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ABSTRACT Technological advances and decreasing costs have led to the rise of increasingly dense geno-
typing data, making feasible the identification of potential causal markers. Custom genotyping chips, which
combine medium-density genotypes with a custom genotype panel, can capitalize on these candidates to
potentially yield improved accuracy and interpretability in genomic prediction. A particularly promising model
to this end is BayesR, which divides markers into four effect size classes. BayesR has been shown to yield
accurate predictions and promise for quantitative trait loci (QTL) mapping in real data applications, but an
extensive benchmarking in simulated data is currently lacking. Based on a set of real genotypes, we generated
simulated data under a variety of genetic architectures, phenotype heritabilities, and we evaluated the impact
of excluding or including causal markers among the genotypes. We define several statistical criteria for QTL
mapping, including several based on sliding windows to account for linkage disequilibrium. We compare and
contrast these statistics and their ability to accurately prioritize known causal markers. Overall, we confirm the
strong predictive performance for BayesR in moderately to highly heritable traits, particularly for 50k custom
data. In cases of low heritability or weak linkage disequilibrium with the causal marker in 50k genotypes, QTL
mapping is a challenge, regardless of the criterion used. BayesR is a promising approach to simultaneously
obtain accurate predictions and interpretable classifications of SNPs into effect size classes. We illustrated the
performance of BayesR in a variety of simulation scenarios, and compared the advantages and limitations of
each.
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INTRODUCTION1

The primary objective of genomic prediction is to use genomic vari-2

ation, usually single nucleotide polymorphisms (SNPs), to predict3

phenotypes, i.e. an observable trait of an individual. In particular,4

genomic prediction models are widely used as an evaluation tool5
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for genomic selection in animal breeding (1), and for the calcula- 6

tion of polygenic risk scores for human diseases (2). As genotyping 7

costs have declined (3), there has been a corresponding increase in 8

the amount of genotyping data available for analysis. In addition, 9

lower costs and better data storage capacity have allowed for in- 10

creasingly dense genotypes, up to and including whole genome 11

sequences (WGS), which in turn have enabled sequence-level geno- 12

types to be imputed for individuals genotyped using lower density 13

chips(4). However, analyzing these increasingly large genotype 14

data can come at a high computational cost and requires suitable 15

statistical methods. Although the use of higher density genotypes 16

was initially thought to hold promise for improved prediction ac- 17

curacy, their performance was not found to improve that of high 18

density chips in real data, due to the inclusion of a large number of 19
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non-causative SNPs (5). While the exhaustive use of WGS variants1

has not led to meaningful improvements in prediction, they do al-2

low for the direct inclusion of candidate, or even causal, mutations3

(6). For simplicity, we refer to such mutations as quantitative trait4

loci (QTL) throughout. If such QTLs are known a priori or can be5

directly identified through variable selection in the model itself,6

this could potentially lead to the double advantage of improv-7

ing both the accuracy and interpretability of genomic prediction8

models(7; 8). With this in mind, custom chips, which include SNPs9

from a medium-density chip (intended to cover the genome) as10

well as candidates or causal mutations for a set of traits, have11

been developed, offering the cost and computational advantages12

of a reasonably sized chip with the increased predictive ability13

and interpretability provided by the inclusion of potential causal14

mutations.15

Most models used in routine genomic selection are based on16

linear models, notably best linear unbiased prediction (BLUP)17

and genomic BLUP (GBLUP). These models assume that all SNPs18

contribute equally to the genomic variance, with each SNP effect19

following a normal distribution with common variance. Although20

the assumption about common SNP effects allows for great com-21

putational efficiency, it is quite strong and can limit the biological22

interpretability of results. To address this limitation, although23

deep learning models have recently started to appear (9; 10), a24

more frequent alternative is the set of non-linear Bayesian models25

comprising the so-called Bayesian alphabet. These include, among26

others, BayesA (1), BayesB (1), BayesCπ (11), BayesR (12), and27

BayesRC (13). The aim of all of these models is to improve pre-28

dictive accuracy by better estimating SNP effects through more29

flexible prior specifications. For instance, in the earliest model30

introduced, BayesA, all markers are assumed to be drawn from a31

normal distribution whose variance follows an Inv−χ2 distribu-32

tion. Although the assumptions of BayesA are arguably closer to33

reality than BLUP or GBLUP, it is computationally expensive to es-34

timate variances for every SNP in dense genotyping data. Instead,35

a useful alternative is to assume that a (potentially large) portion36

of markers contribute no genetic variance. This is the strategy37

employed by both BayesB and BayesC, which model marker effect38

variances as a zero-inflated distribution by assigning null effects39

with a fixed probability, and assuming the variance of non-null40

SNPs respectively follow a per-SNP or common Inv−χ2 distribu-41

tion. BayesCπ further assumes that the proportion of null SNP42

effects is itself a random variable, and otherwise uses a common43

prior distribution for non-null SNP effects. BayesR provides addi-44

tional flexibility by defining four classes of SNP effect size (null,45

small, medium, large), where SNP effects are modeled using a four-46

component normal mixture model. The related BayesRC model47

further allows for SNPs to be grouped into disjoint categories (e.g.,48

according to prior biological information), for which the BayesR49

model is subsequently fit independently.50

Although these Bayesian genomic prediction models are mainly51

used for phenotype prediction, they also provide valuable per-52

SNP information, including posterior estimates of effect size and53

variance, which could be used for QTL mapping. In contrast to54

genome-wide association study (GWAS) methods, SNP effects55

are estimated simultaneously and make use of variable selection56

within the model itself, rather than relying on univariate hypothe-57

sis tests and corrections for multiple testing. As the quantity and58

quality of prior biological knowledge continues to improve and59

the identification of causal mutations from WGS data (14) becomes60

increasingly feasible, the flexible model definition of BayesR and61

BayesRC thus make them interesting candidates for simultane-62

ously providing good predictability and biologically interpretable 63

QTL mapping results. In this spirit, Moser et al. showed encourag- 64

ing results for the use of BayesR in complex traits for prediction and 65

QTL mapping in real data (15). However, a comprehensive sim- 66

ulation study investigating the interpretability and performance 67

of BayesR in a wide variety of settings is currently lacking in the 68

literature. In addition, to date there has been little discussion of 69

the various criteria that can potentially be used to map QTLs using 70

the BayesR model output. 71

To address this gap, our goal in this work is to identify the 72

coherence between the BayesR model specification and known 73

QTL effects in simulated data under a variety of conditions. The 74

BayesR approach is of particular interest here, as it has been shown 75

in the literature to improve prediction accuracy (16), but its ability 76

to correctly assign QTLs to the appropriate effect size categories 77

has not yet been extensively evaluated in simulations. We focus on 78

the case where a prior categorization of markers (i.e., the BayesRC 79

approach) is not available. Using simulated data, we evaluate the 80

robustness of BayesR under a wide variety of genetic architectures, 81

phenotype heritabilities, and polygenic variances, and we illustrate 82

the conditions under which BayesR successfully identifies known 83

QTLs while maintaining high accuracy for phenotypic prediction. 84

Finally, we describe and compare several statistical criteria that 85

can be used to perform QTL mapping using BayesR output. Based 86

on the results of our simulation study, we discuss the optimal 87

framework for an accurate and interpretable analysis using BayesR, 88

as well as its limitations. 89

MATERIALS AND METHODS 90

Data simulation based on real genotypes 91

To maintain a realistic linkage disequilibrium (LD) structure among 92

SNPs, we generated simulated data based on a set of genotypes 93

assayed using Illumina Bovine SNP50 BeadChip arrays from n = 94

2605 Montbéliarde bulls. We divided individuals into learning 95

and validation sets (i.e., the “holdout method"), with the 80% 96

oldest bulls (nlearning = 2083) in the former and the 20% youngest 97

(nvalidation = 522) in the latter to reflect the strategy typically used 98

in routine genomic selection. We excluded SNPs with a minor 99

allele frequency (MAF) less than 0.01, leaving a total of p =46,178 100

SNPs. 101

To simulate phenotypes y for the n = 2605 bulls, we made use
of a standard linear model:

y = µ1n + Xβ + e, (1)

e ∼ N(0, Inσ2
e )

where µ denotes the trait mean (including fixed effects), β the vec- 102

tor of effects for the p SNPs, X the centered and scaled genotype 103

design matrix, and e the residuals, assumed to follow a normal 104

distribution with variance σ2
e . Parameters for this linear model 105

were set as follows. For each simulated dataset we sampled from 106

the available SNPs a set of nQTL QTLs and a set of npoly polygenic 107

SNPs, as well as their corresponding genetic variances for each 108

selected marker. To reduce the impact of extreme MAFs on ge- 109

nomic prediction (17) and QTL detection, we focused on frequent 110

QTLs by drawing the nQTL and npoly SNPs from those with a MAF 111

≥ 0.15. In all simulations, we selected a total of nQTL = 5 large 112

QTLs, varying the corresponding proportion k of total genetic ad- 113

ditive variance σ2
g as described below. The phenotypic variance 114

and mean were respectively set to σ2
y = 100 and µ = 0, and SNP 115

heritability h2 =
σ2

g

σ2
y

was varied across simulation settings. 116
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Number of QTLs 5 5 5 5 5 5 5 5 5 5 5 5 5

Number of polygenic SNPs 9637 9550 9500 9450 9350 9250 9100 9000 8750 8500 8250 8000 7500

Per-QTL % of σ2
g 0.725 0.9 0.10 0.11 0.13 0.15 0.18 2 2.5 3 3.5 4 5

Per-polygenic SNP % of σ2
g 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

n Table 1 Simulation settings for each of the 13 QTL effect-size scenarios considered for each given level of heritability, h2 =
{0.1, 0.3, 0.5, 0.8}. The number of simulated QTLs, number of polygenic SNPs, percentage of genetic variance attributed to each QTL,
and percentage of genetic variance attributed to each polygenic SNP are provided. Summing the percentage of genetic variance ex-
plained by the total number of QTLs and polygenic SNPs yields 100%.

We constructed 13 scenarios with different proportions k of ge-1

netic variance attributed to the QTLs, with 10 independent datasets2

created for each (Table 1). For the SNPs randomly selected as QTLs3

and polygenics SNPs, the corresponding effect βi for selected SNP4

i was set as follows:5

βi =


1
2 ui

√
10−4σ2

g

2MAFi(1−MAFi)
if SNPi is polygenic

1
2 ui

√
kσ2

g

2MAFi(1−MAFi)
if SNPi is a QTL

,

where ui was drawn from a discrete Uniform{−1, 1} distribution6

to allow non-null effects to take on positive or negative values.7

For unselected SNPs (i.e., null SNPs), βi was set to 0. We varied8

the proportion of genetic variance attributed to each QTL between9

k =0.725% and 5%, with a greater density of values evaluated10

between 0.725% and 2%; we focused in particular on this range as11

it corresponds to more plausible QTL sizes and facilitated a study12

of the sensitivity of BayesR to small changes. For each value of13

k, the same nQTL = 5 QTLs were used across scenarios, but the14

number (and thus the subset) of polygenic SNPs used varied (see15

Table 1). As the same 5 QTLs were simulated across scenarios16

for each of the 10 independent datasets, a total of 50 QTLs was17

considered. Finally, each scenario was run for four different levels18

of heritability h2 = {0.1, 0.3, 0.5, 0.8}, and we evaluated the perfor-19

mance of BayesR for two alternatives: (1) using genotype data that20

excludes the 5 known QTLs, resembling a classic 50k genotyping21

array (“50k data"); and (2) using genotype data that includes the 522

known QTLs, which mimics a custom 50k genotyping array (“50k23

custom data"). In total, this corresponds to 13× 10× 4× 2 = 104024

simulated datasets.25

Statistical Analysis26

BayesR genomic prediction model The models of the Bayesian27

alphabet are all based on the linear model in Equation (1). BayesR28

assumes that SNP effects βi follow a four-component normal mix-29

ture, making it well-aligned to our simulations (for which SNPs30

fall into null, weak, and strong classes). The effect of SNP i is31

assumed to be distributed as32

βi ∼ π1(βi = 0)+π2N(0, 0.0001σ2
g)+π3N(0, 0.001σ2

g)+π4N(0, 0.01σ2
g),

(2)
where as before, σ2

g represents the total additive genetic vari-33

ance (i.e., the cumulative variance of all SNP effects) and π =34

(π1, π2, π3, π4) the mixing proportions such that ∑4
i=1 πi = 1. The35

mixing proportions π are assumed to follow a Dirichlet prior,36

π ∼ Dirichlet(α + γ), with α representing a vector of pseudo-37

counts and γ the cardinality of each component. In this work, we38

used a flat Dirchlet distribution, with α = (1, 1, 1, 1), for the prior.39

As suggested by Moser et al. (15), σ2
g is assumed to be a random40

variable following an Inv−χ2 distribution.41

As exact computation of the posterior distribution is intractable 42

for this model, Bayesian inference is performed by obtaining draws 43

of the posterior using a Gibbs sampler; full details of the algorithm 44

can be found in (15) and (18). In practice, at each iteration of 45

the algorithm, SNPs are assigned to one of the four categories, 46

and their effect is subsequently sampled from the full conditional 47

posterior distribution for the corresponding mixture component. 48

Model parameters are then estimated using the posterior mean 49

across iterations, after excluding the burn-in phase and thinning 50

draws. Here, the Gibbs sampler was run for a total of 50,000 51

iterations, including 20,000 as a burn-in and a thinning rate of 10. 52

In this work, we used the open source Fortran 90 code de- 53

scribed in (15) and available at https://github.com/syntheke/bayesR. 54

We made a few modifications to this code, notably adding the 55

posterior variance of estimated SNP effects at each iteration to 56

the output; our modified BayesR code may be found at https: 57

//github.com/fmollandin/BayesR_Simulations. 58

Prediction accuracy for BayesR was quantified using the Pear- 59

son correlation between the true phenotypic values (y) and those 60

estimated using BayesR (ŷ) in the validation set. 61

Statistical criteria for QTL mapping In this section, we present sev-
eral potential criteria based on BayesR output that can be used for
the purpose of QTL mapping. We have sub-divided these criteria
into those defined for (1) each SNP individually; (2) neighbor-
hoods, or sliding windows, around each marker; and (3) those
used for ranking potential QTLs.
Mapping criteria for individual SNPs
BayesR is unique in the Bayesian alphabet, in that it assigns SNPs
to one of four effect size classes at each iteration by weighting
according to their likelihood of belonging to each. We thus have
access to the posterior frequency with which SNPs were assigned
to each class, which can be interpreted as an inclusion probability.
We denote the posterior inclusion probability (PIP) of SNP i belong-

ing to class j as PIP(j)
i , such that ∑4

j=1 PIP(j)
i = 1 ∀i ∈ {1, ..., p}. In

the following we interchangeably refer to the null, small, medium,
and large classes as j = 1, 2, 3, and 4, respectively. The PIP pro-
vides a straightforward method for classifying SNPs as having a
null, small, medium, or large effect. We define the maximum a
posteriori (MAP) rule for SNP i as

MAPi = arg max
j

PIP(j)
i , (3)

implying that SNPs are assigned to their most frequently assigned
class. Since SNPs may move frequently from one class to another,
the MAP in Equation (3) may not detect SNPs that are predomi-
nantly included in the model but move between the three non-null
classes. Merging the non-null classes addresses this problem, and

3
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leads to a less stringent criterion, the non-null MAP:

MAPnon−null
i =


1 if PIP(1)

i < ∑
j∈{2,3,4}

PIP(j)
i

0 else
(4)

Based on this criterion, SNP i is thus included in the model if1

1− PIP(1)
i > 0.5. In this way, all SNPs preferentially assigned to2

the null class take on a value of MAPnon−null
i = 0, while those3

assigned to any non-null class (small, medium, or large) take on a4

value of MAPnon−null
i = 1.5

The BayesR model definition explicitly allows for some SNPs
to have larger estimated variances than methods such as GBLUP,
which tends to shrink the variance of causal marks due to the
assumption of a common variance (18). As such, BayesR has the
potential for more closely approximating the true variance of QTLs.
The posterior variance of SNP i corresponds to

Vi = β2
i XT

.i X.i, (5)

where X.i represents the ith column of the centered and scaled
genotype design matrix. As the SNP effects are computed on
the scaled and centered genotype design matrix X, the per-SNP
posterior variance can be estimated using

V̂i = β̂2
i XT

.i X.i = β̂2
i ,

where β̂2
i corresponds to the posterior mean of β2

i , β̂2
i =6

1
N ∑N

`=1 β
(`)2
i , where n is the number of iterations and β

(`)2
i the7

value of β2
i at iteration `. We indirectly estimated this parameter8

as the sum of the posterior variance and squared posterior mean9

of each per-SNP effect. We can then estimate a posteriori the pro-10

portion of genetic variance of a SNP i as V̂i/ ∑n
j=1 V̂j.11

Neighborhood-based mapping criteria12

LD represents a preferential association between two alleles and13

can have a large impact on how estimated variances are distributed14

among SNPs in an LD block. This in turn affects the evaluation15

of the variance in the neighborhood of a causal mutation, as well16

as the ability to perform QTL mapping using the aforementioned17

criteria, for several reasons. First, SNPs in close proximity to a18

QTL are likely to be in high LD with it, and thus may erroneously19

have their own effects overestimated to the detriment of the QTL’s.20

The per-SNP criteria defined above risk incorrectly identifying a21

QTL as null in such cases. An alternative approach is to define a22

neighborhood-based criteria around each marker, thus mapping23

QTLs when one or more or its close neighbors is detected. Here,24

we define each neighborhood as a sliding window of 15 SNPs25

(covering approximately 1Mb) centered around each marker.26

Using these neighborhoods, we define the vector of PIPs for a
neighborhood centered on SNP i as follows:

PIPi = (PIP(1)
i , . . . , PIP(4)

i ) = PIPi′ , with (6)

i′ = arg max
`∈{i−7,...,i,...,i+7}

1− PIP(1)
` ,

with the corresponding neighborhood inclusion probability equal
to

IPi = (1− PIP(1)
i ). (7)

The criteria proposed in Equations (3)-(5) can thus be adapted to
accommodate neighborhoods as follows:

MAPi = MAPi′ and MAPnon−null
i = MAPnon−null

i′ , with (8)

i′ = arg max
`∈{i−7,...,i,...,i+7}

IP`,

where SNP indices are assumed to be ordered according to their
physical location. Similarly, the estimated variance of a neighbor-
hood is fixed to the maximal value of its individual markers:

Vi = max
`∈{i−7,...,i,...,i+7}

V`. (9)

LD structure raises an additional related problem – in some
cases, the BayesR algorithm may alternate assigning different SNPs
in an LD block to the large effect class, which has the consequence
of diluting variance over a region rather than for a single marker.
The window-based criteria in Equations (8)-(9) successfully flag
regions where a single SNP sufficiently stands out, but not neces-
sarily those including several diluted effects. In addition, it can
be difficult to accurately assess the variance over a region, due
to the covariance among SNPs. To provide a neighborhood-level
summary of SNP assignments to the four effect classes, we propose
the following sliding-window statistic for SNP i, that we will call
Weighted Cumulative Inclusion Probability (CIPi):

CIPi =
i+7

∑
`=i−7

(0× PIP(1)
` + 10−4PIP(2)

` + 10−3PIP(3)
` + 10−2PIP(4)

` ).

(10)

Finally, we used the Lewontin D′ statistic (19) to quantify the
LD between SNPs. Briefly, the LD coefficient DAB between SNPs
A and B is defined as DAB = pAB − pA pB, where pA, pB and pAB
respectively denote the frequency of allele A in the first locus, allele
B in the second, and the frequency of simultaneously having both.
D′ normalizes D so that D′ = D

Dmax
, with

Dmax =

 max{−pA pB,−(1− pA)(1− pB)}, if D < 0

min{pA(1− pB), (1− pA)pB}, otherwise.

We will use the maximum value of the LD of a QTL with its neigh- 27

boring SNPs as a reference for the link disequilibrium in the region. 28

Criteria ranking for QTL mapping 29

For the quantitative criteria Vi and CIPi defined in Equations (9), 30

(5) and (10), we propose the use of rankings for SNP prioritization 31

rather than fixing value thresholds. For QTL mapping based the 32

estimated posterior variance Vi, we focus on the ten SNPs with 33

the highest Vi. As CIPi represents a sum over 15 SNPs in the 34

neighborhood of SNP i, SNPs adjacent to those that are frequently 35

categorized as non-null are likely to share large values for this 36

criterion. As such, to address this redundancy, we focus on the 150 37

SNPs with the highest CIPi value. 38

Data Availability 39

The Montbéliarde genotyping data on which simulations are based 40

originate from a private French genomic selection program and 41

were funded by the users (breeding companies and breeders). They 42

are thus proprietary data that cannot be publicly disseminated to 43

the scientific community. All code used to simulate and analyze 44

the data, as well as the scripts to implement BayesR are available 45

on GitHub (https://github.com/fmollandin/BayesR_Simulations). 46
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Prior large
class vari-
ance

# null # small # medium # large Vnull Vsmall Vmedium Vlarge

0.5% 40783.25 5054.51 300.44 39.80 0 25.55 14.89 9.60

1% (default) 40568.94 5256.72 336.12 16.23 0 26.65 6.91 10.15

2% 40501.21 5307.33 361.08 8.38 0 26.81 17.97 5.45

n Table 2 Average (across all simulation scenarios and independent datasets) of the posterior mean cardinality of each BayesR SNP
effect class (null, small, medium, large) for three parameterizations of the prior large effect class variance. For a given dataset, each
class size (#) is computed as the posterior mean of the number of SNPs assigned to each class across iterations, and Vj is the posterior
estimated cumulative variance of each class j.

RESULTS AND DISCUSSION1

Results2

In the following, we first investigate the sensitivity of BayesR to pa-3

rameter specification. We next evaluate the model’s performance4

for phenotype prediction and QTL mapping, based on the statisti-5

cal criteria defined in the previous section, using simulated data6

that include a set of nQTL = 5 QTLs, as well as polygenic SNPs7

and null SNPs with no effect on the phenotype.8

Sensitivity of BayesR parameter specification Although the pro-9

portion of additive genetic variance assigned to the small, medium,10

and large effect classes is typically set to 0.01%, 0.1%, and 1% re-11

spectively (see Equation (2) and (12)), these prior parameters can12

be varied by the user. To evaluate the impact on downstream13

results, we varied the latter between 0.5%, 1%, and 2% for all sce-14

narios with h2 = 0.5, leaving those of the small and medium effect15

classes at their default values. Modifying the proportion of genetic16

variance of the large effect class did not appear to have a strong17

impact on the validation correlation; netherless we have observed18

differences in correlation among the three prior values that can19

reach 2.6% and 1% for the 50k and 50k custom data respectively.20

However, we do note that the posterior mean of the number of21

SNPs assigned in each class and its associated posterior estimated22

variance appear to be somewhat affected by this parameterization23

(Table 2). To assess the impact of the prior specification on per-SNP24

effect estimates, we calculated the Pearson correlation between the25

estimated posterior means β̂i across SNPs, simulated scenarios and26

datasets. Among the three prior specifications, the correlation of27

estimated SNP effects was between 97.4% and 98.6% for all SNPs.28

Based on these results, we consider that the prior specifica-29

tion appears to have little practical impact on the performance30

of BayesR, whether for its predictive performance or for per-SNP31

effect estimates. For the remainder, we therefore use the default32

prior specification for proportion of genetic variance in each effect33

class.34

Predictive power of BayesR in varied simulation settings We next35

sought to investigate the predictive power of BayesR across simu-36

lation scenarios, varying the contribution of QTLs to the additive37

genetic variance (which we refer to as scenarios below), heritability,38

and use of 50k or 50k custom genotype data.39

The mean validation correlation (over the ten independent40

datasets simulated for each) for each simulation scenario illus-41

trates the expected drop in prediction quality for decreasing her-42

itabilities, whether 50k or 50k custom data are used (1). For the43

former, the mean (± sd) validation correlation across scenarios is44

0.125 (±0.048), 0.301 (±0.057), 0.447 (±0.058) and 0.650 (±0.049)45

for h2 = {0.1, 0.3, 0.5, 0.8}. For the latter, the inclusion of the true46
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Figure 1 BayesR predictive performance across simulation set-
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assigned to each QTL), points represent mean validation corre-
lations across 10 independent datasets. Heritability values are
represented by dark to light blue (h2 = 0.8 to 0.1), and solid
and dotted lines represent results for the 50k and 50k custom
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Figure 2 Difference in BayesR predictive performance for the
50k versus 50k custom genotypes across simulation settings.
Each panel from top to bottom represents a given heritability
(h2 = 0.1 to 0.8), and boxplots represent the distribution of differ-
ences in validation correlation between the 50k and 50k custom
datasets for each independent dataset (i.e., for which the same 5
QTLs are simulated). The red dotted line indicates a baseline of
0.

QTLs among the genotypes unsurprisingly leads to higher valida-1

tion correlations, with mean (± sd) values across scenarios equal2

to 0.128 (±0.049), 0.312 (±0.058), 0.466 (±0.059) and 0.680 (±0.046)3

for h2 = {0.1, 0.3, 0.5, 0.8}.4

Although the trends of the mean validation correlation are5

non-linear as the QTL effects take on an increasing percentage of6

genetic variance for both types of data, we do remark an increasing7

disparity in performance between the 50k and 50k custom data,8

particularly as the heritability itself increases (2). In particular, as9

expected the potential gain in including the true causal mutations10

among genotypes (as is the case of the 50k custom data) appears to11

be particularly strong for moderate to large heritabilities and QTL12

effects. For h2=0.01, the average difference in validation correlation13

was 0.003 (±0.009), and in some cases the use of the 50k custom14

data actually corresponded to a slightly worse prediction. Similar15

results are observed at this level of heritability regardless of the16

simulated effect size of the QTLs. However, for h2 = {0.3, 0.5, 0.8},17

50k custom data led to a nearly systematic gain in performance: the18

average increase in validation correlation was 0.011 (±0.014), 0.01919

(±0.020) and 0.031 (±0.030) across QTL effect size scenarios, and20

attained maximum values of 0.076, 0.112, and 0.160 respectively.21

For a given heritability, Figure 2 also shows marked improvements22

in prediction when including QTLs simulated with large shares of23

additive genetic variance.24

QTL mapping using BayesR A natural first tool to investigate for25

QTL mapping is the neighborhood PIP defined in Equation (6). We26

focus on the behavior of the neighborhood PIPs for the true QTLs27

across scenarios (3), averaging over the 50 QTLs available for each28

(5 QTLs × 10 independent datasets); note that as this is a window-29

based measure, this measure can be computed for the true QTLs30
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Figure 3 Neighborhood posterior inclusion probabilities across
simulation settings. Panels represent combinations of heritabil-
ity (columns; h2 = 0.8 to 0.1) and type of data used (rows; 50k or
50k custom). Bars represent average (across 5 QTLs × 10 inde-
pendent datasets) neighborhood PIP values for the four BayesR
effect size classes: null (grey), small (blue), medium (yellow),
and large (red).

whether the 50k or 50k custom data are used. As shown in 3, the 31

allotment of true QTL neighborhoods to effect classes varies widely 32

across heritabilities, proportion of genetic variance for each QTL, 33

and type of data used. Globally, assigning QTL neighborhoods to 34

non-null effect classes, particularly the large effect class, is more 35

frequent for larger heritabilities and simulated QTL effect sizes, 36

as well as for 50k custom compared to 50k data. However, this 37

difference disappears for small heritabilities; when h2 = 0.1, the 38

average (± sd) neighborhood PIP for the null class across scenarios 39

is 0.91 (±0.009) and 0.90 (±0.013) for the 50k and 50k custom data, 40

respectively. Across scenarios, we observe a similar usage of the 41

small effect class, with an average corresponding neighborhood 42

PIP of 0.08 (±0.007) regardless of the genotyping data used. When 43

h2 = {0.3, 0.5, 0.8}, as the simulated share of genetic variances 44

for QTLs increases for both the 50k and 50k custom data, the null 45

neighborhood PIP decreases and the large-effect neighborhood 46

PIP increases. Across all simulated datasets and scenarios, the 47

average (± sd) small- and medium-effect neighborhood PIPs are 48

0.117 (±0.053) and 0.058 (±0.040) respectively, illustrating that 49

these two classes appear to be less often filled compared to the null 50

and large classes (although all four classes do appear to be used 51

outside of the lowest heritability setting). 52

The neighborhood PIP results provide a preview of how QTLs 53

are grouped into non-null effect classes according to the neigh- 54

borhood MAP rule (Equation (8); 4). In all simulation settings, 55

no QTL neighborhoods were assigned to the small effect class 56

using this criterion. When h2 = 0.1, without surprise, all QTLs 57

were classified as null. For h2 = 0.5, a very small number of QTL 58

neighborhoods were assigned to the medium effect class for the 59

50k data; increasing to h2 = 0.8 led to a larger number moving 60

to this class for both the 50k and 50k custom data. When not as- 61

signed to the null class, it was much more common to attribute 62

QTL neighborhoods to the large effect class; the number of cor- 63

rectly identified QTL neighborhoods increased with the simulated 64

effect size and/or heritability, as well as when the causal markers 65

were included among the genotypes; what’s more, these gains tend 66
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Figure 4 Neighborhood MAP rule for QTL mapping across
simulation settings. Number of true QTL windows (out of 5
QTLs × 10 independent datasets simulated for each scenario,
corresponding to a total of 50) correctly assigned to the medium
(yellow) and large (red) effect size class using the neighborhood
MAP rule. Panels represent data type (columns; 50k and 50k
custom) and heritability (rows; h2 = 0.8 to 0.1). The small effect
class is not represented because it was empty across all simula-
tion configurations.

to accumulate when taken together. Correctly detecting at least1

one QTL window with the MAP rule required the proportion of2

genetic variance simulated for each QTL be k ≥ 3% for h2 = 0.33

using the 50k data, increasing to up to 6 QTL windows for larger4

simulated effects. A larger heritability of h2 = 0.5 for the same5

data required only k ≥ 0.9% to correctly identify at least one QTL6

window, which increases to 22 for k = 5%. However, including7

the causal markers in the genotype data enabled detection of QTL8

windows at k ≥ 1.3% for h2 = 0.3, with up to 30 correctly detected9

at k = 5%. In the most favorable scenario, with h2 = 0.8 and 50k10

custom data, QTL windows are detected for all values k, and they11

are exhaustively assigned to the large effect class for k = 5%.12

Given these results, it is not surprising that the neighborhood13

MAPnon−null in Equation (8) will tend to detect more QTL win-14

dows as being non-null. However, it is also useful to consider15

the behavior of this criterion while considering the LD blocks spe-16

cific to each simulated QTL. In 5, we visualize the neighborhood17

inclusion probability IPi (defined in Equation (7)) for each of the18

50 simulated QTL windows across scenarios for h2 = 0.5, illus-19

trating the proportion that are correctly included as non-null in20

the model (i.e., when the neighborhood inclusion probability >21

0.5). The MAPnon−null appears to require a minimum LD of 55%22

to correctly recover QTL windows using the 50k data. Below this23

threshold, a large portion of QTL windows are not detected. Above24

this threshold, QTL window detection appears to become feasible25

once the simulated per-QTL percentage of genetic variance attains26

about k = 2%. In the 50k custom data, QTL window detection27

does not however depend on the amount of LD, although we do28

note lower inclusion probabilities for QTLs in very high LD with29

their neighbors as compared to the 50k data. Similar to the 50k30

data, there is an effect size threshold at about k = 1.8% at which31

QTL windows are more frequently detected.32

Because the same five QTLs are simulated in each independent33
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Figure 5 QTL window mapping using the neighborhood inclu-
sion probability across different effect sizes and LD strengths
for h2 = 0.5. Neighborhood inclusion probabilities 1-PIP(1)

i for
each of the 50 simulated QTLs (heatmap rows) for the 50k (left)
and 50k custom (right) data across scenarios (heatmap columns).
QTLs are sorted in descending order according to their LD, as
measured by D′ (left annotation, with deeper reds representing
larger values). QTL windows that are represented by white to
red cells are correctly detected using the neighborhood non-null
MAP.

dataset across effect size scenarios, Figure 5 also allows for their 34

specific detection to be followed across configurations. Thus, it can 35

be seen that some QTLs windows are not detected in any of the 36

scenarios, while others are more easily detected, even for lower 37

shares of the genetic variance. That said, there are occasionally 38

discontinuities in detection observed for increasing shares of the 39

variance (i.e., a QTL window correctly identified for k = 0.02 but 40

not 0.025). With the exception of h2 = 0.1, which had very weak 41

detection in all scenarios and datasets, we found similar conclu- 42

sions for h2 = 0.3 and 0.8, with respectively slightly smaller and 43

larger overall inclusion probabilities than those shown in Figure 5. 44

Beyond the assignment of SNPs to effect classes using the neigh- 45

borhood PIPs (and corresponding MAP rules), BayesR also pro- 46

vides posterior estimates of variability at several levels, including 47

the additive genetic variance σ̂g, the cumulative variance for each 48

of the three non-null effect classes, and the variance of each SNP. 49

Before discussing the latter (arguably the most pertinent for QTL 50

mapping), we verify the estimation quality of the additive genetic 51

variance. In the 50k genotype data, on average (± sd) across sce- 52

narios, σ̂g was 9.06 (±3.32), 30.85 (±3.93), 50.12 (±4.30) and 77.36 53

(±4.61) for h2 = {0.1, 0.3, 0.5, 0.8} respectively; the correspond- 54

ing true value of σg for each were 10, 30, 50 and 80. In the case 55

of the 50k custom data, this same parameter was estimated to 56

be 9.11 (±3.27), 31.01 (±3.97), 50.27 (±4.32) and 77.54 (± 4.49), 57

respectively. 58

Given that the total additive genetic variance appears to be 59

well-estimated for both types of genotype type, we turn our at- 60

tention to the posterior variance V̂i/ ∑j V̂j of each neighborhood 61

as defined in Equation (9). We focus in particular on the case 62

where h2 = 0.5 and proportions of genetic variance per QTL 63
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Figure 6 Genome-wide posterior estimate of the proportion of genetic variance per SNP for a single dataset with h2 = 0.5. Posterior
estimates of the per-SNP proportion of genetic variance across all p = 46, 178 SNPs for one of the simulated independent datasets.
Panels represent a given simulation setting for percentage of genetic variance per QTL (columns; k = {1%, 2.5%, 5%}) and data type
(rows; 50k versus 50k custom). Points represent individual SNPs, and are colored according to their true effect class (null, polygenic, in
the neighborhood of a true QTL, and true QTL). The same five QTLs appear in each panel; true QTLs are only present in the 50k custom
data.

equal to k = {1%, 2.5%, 5%} (6); similar trends were observed1

for h2 = {0.3, 0.8}. We note that the estimated proportion of ge-2

netic variance per SNP window are largely shrunk towards zero,3

clearly distinguishing those included in the model. In the 50k4

data, certain true QTL windows are clearly prioritized and easily5

identifiable. Of the 5 simulated QTLs, we observe one that can6

be visually identified for k = 1%, and three for k = {2.5%, 5%};7

more moderated peaks are observed for the remaining QTLs. In8

addition, the estimated posterior SNP window variance is about9

3%, regardless of the share of variance for the simulated QTLs.10

When k = {1%, 2.5%}, the prioritized QTL windows appear to11

have estimated variances close to the true simulated values. These12

estimates further improve when the 50k custom data are used, and13

a larger number of QTLs are clearly prioritized: we note that 2,14

4 and 5 QTLs have visibly distinct peaks for k = {1%, 2.5%, 5%},15

respectively.16

As a final criterion, we investigate the weighted cumulative17

inclusion probability statistic CIPi defined in Equation (10) as a18

way to prioritize neighborhoods where the assignment of SNPs19

to non-null classes is somewhat diluted. This statistic tends to up-20

weight regions as SNPs in the neighborhood are assigned to non-21

null classes (potentially in the place of the primary QTL, which may22

be in tight LD with its neighbors). We expect QTL windows already23

detected by the neighborhood MAP to similarly have large CIPi24

values; however, it may facilitate the detection of those for which25

a cumulative integration of non-null SNPs across the window26

provides additional information.27

To evaluate this point, we compared the QTL mapping perfor-28

mance of BayesR using the following three criteria: the neigh-29

borhood MAPnon−null
i , and the rankings of the neighborhood30

Vi (top ten) and neighborhood CIPi (top 150). We chose to use31

MAPnon−null
i here rather than MAPi as it is less stringent. Across32

simulation scenarios and heritabilities, all QTL windows correctly33

detected by the non-null neighborhood MAP were also identified 34

by the other two criteria (7). Similarly, all QTL windows correctly 35

detected by the posterior neighborhood variance Vi ranking were 36

all also flagged by the CIPi ranking. The sliding window statistic 37

thus appears to provide the greatest detection sensitivity, while 38

the MAP criterion is the most conservative. 39

For all three criteria, the number of detected QTLs increases 40

with the simulated effect size and heritability, as well as with 41

their inclusion among the genotypes (50k custom data), with the 42

exception of the lowest considered heritability, h2 = 0.1. In this 43

case, no QTL windows are detected with the MAPnon−null, and the 44

number of QTLs identified does not greatly increase for larger QTL 45

effect sizes. Using the CIPi rankings, about half of the true QTL 46

windows can be recovered using the 50k data when h2 = 0.8 in the 47

50k chip, and similar results are possible with the 50k custom data 48

for h2 = 0.5. When the true QTLs are excluded from the genotypes, 49

at most 46 of the 50 true QTL windows can be identified with CIPi, 50

even in ideal circumstances (h2 = 0.8 and k = 4%). However, using 51

the 50k custom data that include these QTLs allows for universal 52

detection when h2 = 0.5 and k = {3%, 4%, 5%}, or h2 = 0.8 for 53

k ≥ 2.5%. 54

Discussion 55

In this work, we evaluated the performance of the BayesR Bayesian 56

genomic prediction model for prediction quality and QTL map- 57

ping performance on simulated data under a variety of scenarios, 58

including varying QTL effect sizes, heritabilities, and the use of 59

50k versus 50k custom genotype data. Simulated phenotypes were 60

generated using SNPs from a real set of genotype data in cattle 61

that were divided into three categories (null, polygenic SNPs, and 62

QTLs), with variable corresponding shares of the additive genetic 63

variance. In our study, polygenic SNPs were simulated to have the 64

same share of genetic additive variance as the default BayesR small 65
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Figure 7 QTL window mapping using three different criteria across simulation settings. Number of true QTL windows (out of 5
QTLs × 10 independent datasets simulated for each scenario, corresponding to a total of 50) corrected identified using the CIPi ranking
(top 150), Vi (top 10), and MAPnon−null

i neighborhood criteria. Panels represent data type (rows; 50k and 50k custom) and heritability
(columns; h2 = 0.1 to 0.8).

effect class, i.e. 10−4 × σ2
g . QTLs were assigned variances ranging1

from 7.25.10−3 × σ2
g to 5.10−2 × σ2

g , constituting an interval that2

includes the default prior variance of the BayesR large effect class,3

i.e. 10−2 × σ2
g . These scenarios were simulated at different lev-4

els of heritability h2 = {0.1, 0.3, 0.5, 0.8}, and we considered both5

genotype data that excluded (50k data) or included (50k custom6

data) the true simulated QTLs. As the BayesR model definition7

includes four different effect size classes (null, small, medium, and8

large), it is of particular interest to evaluate how well the model9

itself adapts to the underlying genomic architecture of the data.10

The specific parameterization of BayesR (e.g., number and mag-11

nitude of non-null effect classes) can be adapted for different appli-12

cations. In this work, we investigated the sensitivity of BayesR re-13

sults based on the magnitude of the large effect class, and we found14

that the performance of BayesR (predictive power, estimations of15

per-SNP effects) was relatively robust. This suggests a limited ben-16

efit to modifying the priors based on prior biological knowledge.17

A more promising approach to integrate such prior knowledge is18

the related BayesRC model (13). In the BayesRC approach, SNPs19

are divided by the user into two or more non-overlapping subsets,20

each of which represents a biologically relevant grouping with21

a potentially different proportion of QTLs. For each subset, the22

four BayesR SNP effect classes are used, with proportions modeled23

using an independent Dirichlet prior (i.e., varying among subsets).24

As this flexibility can help prioritize informative SNP subsets that25

contain a larger proportion of QTLs, it would be of great interest to26

evaluate the impact of the choice of SNP subsets on QTL mapping27

with BayesRC, using the criteria we investigated here.28

With the exception of very low heritability (h2 = 0.1), valida-29

tion correlation unsurprisingly increases when QTLs are included30

among the genotypes (i.e., the 50k custom data); this increase is31

particularly marked for highly heritable phenotypes as well as for 32

QTLs with large effects. We note that the predictive power of the 33

BayesR model varied both across simulated scenarios, as well as 34

within a given scenario, suggesting that the specific position of 35

simulated QTLs and polygenic SNPs appears to have an influence 36

on the behavior of BayesR. 37

We presented several statistics for QTL mapping and interpreta- 38

tion using BayesR results, but we note that accurately assessing and 39

quantifying the importance of a particular genomic region remains 40

a challenge. One major obstacle is the presence of LD between 41

SNPs. On one extreme, low LD among neighboring SNPs can 42

impede the detection of regions if causal mutations are not directly 43

included among genotypes, while on the other, strong LD blocks 44

can dilute the signal among adjacent SNPs, leading to alternating 45

assignments to non-zero effect classes (and subsequently lower 46

estimated PIPs and variances). While the MAPnon−null
i appears to 47

be overly conservative for the detection of QTL neighborhoods, 48

the Vi has the advantage of facilitating an estimation of the pro- 49

portion of variability corresponding to each QTL neighborhood, 50

given the overall estimated genetic additive variability. On the 51

other hand, the CIPi statistic better takes LD into account by incor- 52

porating the cumulative importance of an entire region, perhaps 53

explaining why it can better identify QTL neighborhoods than the 54

other criteria considered, even under non-optimal conditions (e.g. 55

h2 = 0.1). 56

There are several limits to our current study that should be 57

taken into consideration. First, we note that some of our simulation 58

scenarios could be considered to represent optimal conditions 59

(e.g., large heritabilities and QTL effect sizes) that would be rare 60

in real applications. However, studying these extreme scenarios 61

enables the behavior of the BayesR model to be established in ideal 62
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cases. All of our simulations made use of a constant number of1

individuals in both the training and validation sets, but a future2

study evaluating the impact of the training population sample size3

on QTL mapping ability, particularly for cases with low heritability4

(e.g. h2 = 0.1), could provide insight on this point. Lastly, when5

sampling SNPs to represent QTLs in our simulations, we chose6

to limit the choice to those with a MAF > 0.15, thus excluding7

those with rare alleles. Although this allowed us to avoid edge8

cases that would arise with very low MAFs, making it easier to9

homogenize simulated datasets across different selections of QTLs,10

this however is an important consideration in QTL mapping.11

CONCLUSION12

BayesR is a powerful tool for simultaneously providing accurate13

phenotypic predictions and mapping causal regions. Our simula-14

tion results illustrate the flexibility of BayesR for different genomic15

architectures for all but very low heritabilities (h2 = 0.1) or small16

QTL effects (<1% share of the additive genomic variance). Al-17

though the four effect size classes (null, small, medium, large)18

defined in BayesR do not themselves always reflect the true catego-19

rization of SNPs, they do offer a new approach to understanding20

and characterizing the genomic architecture underlying a pheno-21

type. To this end, we presented a variety of statistical criteria that22

can be used to perform QTL mapping using the output of the23

BayesR model, including neighborhood-based non-null maximum24

a posteriori rules, posterior estimated variances, and cumulative25

inclusion probabilities. We showed that some of the challenges in26

QTL mapping posed by strong LD blocks could be overcome using27

the latter criterion, which focuses on the assignment to non-null28

effect classes of SNPs in an entire neighborhood. By ranking SNPs29

using this criterion, we demonstrated that QTL windows could30

more easily be detected, even in simulation scenarios with more31

challenging conditions.32
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ADDITIONAL FILES47

All code used to simulate and analyze the data, as well as the48

scripts to implement BayesR are available on GitHub (https://github.49

com/fmollandin/BayesR_Simulations). The repository is divided into50

three parts:51

• Simulations Fortran source code of the software used to sim-52

ulate data based on real genotypes. An example of parameters53

and description of their use are also provided.54

• bayesR The modified version of BayesR (available at https: 55

//github.com/syntheke/bayesR), including recovery of the es- 56

timated per-SNP effects for each iteration, which in turn fa- 57

cilitates the estimation of per-SNP posterior variances. An 58

example of the use of this software is also provided. 59

• codes_R Partial R scripts used to analyze the BayesR model 60

output and visualize the corresponding results. Scripts to 61

reproduce all figures presented in the article are also included. 62
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