F., Gilleen, J., Allen, B., Lührs, M., W. Eysenck, M., & Allen, P. 

(2020). Using connectivity-based real-time fMRI neurofeedback to modulate attentional 

and resting state networks in people with high trait anxiety. NeuroImage: Clinical, 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.10.21.349118doi: bioRxiv preprint 

https://doi.org/10.3389/fnhum.2016.00183
https://doi.org/10.1101/2020.10.21.349118
http://creativecommons.org/licenses/by/4.0/


25(January), 102191. https://doi.org/10.1016/j.nicl.2020.102191 

Nicholson, A. A., Rabellino, D., Densmore, M., Frewen, P. A., Paret, C., Kluetsch, R., … 

Lanius, R. A. (2017). The neurobiology of emotion regulation in posttraumatic stress 

disorder: Amygdala downregulation via real-time fMRI neurofeedback. Human Brain 

Mapping, 38(1), 541–560. https://doi.org/10.1002/hbm.23402 

Pamplona, G. S. P., Heldner, J., Langner, R., Koush, Y., Michels, L., Ionta, S., … Salmon, C. 

E. G. (2020). Network-based fMRI-neurofeedback training of sustained attention. 

NeuroImage, 221(July), 117194. https://doi.org/10.1016/j.neuroimage.2020.117194 

Papoutsi, M., Magerkurth, J., Josephs, O., Pépés, S. E., Ibitoye, T., Reilmann, R., … Tabrizi, 

S. J. (2020). Activity or connectivity? A randomized controlled feasibility study 

evaluating neurofeedback training in Huntington’s disease. Brain Communications, (1). 

https://doi.org/10.1093/braincomms/fcaa049 

Papoutsi, M., Weiskopf, N., Langbehn, D., Reilmann, R., Rees, G., & Tabrizi, S. J. (2018). 

Stimulating neural plasticity with real-time fMRI neurofeedback in Huntington’s 

disease: A proof of concept study. Human Brain Mapping, 39(3), 1339–1353. 

https://doi.org/10.1002/hbm.23921 

Paret, C., Kluetsch, R., Zaehringer, J., Ruf, M., Demirakca, T., Bohus, M., … Schmahl, C. 

(2016). Alterations of amygdala-prefrontal connectivity with real-time fMRI 

neurofeedback in BPD patients. Social Cognitive and Affective Neuroscience, 11(6), 

952–960. https://doi.org/10.1093/scan/nsw016 

Paret, C., Goldway, N., Zich, C., Keynan, J. N., Hendler, T., Linden, D., & Cohen Kadosh, 

K. (2019). Current progress in real-time functional magnetic resonance-based 

neurofeedback: Methodological challenges and achievements. NeuroImage, 202(June 

2018), 116107. https://doi.org/10.1016/j.neuroimage.2019.116107 

Paret, C., & Hendler, T. (2020). Live from the “regulating brain”: Harnessing the brain to 

change emotion. Emotion (Washington, D.C.), 20(1), 126–131. 

https://doi.org/10.1037/emo0000674 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., … 

Cournapeau, D. (2011). Scikit-learn: Machine Learning in Python. Journal of Mane 

Learning Reserachne Learning Reserach, 12(1), 2825–2830. 

https://doi.org/10.1145/2786984.2786995 

Quevedo, K., Yuan Teoh, J., Engstrom, M., Wedan, R., Santana-Gonzalez, C., Zewde, B., … 

Cohen Kadosh, K. (2020). Amygdala Circuitry During Neurofeedback Training and 

Symptoms’ Change in Adolescents With Varying Depression. Frontiers in Behavioral 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.10.21.349118doi: bioRxiv preprint 

https://doi.org/10.1093/scan/nsw016
https://doi.org/10.1145/2786984.2786995
https://doi.org/10.1101/2020.10.21.349118
http://creativecommons.org/licenses/by/4.0/


Neuroscience, 14(July), 1–16. https://doi.org/10.3389/fnbeh.2020.00110 

Ramot, M., Grossman, S., Friedman, D., & Malach, R. (2016). Covert neurofeedback without 

awareness shapes cortical network spontaneous connectivity. Proceedings of the 

National Academy of Sciences, 113(17), E2413–E2420. 

https://doi.org/10.1073/pnas.1516857113 

Robineau, F., Rieger, S. W., Mermoud, C., Pichon, S., Koush, Y., Van De Ville, D., … 

Scharnowski, F. (2014). Self-regulation of inter-hemispheric visual cortex balance 

through real-time fMRI neurofeedback training. NeuroImage, 100, 1–14. 

https://doi.org/10.1016/j.neuroimage.2014.05.072 

Robineau, Fabien, Saj, A., Neveu, R., Van De Ville, D., Scharnowski, F., & Vuilleumier, P. 

(2019). Using real-time fMRI neurofeedback to restore right occipital cortex activity in 

patients with left visuo-spatial neglect: proof-of-principle and preliminary results. 

Neuropsychological Rehabilitation, 29(3), 339–360. 

https://doi.org/10.1080/09602011.2017.1301262 

Rota, G., Sitaram, R., Veit, R., Erb, M., Weiskopf, N., Dogil, G., & Birbaumer, N. (2009). 

Self-regulation of regional cortical activity using real-time fmri: the right inferior frontal 

gyrus and linguistic processing. Human Brain Mapping, 30(5), 1605–1614. 

https://doi.org/10.1002/hbm.20621 

Scharnowski, F., Hutton, C., Josephs, O., Weiskopf, N., & Rees, G. (2012). Improving Visual 

Perception through Neurofeedback. Journal of Neuroscience, 32(49), 17830–17841. 

https://doi.org/10.1523/JNEUROSCI.6334-11.2012 

Scharnowski, F., Veit, R., Zopf, R., Studer, P., Bock, S., Diedrichsen, J., … Weiskopf, N. 

(2015). Manipulating motor performance and memory through real-time fMRI 

neurofeedback. Biological Psychology, 108, 85–97. 

https://doi.org/10.1016/j.biopsycho.2015.03.009 

Scheinost, D., Stoica, T., Wasylink, S., Gruner, P., Saksa, J., Pittenger, C., & Hampson, M. 

(2014). Resting state functional connectivity predicts neurofeedback response. Frontiers 

in Behavioral Neuroscience, 8(September), 338. 

https://doi.org/10.3389/fnbeh.2014.00338 

Sepulveda, P., Sitaram, R., Rana, M., Montalba, C., Tejos, C., & Ruiz, S. (2016). How 

Feedback , Motor Imagery , and Reward Influence Brain Self-Regulation Using Real-

Time fMRI, 3171(June), 3153–3171. https://doi.org/10.1002/hbm.23228 

Sherwood, M. S., Kane, J. H., Weisend, M. P., & Parker, J. G. (2016). Enhanced control of 

dorsolateral prefrontal cortex neurophysiology with real-time functional magnetic 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.10.21.349118doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.21.349118
http://creativecommons.org/licenses/by/4.0/


resonance imaging (rt-fMRI) neurofeedback training and working memory practice. 

NeuroImage, 124, 214–223. https://doi.org/10.1016/j.neuroimage.2015.08.074 

Shibata, K., Watanabe, T., Sasaki, Y., & Kawato, M. (2011). Perceptual Learning Incepted 

by Decoded fMRI Neurofeedback Without Stimulus Presentation. Science, 334(6061), 

1413–1415. https://doi.org/10.1126/science.1212003.Perceptual 

Sitaram, R., Ros, T., Stoeckel, L. E., Haller, S., Scharnowski, F., Lewis-Peacock, J., … 

Sulzer, J. (2016). Closed-loop brain training: the science of neurofeedback. Nature 

Neuroscience. https://doi.org/10.1038/nrn.2016.164 

Sitaram, R., Veit, R., Stevens, B., Caria, A., Gerloff, C., Birbaumer, N., & Hummel, F. 

(2012). Acquired control of ventral premotor cortex activity by feedback training: An 

exploratory real-time fMRI and TMS study. Neurorehabilitation and Neural Repair, 

26(3), 256–265. https://doi.org/10.1177/1545968311418345 

Skouras, S., & Scharnowski, F. (2019). NeuroImage The effects of psychiatric history and 

age on self-regulation of the default mode network. NeuroImage, 198(June 2018), 150–

159. https://doi.org/10.1016/j.neuroimage.2019.05.008 

Sorger, B., Kamp, T., Weiskopf, N., Peters, J. C., & Goebel, R. (2018). N EUROSCIENCE 

When the Brain Takes ‘ BOLD ’ Steps : Real-Time fMRI Neurofeedback Can Further 

Enhance the Ability to Gradually Self-regulate Regional Brain Activation. 

Neuroscience, 378, 71–88. https://doi.org/10.1016/j.neuroscience.2016.09.026 

Spetter, M. S., Malekshahi, R., Birbaumer, N., Lührs, M., van der Veer, A. H., Scheffler, K., 

… Hallschmid, M. (2017). Volitional regulation of brain responses to food stimuli in 

overweight and obese subjects: A real-time fMRI feedback study. Appetite, 112, 188–

195. https://doi.org/10.1016/j.appet.2017.01.032 

Subramanian, L., Hindle, J. V., Johnston, S., Roberts, M. V., Husain, M., Goebel, R., & 

Linden, D. (2011). Real-Time Functional Magnetic Resonance Imaging Neurofeedback 

for Treatment of Parkinson’s Disease. Journal of Neuroscience, 31(45), 16309–16317. 

https://doi.org/10.1523/JNEUROSCI.3498-11.2011 

Sulzer, J., Sitaram, R., Blefari, M. L., Kollias, S., Birbaumer, N., Stephan, K. E., & Gassert, 

R. (2013). Neurofeedback-mediated self-regulation of the dopaminergic midbrain. 

NeuroImage, 75, 176–184. https://doi.org/10.1016/B978-0-12-384719-5.00424-X 

Thibault, R. T., MacPherson, A., Lifshitz, M., Roth, R. R., & Raz, A. (2018). Neurofeedback 

with fMRI: A critical systematic review. NeuroImage, 172(September 2017), 786–807. 

https://doi.org/10.1016/j.neuroimage.2017.12.071 

Yao, S., Becker, B., Geng, Y., Zhao, Z., Xu, X., Zhao, W., … Kendrick, K. M. (2016). 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.10.21.349118doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.21.349118
http://creativecommons.org/licenses/by/4.0/


Voluntary control of anterior insula and its functional connections is feedback-

independent and increases pain empathy. NeuroImage, 130, 230–240. 

https://doi.org/10.1016/j.neuroimage.2016.02.035 

Yoo, S.-S., Lee, J.-H., O’Leary, H., Panych, L., & Jolesz, F. A. (2008). Neurofeedback fMRI-

mediated learning and consolidation of regional brain activation during motor imagery. 

Int J Imaging Syst Technology, 18(1), 69–78. 

https://doi.org/10.1002/ima.20139.Neurofeedback 

Young, K. D., Siegle, G. J., Zotev, V., Phillips, R., Misaki, M., Yuan, H., … Bodurka, J. 

(2017). Randomized Clinical Trial of Real-Time fMRI Amygdala Neurofeedback for 

Major Depressive Disorder: Effects on Symptoms and Autobiographical Memory 

Recall. American Journal of Psychiatry, (20), appi.ajp.2017.1. 

https://doi.org/10.1176/appi.ajp.2017.16060637 

Young, K. D., Zotev, V., Phillips, R., Misaki, M., Yuan, H., Drevets, W. C., & Bodurka, J. 

(2014). Real-time fMRI neurofeedback training of amygdala activity in patients with 

major depressive disorder. PLoS ONE, 9(2). 

https://doi.org/10.1371/journal.pone.0088785 

Zhang, G., Yao, L., Zhang, H., Long, Z., & Zhao, X. (2013). Improved Working Memory 

Performance through Self-Regulation of Dorsal Lateral Prefrontal Cortex Activation 

Using Real-Time fMRI. PLoS ONE, 8(8), 1–9. 

https://doi.org/10.1371/journal.pone.0073735 

Zhao, X., Zhang, H., Song, S., Ye, Q., Guo, J., & Yao, L. (2013). Causal interaction 

following the alteration of target region activation during motor imagery training using 

real-time fMRI. Frontiers in Human Neuroscience, 7(DEC), 1–8. 

https://doi.org/10.3389/fnhum.2013.00866 

Zhi, L., Zhang, C., Huang, J., Wang, Y., Yan, C., Li, K., … Chan, R. C. K. (2018). 

Improving Motivation Through Real-Time fMRI-Based Self-Regulation of the Nucleus 

Accumbens This. Neuropsychology, 32(6), 764–776. 

https://doi.org/10.15199/48.2015.01.45 

Zich, C., Johnstone, N., Lührs, M., Lisk, S., Haller, S. P., Lipp, A., … Kadosh, K. C. (2020). 

Modulatory effects of dynamic fMRI-based neurofeedback on emotion regulation 

networks in adolescent females. NeuroImage, 220(June), 117053. 

https://doi.org/10.1016/j.neuroimage.2020.117053 

Zilverstand, A., Sorger, B., Sarkheil, P., & Goebel, R. (2015). fMRI neurofeedback facilitates 

anxiety regulation in females with spider phobia. Frontiers in Behavioral Neuroscience, 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.10.21.349118doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.21.349118
http://creativecommons.org/licenses/by/4.0/


9(June), 1–12. https://doi.org/10.3389/fnbeh.2015.00148 

 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.10.21.349118doi: bioRxiv preprint 

https://doi.org/10.3389/fnbeh.2015.00148
https://doi.org/10.1101/2020.10.21.349118
http://creativecommons.org/licenses/by/4.0/

	Abstract
	Introduction
	Material and methods
	Results
	Discussion
	References

