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The chemical master equation and the stochastic simulation algorithm are widely used to model the reaction
kinetics inside living cells. It is thereby assumed that cell growth and division can be modelled for through
effective dilution reactions and extrinsic noise sources. We here re-examine these paradigms through devel-
oping an analytical agent-based framework of growing and dividing cells accompanied by an exact simulation
algorithm, which allows us to quantify the dynamics of virtually any intracellular reaction network affected by
stochastic cell size control and division noise in a growing population. We find that the solution of the chemical
master equation – including static extrinsic noise – exactly agrees with the one of the agent-based formulation
when a simple condition on the network’s topology is met. We illustrate this result for a range of common
gene expression networks. When these conditions are not met, we demonstrate using analytical solutions of
the agent-based models that the dependence of gene expression noise on cell size can qualitatively deviate from
the effective master equation. Surprisingly, the latter distorts total noise in gene regulatory networks by at
most 8% independently of network parameters. Our results highlight the accuracy of extrinsic noise modelling
within the chemical master equation framework.

I. INTRODUCTION

Cells must continuously synthesise molecules in order
to grow and divide. At a single cell level, gene expres-
sion and cell size are coordinated but highly heteroge-
neous which can drive of phenotypic variability and deci-
sion making in cell populations1–5. The interplay between
these sources of cell-to-cell variability is however still not
well understood since they have traditionally been stud-
ied separately. A general stochastic theory integrating
size-dependent biochemical reactions with the dynamics
of growing and dividing cells is hence still missing.

Many models of noisy gene expression and its regula-
tion are based on the chemical master equation that de-
scribes the stochastic dynamics of biochemical reactions
in a fixed reaction volume6–8. The small scale of compart-
mental sizes of cells implies that at any time only a small
number of molecules is present leading to large variability
of reaction rates from cell to cell, commonly referred to
as gene expression noise9–11. Another factor contributing
to gene expression noise is the fact that cells are contin-
uously growing and dividing causing molecule numbers
to (approximately) double over the course of a growth-
division cycle. A common approach to account for these
additional noise sources is to include extra degradation
reactions that describe dilution of gene expression levels
due to cell growth9–13 akin to what is done in determin-
istic rate equation models14,15. We will refer to this ap-
proach as the effective dilution model (EDM, see Fig. 1a).
However, little is known of how well this approach repre-
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sents the dependence of gene expression noise on cell size
observed in a growing population.

Cells achieve concentration homeostasis through cou-
pling reaction rates to cell size via highly abundant up-
stream factors like cell cycle regulators, polymerases or
ribosomes that approximately double over the division
cycle3,16,17. Cell size fluctuates in single cells, however,
providing a source of extrinsic noise in reaction rates
that can be identified via noise decompositions18,19. A
few studies combined effective dilution models with static
cell size variations as an explanatory source of extrin-
sic noise20–22. In brief, the total noise in these models
amounts to intrinsic fluctuations due to gene expression
through balancing intracellular reactions and dilution at
a certain size, and its extrinsic variation across cell sizes
in the population. We refer to this class of models as ex-
trinsic noise models (ENMs, see Fig. 1b). Yet it remains
unclear how reliably these effective models can account
for single cell dynamics whereby cells continuously syn-
thesise molecules, grow and divide.

An increasing number of studies are investing efforts
towards quantifying the dependence of gene expression
noise on cell cycle progression and growth, either ex-
perimentally via ergodic principles or pseudo-time23,24

and time-lapse imaging22,25,26 or theoretically through
noise decomposition27–29 or agent-based approaches in-
cluding age-structure and cell cycle dynamics4,17,30–40.
The essence of agent-based models (ABMs) is that cells
are represented by agents whose physiological state is
tracked along with their molecular reaction networks. In
principle, these models are able to predict gene expression
distributions of cells progressing through well-defined cell
cycle states as measured by time-lapse microscopy and
snapshots of heterogeneous populations. These models
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must generally cast doubt on the predictions of master
equation models in which growth and division are ne-
glected. But these models presently cannot explain why
previous master equation models including effective di-
lution reactions have fared reasonably well in predicting
gene expression noise across cell populations as reported
by current single-cell experiments10,17,41.

Nevertheless, some ABM models still ignore cell size,
a major physiological factor affecting both intracellular
reactions and cell division dynamics alike. Since cell size
varies at least two-fold as required by size homeostasis in
a growing population, it is expected that size must sig-
nificantly contribute to gene expression variation across a
population. In this article, we bridge the gap between the
chemical master equation and agent-based approaches by
integrating cell size dynamics with the stochastic kinet-
ics of molecular reaction networks in an exact manner.
We provide rigorous conditions under which the chemi-
cal master equation including effective dilution reactions
reproduces the dependence of the molecule number dis-
tribution on cell size of the agent-based model exactly,
thus restoring trust in previous analysis (Sec. III A). Our
condition is met by some but not all common models of
gene expression. We show that in the later case the ef-
fective models merely work on average (Sec. III B). To
overcome these limitations, we develop a comprehensive
theoretical framework with which to quantify cell size
scaling of gene expression in growing cells (Sec. III C).
Our findings indicate that the effective dilution model of-
ten can qualitatively fail to predict this dependence and
we provide analytical approximations that accurately de-
scribe gene expression noise even in the presence of cell
size control variations and division errors (Sec. III D). In
contrast, extrinsic noise models accurately capture noise
statistics across population within a few percent of error
(Sec. III E).

II. METHODS

We consider a biochemical reaction network of N
molecular species S = (S1, S2, . . . , SN )T embedded in a
cell of size s. The rth reaction then has the general form:

N∑
i=1

ν−irSi
kr−→

N∑
i=1

ν+
irSi, r = 1, . . . , R, (1)

where ν±r = (ν±1r, ν
±
2r, . . . , ν

±
Nr) are the stoichiometric co-

efficients and kr is the reaction rate constant. In the
following, we outline deterministic, effective dilution and
extrinsic models and develop a new agent-based approach
coupling stochastic reaction dynamics to cell size in grow-
ing and dividing cells (Fig. 1).

A. Effective dilution models, extrinsic noise models and
the chemical master equation

1. Rate equation models and balanced growth conditions

In balanced growth the vector of molecular concentra-
tions X̄ = (X̄1, X̄2, . . . , X̄N )T can be obtained from de-
terministic rate equation models. The balanced growth
condition states that there exists a steady state between
reaction and dilution rates

αX̄ =
R∑
r=1

(ν+
r − ν−r )fr(X̄). (2)

Here, fr are macroscopic rate function determining the
reaction flux and α is the exponential growth rate of cells
determining the dilution rate due to growth. A conse-
quence of the balanced growth condition (2) is that the
concentrations are independent of cell size, or equiva-
lently that molecule numbers are proportional to size, i.e.,
x = sX̄, ensuring concentration homeostasis.

2. Effective dilution model

The chemical master equation6 and equivalently the
stochastic simulation algorithm7 are state-of-the-art
stochastic models of reactions inside cells. Although
well-established, they are strictly valid only when de-
scribing cellular fluctuations at constant cell size s. A
straight-forward approach to circumvent this limitation
is to supplement (1) by additional degradation reactions
that model dilution of molecules due to cell growth with
rate α:

Si
α−→ ∅, i = 1, 2, . . . , N, (3)

akin to what is traditionally for reaction rate equations
(2). The chemical master equation of this effective dilu-
tion model (EDM) then takes the familiar form

0 =
∂ΠEDM(x|s)

∂t
= [Q(s) + αD]ΠEDM(x|s), (4)

governing the conditional probability of molecule num-
bers x = (x1, x2, . . . , xN )T in a cell of size s and where

Qx,x′(s) =
R∑
r=1

wr(x
′, s)(δx,x′+ν+

r −ν−r − δx,x′), (5)

are the elements of the transition matrix of the molecular
reactions (1) and we included the extra dilution reactions

(3) via Dx,x′(s) =
∑N
i=1 x

′
i(δxi,x′i+1− δxi,x′i). We are here

interested in the stationary solution and hence set the
time-derivative in Eq. (4) to zero.
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FIG. 1. Modelling approaches for cell size dependence of gene expression. (a) The effective dilution model describes
cells at constant size with intracellular reactions coupled to effective dilution reactions. (b) The extrinsic noise model incorpo-
rates static cell size variability as a source of extrinsic noise coupled with effective dilution models (c) The agent-based approach
models intracellular reactions occurring across a growing and dividing cell population without the need for effective dilution
reactions.

Such effective models have been motivated by the fact
that the mean concentrations follow the rate equations
predictions X̄, given by the solution of (2), when a large
size limit is invoked, a standard result in the analysis of
the chemical master equation6,42. For example, for the
case of mass-action kinetics assuming fast intracellular
diffusion8, the propensities in (5) follow

wr(x, s) = s1−|ν−r |kr

N∏
i=1

xi!

(xi − ν−ir)!
≈ sfr(X), (6)

where X = x/s is the concentration, fr the macroscopic

rate in Eq. (2) and |ν−r | =
∑N
i=1 ν

−
ir . This correspondence

is exact when wr (and similarly fr) are linear functions of
the molecule numbers but it presents an approximation
otherwise6.

3. Extrinsic noise model

A common way to incorporate static size variability
between cells in the model is to consider cell size s to be
distributed across cells according to a cell size distribu-
tion Π(s). We will refer to this approach as the extrinsic

noise model (ENM), which leads to a mixture model of
concentrations X = x/s,

ΠENM(X) =

∫ ∞
0

dsΠEDM(x = Xs|s)Π(s) (7)

and analogous expressions for the molecule number dis-
tributions.

4. Linear Noise Approximation

The advantage of the EDM and ENM is that its noise
statistics can be approximated in closed-form using the
linear noise approximation6,43,44. In the same limit, the
covariance matrix can be decomposed into intrinsic and
extrinsic components using the law of total variance18,19

ΣY = Σint
Y︸︷︷︸

gene expression

+ Σext
Y︸︷︷︸

cell size variation

, (8)

which correspond to molecular fluctuations due to gene
expression and cell size variation, respectively, for Y ∈
{EDM,ENM}. Specifically, for molecule numbers x, we
have Σint

Y = EΠ[CovY [x|s]] and Σext
Y = CovΠ[EY [x|s]];
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and analogously for concentrations. The intrinsic compo-
nents Σint

Y satisfy a Lyapunov equation called the linear
noise approximation:

0 = JdΣint
Y + Σint

Y J Td + Ω−1
Y Dd(X̄), (9)

where ΩY has to be chosen depending on whether con-
centration or number covariances are of interest

ΩY concentration numbers

EDM s s−1

ENM EΠ[s−1]−1 EΠ[s]−1

. (10)

The matrix Jd is the Jacobian of rate equations (2) and
Dd denotes the diffusion matrix obeying

Jd(X̄) = J (X̄)− α1, Dd(X̄) = D(X̄) + α diag(X̄),
(11)

where J (X̄) =
∑R
r=1(ν+

r − ν−r )∇T
X̄
fr(X̄) and D(X̄) =∑R

r=1 fr(ν
+
r − ν−r )(ν+

r − ν−r )T . The extrinsic components
follow from the dependence of the mean on cell size, which
features only in the molecule number noise of the ENM:

Σext
Y concentration numbers

EDM 0 0

ENM 0 VarΠ(s)X̄X̄T

(12)

As a concrete example, we consider transcription of
mRNAs with a size-dependent transcription rate which
are then translated into (non-degrading) proteins:

∅ k0s−−→M
kdm−−→ ∅, M

ks−→M + P. (13)

We then account for dilution through the additional re-
actions

M
α−→ ∅, P

α−→ ∅. (14)

The mean protein concentration is given by P̄ = k0b/α,
and the coefficient of variation predicted by the EDM and
ENM models follow the familiar expression10

CV2
Y =

1

ΩY P̄

(
1 + b

γ

γ + 1

)
+

Σext
Y

P̄ 2
, (15)

where ΩY and Σext
Y are given by Eqs. (10) and (12), re-

spectively, and the parameters

γ = 1 +
kdm

α
, b =

ks
kdm + α

, (16)

correspond to the ratio of mRNA and protein degrada-
tion/dilution rates and the translational burst size, re-
spectively.

B. Agent-based modelling

Little is known about the validity and accuracy of these
effective models to predict cellular noise in growing pop-
ulations. To this end, we introduce an agent-based mod-
elling approach representing cells as agents that progres-
sively synthesise molecules via intracellular reactions (1),
grow in size and undergo cell division. Every division
gives rise to two daughter cells of varying birth sizes,
each of which inherits a proportion of molecules from
the mother cell via stochastic size-dependent partitioning
at division. An exact simulation algorithm of the ABM
is given in Box 1. Our algorithm combines the First-
Division algorithm, previously introduced for agent-based
cell populations36, with the Extrande method adapted to
simulate reaction networks embedded in a growing cell45.

In the following, we introduce the theoretical frame-
work with which we characterise the population snapshot
distributions analytically. We assume that the popula-
tion dynamics establishes long-term stationary distribu-
tion Π(s, s0, x) characterising the fraction of cells with
molecule numbers x, cell size s and birth size s0 that is in-
variant in time. We focus on characterising the marginal
cell size distribution Π(s, s0) and the molecule number
distribution Π(x|s, s0) via Bayes’ formula

Π(s, s0) =
∑
xΠ(s, s0, x), Π(x|s, s0) =

Π(s, s0, x)

Π(s, s0)
.

(17)

Together, they provide the full information about the sta-
tionary population process.

Cell size distribution

We assume that cells grow exponentially s(τ) = s0e
ατ

and divide with a size-dependent rate, αsγ(s, s0), that
depends on the cell growth rate α, the birth size s0 and
cell size s. For example, if the division size is linearly
related to birth size

sd = as0 + ∆, (18)

the division rate γ(s, s0) = γ(s − as0) follows from
the distribution ϕ(∆) of the noise term ∆ in (18) via
γ(∆) = ϕ(∆)/(

∫∞
∆

duϕ(u)). The model generalises the
sizer (a = 0) to concerted cell size controls such as the
adder (a = 1) and timer-like (2 > a > 1) models46–50.
More generally, the division rate γ determines the divi-
sion size distribution ϕ(sd|s0) via

ϕ(sd|s0) = γ(sd, s0)e
−

∫ sd
s0

dsγ(s,s0)
. (19)

After cell division, size is partitioned between cells and
the birth size of the two daughter cells is obtained from
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s′0 = θsd and s′′0 = (1 − θ)sd where θ is the inherited
size fraction, a random variable between 0 and 1 with
distribution π(θ) (see Box 1).

The general agent-based framework to characterise the
size distribution Π(s, s0) has been given by Thomas51.
They showed that, in the long term, the total number of
cells increases exponentially with rate α52,53 and that the
corresponding size distribution satisfies(

α+
∂

∂s
αs+ αsγ(s, s0)

)
Π(s, s0) = 0 (20a)

s0Π(s0, s0) =

2
∫∞

0
ds′
∫ s′

0
ds′0B(s0|s′)s′γ(s′, s′0)Π(s, s′0), (20b)

where B(s0|s′) =
∫ 1

0
dθ π(θ)δ(θ−s0/s

′). Eqs. (20) can be

solved analytically51

Π(s, s0) =
2

Z
ψbw(s0)Φ(s|s0)

1

s2
, (21)

where ψbw(s0) is the birth size distribution in a
backward lineage (see51 for details), Φ(s|s0) =
exp(−

∫ s
s0

ds′γ(s′, s0)) is the probability that a cell born
at size s0 has not divided before reaching size s, and
Z = Eψbw

[s−1
0 ] is a normalising constant.

Molecule number distributions conditioned on cell size

The starting point of this study is the stationary distri-
bution Π(s, s0, x) combining gene expression and cell size
dynamics, which follows(
α+

∂

∂s
αs+ αsγ(s, s0)

)
Π(s, s0, x) = Q(s)Π(s0, s0, x)

(22a)

s0Π(s0, s0, x) =

2
∑
x′

∫∞
0

ds′
∫ s′

0
ds′0B(x|x′, s′, s0)B(s0|s′)s′γ(s′, s′0)Π(s′, s′0, x

′).

(22b)

The division kernel B(x|x′, s′, s0) denotes the probability
that a cell born at size s0 inherits x molecules from a total
of x′ molecules from its mother, which divided at size s′.

By summing (22) over x, we see that the cell size distri-
bution Π(s, s0) follows Eq. (20) and its solution is there-
fore given by Eq. (21). It then follows using Eq. (17) in
(22) that the conditional molecule number distribution
Π(x|s, s0) for cells of size s that were born at size s0 sat-
isfies

αs
∂

∂s
Π(x|s, s0) = Q(s)Π(x|s, s0), (23a)

where Q is the transition matrix of the molecular reac-
tions defined after Eq. (4). The equation is to be solved
subject to the boundary condition

Π(x|s0, s0) =∑
x′

∫∞
0

ds′
∫ s′

0
ds′0B(x|x′, s′, s0)ρ(s′, s′0|s0)Π(x′|s′, s′0),

(23b)

which follows from combing the boundary condition (22b)
with Eq. (19) and Eq. (21). The solution of these equa-
tions depends implicitly on the ancestral cell size distri-
bution ρ,

ρ(s′, s′0|s0) =
1

ψbw(s0)

s0

s′
B(s0|s′)ϕ(s′|s′0)ψbw(s′0), (23c)

that gives the probability of a cell born at size s0 having
an ancestor with division size s′ and birth size s′0. The
main difference between the molecule number distribu-
tions of the ABM and the EDM/ENM is the boundary
condition at cell division, which as we shall see can have
a significant effect on the reaction dynamics.

III. RESULTS

A. The effective dilution model is valid for a class of
reaction networks

A central result of our analysis (Theorem 1 in Appendix
A) is the fact that, if the EDM (4) admits a stationary
solution with generating function of the form

GEDM(z|s) =
∑
x

zxΠEDM(x|s) = F (s(z − 1)), (24)

for any function F independent of s, then it is also a
solution of the ABM (23):

Π(x|s, s0) = ΠEDM(x|s), (25)

and this solution is independent of the birth size s0 and
any details of the size distribution and cell size con-
trol. The condition is sufficient and necessary assum-
ing independent binomial partitioning at cell division and
can be checked in practice without explicitly solving for
GEDM(z|s) (or ΠEDM(x|s)). For example, assuming mass-
action kinetics (6), the validity of the EDM requires a
reaction network to be composed of only mono-molecular
reactions (see Appendix A):

∅ s−→ S1, or S1 −→ ∅, or S1 −→ S2, (26)

for any pair of species S1 and S2 that are partitioned at
cell division. It is well known, that the solutions of (26)
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Box 1: First-Division Algorithm for agent-based simulations of size-dependent gene regulatory networks

Exact simulation algorithm of general stochastic reaction networks within growing cells (agents) undergoing binary
cell division according to cell size control rules46,48,49. The algorithm combines the Extrande method45 for simulating
reaction networks embedded in a growing cell and the First-Division algorithm36 for the population dynamics. The
state of each cell is given by birth time t0, birth size s0, present cell size s and the vector of molecule numbers x.

Algorithm 1: First-division algorithm
simulating agent-based population dynamics

Input: Cell states {t0,i, s0,i, si, xi}i=1,...,M for
population of M cells.

Output: Cell states at time T > 0.
Require: Growth rate α, cell size control model (18)

and division error distribution π.
Initialise t← 0;
while t < T do

Compute division times td,i = t0,i + α ln(sd,i/s0,i)
for i = 1, ..,M where sd,i is computed from (18);

Compute the first division time t∗d = mini td,i and
index i∗ = argminitd,i;

if t∗d < T then
Grow all cells until t = t∗d using Algorithm 2;
Draw a random number θ ∼ π and divide the
cell i∗ according to s0,i∗ , si∗ ← θsi∗ and
s0,M+1, sM+1 ← (1− θ)si∗ ;

Partition molecules binomially
xnew
i∗ ∼ B(xold

i∗ , θ) and assign the rest to the
other daughter cell xM+1 ← (xold

i∗ − xnew
i∗ ) ;

Set M ←M + 1;

else
Grow all cells until t = T using Algorithm 2;

end

end

Algorithm 2: Extrande algorithm simulating
reaction networks in a growing cell

Input: Cell state (t0, s0, s, x) at time T0.
Output: Cell state at time T ′ > T0.
Require: Growth rate α, stoichiometric vectors

(νr)r=1,..,R and propensities (wr)r=1,..,R.

Initialise t← T0 and let a0(x, s) =
∑R
r=1 wr(x, s);

while t < T ′ do

Compute bound B = maxt′∈[T0,T ′] a0(x, s0e
αt′);

Generate putative reaction time τ ∼ exp(1/B);
if t+ τ ≥ T ′ then

Set time t← T ′ and cell size s← s0e
α(T ′−t0);

else
Update time t← t+ τ and cell size
s← s0e

α(t−t0);
Generate random number u ∼ U(0,1);
if a0(x, s) ≥ Bu then

Choose reaction associated with the
smallest positive integer j less than or
equal to R satisfying∑j
r=1 wr(x, s) ≥ Bu and update

molecular state x← x+ νj ;

end

end

end

are multi-variate Poisson distributions57–59 due to extra
dilution reactions present. Our result is however not lim-
ited to this case but also applies to including exogenous
genetic states D, which are not partitioned at cell division
and do not scale with cell size, as commonly included in

gene expression models via reactions D
s−→ D + S1. For

example, it includes general multistate gene expression
models; i.e., compare Eq. (7) in Ham et al.60 with our
condition (24) when transcription rates are assumed to
scale with cell size.

We illustrate the predictive power of this result for
three common gene expression models (Fig. 2a-c) that
admit explicit solutions of the chemical master equa-
tion. For bursty mRNA expression involving a two-state
promoter54 (Fig. 2a), condition (24) is met whenever the
transcription rate scales with cell size. For bursty protein
expression, condition (24) is met when translation rate,
and hence burst size, scales with cell size for both the

two-stage (Fig. 2b) and three-stage gene expression mod-
els (Fig. 2c)55. We further observe excellent numerical
agreement between the ABM simulations and analytical
EDM solutions in all these cases.

On the other hand, discrepancies between the EDM
and ABM solutions will be apparent when reactions vio-
late our network conditions. To illustrate this point, we
return to the simple gene expression model (13). Note
that in the EDM extra reactions are added for the dilu-
tion of mRNAs and proteins, while for the ABM proteins
are explicitly diluted through growth and divisions. Us-
ing our condition (24), it is straight-forward to verify that
the Poissonian mRNA distributions of the effective dilu-
tion model coincide exactly with the distributions of the
ABM (Fig. 2d). However, this condition is not met for the
protein distribution since the translation reaction is not
a monomolecular reaction of the form (26). To demon-
strate the breakdown of the EDM, we compare the analyt-
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distributions (shaded areas) disagree with the effective dilution model (solid lines, solution in Ref.56). (f) Absolute error (`1)
of the effective dilution model as a function of cell size for mRNA (teal) and protein (red) distributions. ABM simulations
were obtained using the First-Division Algorithm (Box 1) assuming an adder model (a = 1) and parameters k0 = 10, kdm = 9,
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ical steady state distributions obtained by Bokes et al.56 against ABM simulations at various cell sizes (Fig. 2e).
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We observe that the error of the EDM (as quantified by
the `1-distance of the two distributions, Fig. 2f) is par-
ticularly pronounced for newborn and dividing cells. The
remainder of this article is dedicated to investigate the
sources and consequences of these discrepancies.

B. The effective dilution model approximates the mean
concentrations

The conditions given above provide general criteria for
the validity of the EDM probability distributions. In
practice, however, it is often sufficient to analyse the first
few moments such as mean and variances. Here, we estab-
lish that under the mass-action scaling assumption (6) the
mean concentrations of the ABM agree with the EDM.

Using Eq. (23) it can be shown the mean numbers sat-
isfy

αs
∂

∂s
EΠ[x|s, s0] =

R∑
r=1

νrwr(EΠ[x|s, s0]), (27a)

and the boundary condition

EΠ[x|s0, s0] = Eρ

[
s0

s′
EΠ[x|s′, s′0]

∣∣∣∣s0

]
. (27b)

Using a linear noise approximation, we set E[x|s, s0] =
sX̄ and wr(EΠ[x|s, s0]) ≈ sfr(X̄) and insert the result-
ing expression into Eqs. (27) from which it follows that X̄
is independent of size and satisfies the rate equations (2).
We conclude that, for mass-action kinetics, the effective
dilution model holds on average. While this result is ex-
act for networks with linear propensities, it represents an
approximation for networks with nonlinear propensities
akin to the system size expansion6 valid in the limit of
large cell size and molecule numbers.

C. Scaling of fluctuations with size in individual cells
manifests the breakdown of effective dilution model

Next we will investigate the scaling of fluctuations with
cell size. Under the linear noise approximation the covari-
ance matrix Σ(s, s0) = CovΠ[x|s, s0] evolves according to

αs
∂

∂s
Σ(s, s0) = JΣ(s, s0) + Σ(s, s0)J T + sD(X̄),

(28a)

where J (X̄) andD(X̄) are the Jacobian and diffusion ma-
trices defined after Eq. (11). To make analytical progress

we assume for now that cell division is deterministic,
which implies the following boundary condition

4Σ(s0, s0) = 2s0diag(X̄) + Σ(2s0, s0). (28b)

The first term is due to binomial partitioning and the
second stems from gene expression noise at division. It
is implicit in the deterministic division assumption that
the birth size s0 across cells is fixed and that the size
distribution in Eq. (21) reduces to

Π(s) = Π(s|s0) =
2s0

s2
(29)

for s0 ≤ s ≤ 2s0 and zero otherwise, in agreement with
previous results61,62. Similarly, the ancestral distribution
(23c) reduces to ρ(s′, s′0|s0) = δ(s′ − 2s0)δ(s′0 − s0).

Eqs. (28) can be solved in closed form using the eigende-
composition of the Jacobian J . The solution to (28a) that
respects the boundary condition (28b) is (Appendix C)

Σ(s, s0) =
∑
ij

s ûiû
†
j(

α− λi − λ∗j
)×

[
D̃ij +

D̃ij + X̃ij(λi + λ∗j − α)

2
λi+λ

∗
j

α −1 − 2

(s0

s

)1−
λi+λ

∗
j

α

]
, (30)

where † denotes the conjugate-transpose and we defined
the matrices D̃ = U−1DU−†, X̃ = U−1diag(X̄)U−† and
U = (û1, . . . , ûN ) whose columns are the eigenvectors of
J such that U−1JU = diag(λ).

We demonstrate the implications of this assumption
using example (13). The mean of mRNA numbers m and
protein numbers p are

EΠ[m|s] = s
k0

αγ
, EΠ[p|s] = s

bk0

α
, (31)

where the constants are defined in Eq. (16). These expres-
sions hold both for the EDM and the ABM as shown in
the previous section and are in excellent agreement with
the ABM simulations (Fig. 3a,b).

Using the linear noise approximation, Eq. (28), we find
that the cell size dependent fluctuations satisfy

VarΠ[m|s, s0] = EΠ[m|s],

CovΠ[m, p|s, s0] =
sbk0

αγ

(
1 +

(s0

s

)γ 2γ

1− 2γ+1

)
,

VarΠ[p|s, s0] = EΠ[p|s]×(
1 + 2b− s0

s

4bγ

3(γ − 1)
+
(s0

s

)γ b

γ − 1

2γ+1

(2γ+1 − 1)

)
,

(32)

a result which is exact in the absence of cell cycle vari-
ations since our example involves only linear reactions.
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FIG. 4. Effect of noise in cell size control and division on gene expression noise in single cells. (a-d) Protein noise
as a function of cell size s for various noise levels in added size CV2

∆. For comparison, the prediction without cell cycle noise
(dashed black line, Eq. (32)) and the cell size distributions (shaded grey) are shown. (e-h) Same as (a-d) but with division
noise affecting the inherited size fraction CV2

θ. Analytical predictions (solid lines, Eq. (34a) with (32) and (34b)) and ABM
simulations (dots) using the First-Division Algorithm (Box 1) are shown. Gene expression model and all other parameters are
as given in Fig. 3. Added size ∆ assumes a gamma distribution with unit mean and CV[∆] = 0.01 (e-f) while division errors θ
followed a symmetric beta distribution with CV[θ] = 0.01 (a-d).

First, we note that the mRNA variance of the ABM agrees
precisely with the effective dilution model (Fig. 3c). The
agreement is a direct consequence of the network condi-
tions (26). However, the expressions for the predicted
mRNA-protein covariance and protein variance disagree.
To explore this dependence, we compare the correspond-
ing coefficients of variation of both models (Fig. 3d). The
EDM overestimates cell-to-cell variation of small cells but
overestimates it for large cells. Moreover, the EDM’s coef-
ficient of variation decreases monotonically with cell size,
but this is not the case for the ABM.

Strikingly, the dependence of the coefficient of varia-
tion displays a peak as cells progress through the cell
cycle (Fig. 3d, solid red line) that is not seen in the EDM
(solid grey) but is in excellent agreement with the ABM
simulations (blue dots). This can be seen directly from
Eqs. (32) for which protein fluctuations can be approx-
imated in the limit of fast mRNA degradation (γ � 1)
as

CV2
ABM[p|s, s0] ≈ 1

EΠ[p|s]

(
1 + b

(
2− s0

s

4

3

))
, (33)

which has a maximum at a cell size of s = s0
8b

3(2b+1) as

confirmed by agent-based simulations (Fig. 3d). Depend-

ing on the burst size, the peak shifts from s = s0 for
b = 3/2 to s = 4/3s0 for b � 1. The qualitatively differ-
ent scaling of gene expression noise with cell size manifests
the breakdown of the EDM, similarly to what has been
previously observed in the noise dependence on cell age
in ABMs37.

D. Effect of cell size control on gene expression dynamics

Next, we ask how fluctuations in the cell size control
affect gene expression noise. It may be intuitively ex-
pected that noise in division timings and partitioning
causes variable birth sizes and hence variable expression
levels. While it is clear that from the conditions given in
Sec. III A this noise source cannot impact mRNA fluctua-
tions, its effect on protein noise remains to be elucidated.

To this end, we assume small birth-size variations such
that their impact can be quantified by replacing the ac-
tual birth size with an averaged estimate EΠ[s0|s] of the
retrospective birth size for a cell of size s. The covariance
matrix (or any other moment) can then be approximated
as

Σ(s) = EΠ[Σ(s, s0)|s] ≈ Σ(s, EΠ[s0|s])). (34a)
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This simplification can formally be justified through a
saddle point approximation since the joint distribution
Π(s, s0) has a maximum at Π(s, EΠ[s0|s])). Since gener-
ally no analytical expression of EΠ[s0|s] can be derived
from Eq. (21) in the presence of cell size control fluctua-
tions, we approximate EΠ[s0|s] by a matched asymptotic
expansion (Appendix B):

EΠ[s0|s] ≈ s̄0 − σ

√
2
π e
− (s−s̄0)2

2σ2

1 + erf
(
s−s̄0√

2σ

)
︸ ︷︷ ︸

small cells

+ 2aσ2γ(s− as̄0)︸ ︷︷ ︸
large cells

,

(34b)

which holds for the linear cell size control model (18).
The first term is the average birth size in the absence of
cell size control fluctuations, the second term denotes the
contributions from small cells, while the third term stems
from large cells. The parameters in Eq. (34b) are given
by the mean birth size s̄0 and variance σ2 in a backward
lineage tracing the ancestors of a random cell in the pop-
ulation (see Ref.51 for details):

s̄0 =
(2− a)

(
1 + CV2

θ

)
2− a(1 + CV2

θ)
,

σ2 = s̄2
0

CV2
∆

(
1 + 3CV2

θ

) (
2− a(1 + CV2

θ)
)2

+ 4CV2
θ

(
1− CV2

θ

)(
CV2

θ + 1
)2 (

4− a2(1 + 3CV2
θ)
) .

(34c)

Eqs. (34) provide a closed form approximation of the cell
size dependence of any given moment accurate to order
O(σ3).

To test the accuracy of proposed approximation, we
first evaluate the dependence against cell size control
noise. We observe that increasing noise leads to a more
monotonic decrease gene expression noise with cell size
(Fig. 4a-d) in good agreement with ABM simulations,
even for large cell size fluctuations. We further ask about
the effects of partitioning noise, which shows a similar
dependence but agrees less well with the ABM simula-
tions for cells smaller than the average birth size (Fig. 4e-
h), presumably since the effect of large variability in
birth sizes is not captured in our small noise approxi-
mation. Nevertheless, the present approximation quali-
tatively captures the overall cell size dependence of the
ABM simulations (Fig. 4). Our findings confirm that
birth size variation contributes significantly to the cell
size dependence of gene expression noise.

E. Extrinsic noise models provide surprisingly accurate
approximations of total noise in agent-based populations

So far, we explored whether the EDM captures the cell-
size dependence of distributions in single cells. Instead,

here we investigate if the ENM (7) can capture the total
variation across a population irrespective of cell size thus
including extrinsic noise. It is implicit in our analysis
that the ENM follows the size distribution Π(s) of the
ABM. We first aim to evaluate the total noise statistics
of concentrations

X =
x

s
. (35)

Since the mean concentration is independent of size,
EΠ[X|s, s0] = X̄, we have CovΠ[E[X|s, s0]] = 0 and

EΠ[X] = X̄, CovΠ[X] = EΠ[Σ̄(s, s0)], (36)

where Σ̄(s, s0) = CovΠ[X|s, s0] given by the solution of
Eqs. (28). The concentration covariance matrix can be
obtained analytically in the limit of deterministic cell di-
vision by integrating (30) over the cell size distribution
Π(s) in (29), for which we obtain

CovΠ[X] =
1

Ω

∑
ij

ûiû
†
j

βij
(
coth

(
1
2βij ln 2

)
+ 3
)

3(βij + 1)

αX̃ij

ξij

+
βij
(
3βij − coth

(
1
2βij ln 2

))
3
(
β2
ij − 1

) D̃ij
ξij

, (37)

where ξij = 2α−λi−λ∗j , βij =
ξij
α , Ω−1 = EΠ[s−1] = 3

4
1
s0

,
and ûi are the eigenvectors of the Jacobian J introduced
before Eq. (30). Similarly, considering molecule number
fluctuations, CovΠ[x] = Σint

ABM+Σext
ABM, the intrinsic noise

contribution is given by

Σint
ABM = Ω

∑
ij

ûiû
†
j

[ (
2βij − 2

)
βij

(2βij − 1) (βij − 1) ln 4

αX̃ij

ξij
+

βij
((

2βij − 1
)
βij ln 4− 2βij (1 + ln 4) + 2 + ln 4

)
(2βij − 1) (βij − 1)2 ln 4

D̃ij
ξij

]
,

(38)

with Ω = EΠ[s] = s0 ln 4, and the non-zero extrinsic noise
contribution Σext

ABM = VarΠ(s)X̄X̄T as in the ENM pre-
sented in Sec. II A 4.

Total noise of agent-based and extrinsic noise models

We go on to compare the ENM introduced in Sec. III E
with the ABM. In the case of a single variable, Eq. (37)
greatly simplifies (see Appendix C), which shows that the
relative error of the ENM can be bounded:

6

7
≤ CV2

ENM[X]

CV2
ABM[X]

≤ 3

2
ln 2, (39)
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FIG. 5. Genetic feedback regulation limits the validity of extrinsic noise models. (a) Common autoregulatory
network motifs including negative and positive feedback activation (see Appendix C for details). Percentage error [100% ×
(CVENM/CVABM−1)] of the ENM relative to the ABM is shown for (b) the coefficient of variation of concentration fluctuations
and (c) the coefficient of variation of molecule number fluctuations as a function of the Hill exponent measuring cooperativity
of gene autoregulation. For negative feedback regulation, the ENM underestimates the concentration fluctuations of the ABM
(blue dots in (b)), while it overestimates molecule number fluctuations (blue dots in (c)). The maximum deviation is achieved
in the limit of ultrasensitive gene regulation (≈ 8%), in agreement with the theoretical bounds (solid blue lines, Eqs. (39) and
(40)). For positive feedback regulation, the ENM always overestimates concentration fluctuations (yellow dots in (b)), while it
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in agreement with the theoretical bounds (solid yellow lines). Parameters are k0 = α = 1 and K = 0.2 for the negative feedback
network with activation function (C4) and k0 = K = α = 1, δ = 10−4 for the positive feedback network with activation function
(C5).

implying that the ENM overestimates the coefficient of
variation by at most 8% but underestimates it by at most
2%. Conversely, an analogous calculation (Appendix C)
for the coefficient of variation in molecule numbers x
shows that

2 ln2(2) ≤ CV2
ENM[x]

CV2
ABM[x]

≤ 4 ln 2

1 + ln 4
, (40)

implying that the ENM underestimates the coefficient of
variation of the ABM by at most 8% but underestimates
it by at most 2%, opposite to what we found to concen-
tration noise statistics.

We apply these error bounds to gene regulatory net-
works with positive and negative transcriptional feedback
activation (see Appendix C for details). The positive feed-
back loop (Fig. 5a, yellow), achieves the upper bound for
the coefficient of variation of concentration (Fig. 5b, yel-
low) depending on parameters and cooperativity, and it
achieves the lower bound for the coefficient of variation of
molecule numbers (Fig. 5c, yellow). Conversely, the net-
work with negative feedback architecture (Fig. 5a, blue)
achieves the lower bound for the coefficient of variation
of concentration (Fig. 5b, blue) but achieves the upper
bound for the coefficient of variation of molecule numbers
(Fig. 5c, blue). Nevertheless, the discrepancy between the
EDM and ABM are generally less than 8% independent

of the gene expression network considered.
The prescribed error bounds strictly hold for networks

involving only a single species and must be considered as
error estimates for general multi-species networks. For
example, for the simple two-species gene expression net-
work (13), our theory, Eq. (37), provides an analytical
expression for the protein concentration fluctuations

CV2
ABM[P ] =

1

ΩP̄

1 +

2b

(
12− 24(2γ−1−1)

(2γ+1−1)(γ−1) + 13γ

)
27(γ + 2)

 ,
(41)

where Ω = EΠ[s−1]−1 and γ, b are defined as in Eq. (16).
Similarly, using Eq. (38) we obtain the corresponding
molecule number fluctuations

CV2
ABM[p] = CV2

Π[s]+

1

ΩP̄

1 +

2b

(
2(2γ−1−1)

(2γ+1−1)(γ−1) + γ(ln(8)− 1)− 1

)
3γ ln(2)

 (42)

with Ω = EΠ[s]. These expressions involve an intricate
dependence on γ. It can be verified that, in this case,
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FIG. 6. The extrinsic noise model approximates gene expression noise with size control and division errors. (a)
Scaling of mRNA concentration noise with mean concentrations for various noise levels in added size CV[∆] and partition noise
CV[θ] when the transcription rate k0 is varied (top). Corresponding scaling is shown for mRNA numbers (bottom). Analytical
predictions of the ENM (solid lines, Eq. (8) with (10) and (12)) and ABM simulations using the First-Division Algorithm
(dots, Box 1) are shown. The inset shows the relative error in CV of the effective dilution compared to ABM simulations
[100%× (CVENM/CVABM−1)]. (b) Scaling of protein noise with mean protein concentration (top) and numbers (bottom) when
the translation rate ks is varied. (c) Same as (b) but varying the transcription rate ks. For comparison, the ABM predictions
without cell cycle noise are shown (dashed black lines, Eq. (41) for concentrations and (42) for molecule numbers) and the
implied error bounds (solid grey). See caption of Fig. 3 for the remaining parameters.

the ENM (Eq. (15)) overestimates the coefficient of vari-
ation of concentration and underestimates the coefficient
of variation of molecule numbers by at most 2% (irre-
spectively of γ). These bounds are in agreement with the
theoretical estimates obtained for single-species networks
and we conjecture that these bounds also provide accurate
error estimates for multi-species networks. Our theoreti-
cal error bounds (39) and (40) thus argue that the ENM
generally provides surprisingly accurate approximations
of the ABM statistics.

To conclude this section we ask which cell size distri-
butions make the ENMs and ABMs agree exactly, inde-

pendently of the reaction network considered. To this
end, we make the ansatz Π(s) ∼ s−φ for deterministic
growth in the interval s ∈ [s0, 2s0) and we integrate (30)
over this hypothetical size distribution. Interestingly, we
find different exponents for concentrations (φ = 1) and
for molecule number fluctuations (φ = 3). It is intrigu-
ing that the case φ = 1 corresponds to a size distri-
bution observed in mother-machine lineage51 (assuming
deterministic growth), and hence the total noise statis-
tics observed in this microfluidic device will mirror the
ENM only when concentrations are considered but not
for molecule numbers. On the contrary, molecule number
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fluctuations of the ENM seem to lack a physical interpre-
tation as we are unaware of a realistic counterpart for the
case φ = 3. Nevertheless, these theoretical exponents are
close to φ = 2 observed in population snapshots, which
justifies why ENMs fair relatively well in approximating
the total noise in ABMs.

Effect of cell size control fluctuations and division errors

Stochastic fluctuations in cell size control and division
errors provide additional noise sources affecting protein
levels across single cells. Since these sources are beyond
the scope of our analytical theory, we assess their impact
on the predictions of the ENM and ABM for the sim-
ple two-species gene expression model (13) using detailed
agent-based simulations.

We observe that, for varying transcription rate, the
mRNA noise-mean relationship of the ABM follows ex-
actly the ENM predictions for various strength of cell size
control fluctuations and division errors (Fig. 6a), both in
concentration fluctuations and numbers. The observa-
tion confirms our theoretical predictions (Condition (26))
that the ENM is exact in this case. However, the pro-
tein noise-mean relationships of the ABM and ENM differ
(Fig. 6b). This discrepancy, albeit small, increases with
cell size control noise for concentration measures but ap-
pears independent of cell size control noise for protein
number fluctuations (Fig. 6b, insets). Specifically, we ob-
serve that the ENM underestimates ABM noise of pro-
tein numbers, while the ENM overestimates protein con-
centration fluctuations in qualitative agreement with the
theoretical bounds (39)-(40). With increasing cell size
control noise, our bounds derived for deterministic di-
visions are accurate for molecule number noise but not
for concentration noise which increases beyond the max-
imum deviations of 2% implied by (41) and (42). The
same conclusions hold when varying translation rate in
the noise-mean relationship (Fig. 6c). Presumably, ro-
bustness of the molecule number bounds is due the fact
that the ENM and ABM predictions are generally dom-
inated by extrinsic noise, which has the same effect in
both models.

IV. DISCUSSION

We presented an agent-based framework comprising an
exact simulation algorithm and an analytical approach to
study the cell size dependence of gene expression noise
across growing and dividing cell populations. The key
feature distinguishing our ABM approach from previous
agent-based studies is that we explicitly account for the
coupling of intracellular reaction rates with cell size en-

abling concentration homeostasis. We find that while
gene expression noise depends on cell size, it also fea-
tures an intricate history dependence on birth size, a fact
that is captured by ABMs but not always by their ef-
fective counterparts. Alongside the theory, we provided
an exact simulation framework (Box 1) generalising pre-
vious single-cell simulation algorithms4,17,34,63,64 towards
snapshot-distributions across a growing cell population
with an arbitrary size dependence of the gene regulatory
interactions.

Our theory provides explicit conditions ((24) and The-
orem 1) for traditional modelling approaches based on the
chemical master equation, such as EDMs and ENMs, to
be valid also in the agent-based case. These conditions
rest on network topology and size-scaling of the reaction
rates and they do not require solving the chemical master
equation or stochastic simulations. Specifically, our con-
ditions guarantee that certain network topologies gener-
ate gene expression distributions that, when conditioned
on cell size, are entirely independent of extrinsic noise
sources such as cell size control and division noise. They
thus reveal whether a network embedded in a growing cell
can be insulated against cell cycle and growth noise, an
important feature that can guide the design of synthetic
circuits.

Although we focused on population snapshots, our net-
work conditions apply to isolated lineages as observed in
the mother machine65 as well. In particular, they ensure
that size-dependent gene expression statistics of specific
network architectures agree between lineages and across
populations despite different levels of cell size variabil-
ity, cell cycle heterogeneity and whether cells compete
for growth or not. We have shown that in the absence
of these conditions, cell size scaling of expression noise
differs dramatically between EDMs and ABMs of cell
populations, both quantitatively and qualitatively. Inter-
estingly, the ENM remains valid for total concentration
noise in mother-machine lineages despite its failure to ac-
curately predict its cell size scaling and the corresponding
total noise in molecule numbers.

A limitation of our study is that we assumed growth
rate to be independent of gene expression dynamics. Pre-
vious studies3, however, found that total noise of concen-
trations in mother-machine-like lineages follows closely
the ENM prediction with expression-dependent growth.
Nevertheless, it may be expected that selection plays
a pronounced role in populations where cells compete
for growth unlike in mother-machine lineages, which in
turn may lead to significant deviations of ENMs from
ABMs36,66,67.

Despite the limitations of our study, we found that ef-
fective master equation models closely approximate the
total noise statistics of ABMs, such as the noise-mean
relationships of proteins, under the mass-action scaling
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assumption (6). In fact, ENMs deviate at most 8% from
ABM’s total noise prediction in terms of coefficients of
variation. To achieve such modest deviations, however,
one requires feedback regulation with ultrasensitivity or
regimes close to critical points, but ENMs fare much bet-
ter for simple gene expression networks as the one in
(13). Our results therefore reinstate the validity of ef-
fective models, and thus significantly extend the scope
of state-of-the-art master equation methods to a broad
range of single-cell analyses in growing cell populations.

CODE AVAILABILITY

The implementation of the First-Division Algorithm
(Box 1) in Julia is available at github.com/pthomaslab/
fda.
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Appendix A: Validity conditions for EDMs and ENMs

Theorem 1. Assume that the partitioning kernel
B(x|x′, θ) is binomial with probability θ given by the ra-
tio of daughter birth size and mother division size. The
stationary solution of the EDM (4) is also a solution of
the ABM (23):

Π(x|s, s0) = ΠEDM(x|s), (A1)

if and only the EDM (4) admits a solution with generating
function of the form

GEDM(z|s) =
∑
x

zxΠEDM(x|s) = F (s(z − 1)), (A2)

for any function F independent of s and the solution is
independent of the birth size s0.

The utility of the theorem is that its condition (A2) can
be checked without solving the chemical master equation.
We demonstrate this aspect for a general reaction network
of the form (1) with mass-action propensities (6) whose
generating function (see Chapter 7 in68) obeys:

αs
∂

∂s
G(z|s, s0)

=
R∑
r=1

krs
1−|ν−r |

(
zν

+
r − zν

−
r

)
∂
ν−r
z G(z|s, s0) (A3)

Substituting G(z|s, s0) = F (s(z − 1)) gives

αx · ∇F (x)

=

R∑
r=1

krs
(

(x+ s)ν
+
r s−|ν

+
r | − (x+ s)ν

−
r s−|ν

−
r |
)
∂
ν−r
x F (x).

It can now be seen that the right-hand side of the above
equation is independent of s if either (i) |ν−r | = 0 and
|ν+
r | = 1 , (ii) |ν−r | = 1 and |ν+

r | = 0, or (iii) |ν−r | =
|ν+
r | = 1. Thus the EDM and the ABM solutions coin-

cide for mass-action reaction networks (1) when they only
comprise only the monomolecular reactions given in (26).

The proof of the theorem is divided in three steps be-
low, which shows that the binomial partitioning assump-
tion cannot be removed due to the biological constraint
of molecule number conservation at cell division.

1. Dynamics invariant of birth size

Assume that, the partition kernel depends only the in-
herited size fraction

B(x|x′, s′, s0) = B(x|x′, θ),

where θ = s0/s
′. Then we say that Π is invariant against

partitioning, if

Π(x|θs, s0) =
∑
x′

B(x|x′, θ)Π(x′|s, s0), (A4)

a central condition that can be checked from the reaction
kinetics. It then follows that the conditional distribution
Π(x|s, s0) is independent of birth size s0. This can be ver-
ified using (A4) in the boundary condition (23b), which
leads to

Π(x|s0, s0) =
∫∞

0
ds′
∫ s′

0
ds′0 ρ(s′, s′0|s0)Π(x|s0, s

′
0).

This implies that Π(x|s, s0) must be independent of birth
size

Π(x|s, s0) = Π(x|s).
In the following, we show that under condition (A4)
Π(x|s) coincides with the EDM solution.

2. Effective dilution model

Let us denote the generating function of the partition-
ing kernel by GB(z|x′, θ) =

∑
x z

xB(x|x′, θ) such that the
invariance condition (A4) becomes

G(z|θs) =
∑
x′

GB(z|x′, θ)Π(x′|s). (A5)

Assume that additionally it holds that

θ∂θGB(z|x′, θ) =

N∑
i=1

(zi − 1)∂ziGB(z|x′, θ). (A6)

Differentiating Eq. (A5) with respect to θ then gives

θ∂θG(z|θs) =
∑
x′

θ∂θGB(z|x′, θ)Π(x′|s)

=
N∑
i=1

(zi − 1)∂ziG(z|θs), (A7)

where in the last line we have used assumption (A6), i.e.,

GB(z|x′, θ) = (1−θ+θz)x
′
. Changing variables (θs→ s)

in (A7) yields

s∂sG(z|s) =
N∑
i=1

(zi − 1)
∂

∂zi
G(z|s),

or equivalently the effective dilution model(
αs

∂

∂s

)
Π(x|s)

= −α
N∑
i=1

[(xi + 1)Π(x1, ..., xi + 1, ..., xN |s)− xiΠ(x|s)]

= −DΠ(x|s). (A8)
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Using the above relation, we see that (23a) coincides with
(4) and (A1) follows.

3. Necessity of binomial partitioning

Finally, we show that condition (A6) required for the
validity of the EDM implies independent binomial parti-
tioning. (A6) is a linear PDE that can be solved using
the method of characteristics, which leads to

θ
∂zi
∂θ

= (1− zi), θ
∂GB
∂θ

= 0.

The general solution is GB(z|x′, θ) = J(1− θ+ θz) where
the function J is fixed by the condition that for θ = 1 all
molecules are partitioned deterministically, i.e., J(z) =

zx
′
. Hence, we obtain

GB(z|x′, θ) = (1− θ + θz)x
′
,

which corresponds to independent binomial partitioning,
and (A5) is then equivalent to

G(z|θs) = G((1− θ) + θz|s). (A9)

Finally, we show that condition (A9) is equivalent to
G(z|θs) = F (s(z − 1)). Specifically, expanding (A9)
around z = 1 and identifying the series coefficients with
the factorial moments µn(s) = EΠ[x(x− 1) . . . (x− n)|s],
we find that the factorial moments are homogeneous func-
tions of order |n| =

∑
i ni: µn(θs) = θ|n|µn(s). Then

by Euler’s homogeneous function theorem, it follows that
the factorial moments with index n, satisfy s ∂∂sµn(s) =

|n|µn(s) and hence µn(s) = s|n|µn(1). This implies that
the generating function is

G(z|s) =
∑
n

s|n|µn(1)(z − 1)n = F (s(z − 1)),

with F (x) =
∑
n x

nµn(1) independent of s which con-
cludes the proof of Theorem 1.

Appendix B: Approximation of birth size moments

Here derive an analytical approximation (34b) for the
conditional birth size moments. We start by rewriting
EΠ[s0|s] in terms of the backward lineage distribution
ψbw using Eq. (21):

EΠ[s0|s] =

∫ s

0

ds0 s0Π(s0|s)

=

∫ s
0

ds0 s0Π(s0, s)∫ s
0

ds0 Π(s0, s)
=
Eψ[s0Φ(s|s0)1s0≤s]

Eψ[Φ(s|s0)1s0≤s]
.

(B1)

We now apply matched asymptotic expansion to this ex-
pression.

1. Large cell asymptotics

For large cells s � s0, we can extend the range of in-
tegration in Eq. (B1) and compute the expectation value
as follows

Eψ[f(s0, s)] =

∫ ∞
0

ds0ψbw(s0)f(s0, s)

=

∫ ∞
0

ds0

∫ ∞
−∞

dk

2π
e−ik(s0−s̄0)

(
1− k2σ2

2

)
f(s0, s) +O(σ3)

= f(s̄0, s) +
σ2

2

∂2f(s̄0, s)

∂s̄2
0

+O(σ3).

Using f(s0, s) = s0Φ(s|s0) and f(s0, s) = Φ(s|s0) in
Eq. (B1), the conditional moments of birth size can be
approximated by

Elarge
Π [s0|s] = s̄0

{
1 +

2σ2

s̄0

∂ ln Φ(s|s̄0)

∂s̄0

}
+O(σ3)

=
{
s̄0 + 2aσ2γ(s− as̄0)

}
+O(σ3),

where the last equality follows from γ(s, s0) = γ(s− as0)
for the linear cell size control model (18), and s̄0 and σ are
the mean and standard deviation of the backward lineage
distribution ψbw given by Eqs. (34c).

2. Small cell asymptotics

Next we consider small cells by noting that Φ(s|s0) is
practically constant when s ≈ s0, the integral in (B1) can
be approximated by

EΠ[s0|s] ≈
Eψ[s01s0≤s]

Eψ[1s0≤s]
, (B2)

Assuming that ψ, is approximately Gaussian with mean
s̄0 and variance σ2, we find that near s ≈ s̄0, we have find

Eψ[s01s0≤s] ≈
1

2
s̄0

(
1 + erf

(
s− s̄0√

2σ

))
+
σe−

(s−s̄0)2

2σ2

√
2π

Eψ[1s̄0≤s] ≈
1

2

(
1 + erf

(
s− s̄0√

2σ

))
(B3)

and hence

Esmall
Π [s0|s] = s̄0 −

√
2
πσe

− (s−s̄0)2

2σ2

1 + erf
(
s−s̄0√

2σ

) +O
(
σ3
)
,

which is accurate to order σ3.
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3. Global asymptotics

The two asymptotic solutions can be matched at the
boundary layer. Since

lim
s→∞

Esmall
Π [s0|s] = lim

s→s0
Elarge

Π [s0|s] = s̄0,

the uniformly valid matched asymptotic expansion is

EΠ[s0|s] ≈ Esmall
Π [s0|s] + Elarge

Π [s0|s]− s̄0,

which gives Eq. (34b).

Appendix C: Analytical solutions and error bounds using the
linear noise approximation

We begin by outlining the solution of (28). Defining

Σ̃(s, s0) = U−1Σ(s, s0)U−†, (28) becomes

αs∂sΣ̃ij = (λi + λ∗j )Σ̃ij + sD̃ij (C1)

4Σ̃ij(s0, s0) = Σ̃ij(2s0, s0) + 2s0X̃ij . (C2)

Eq. (C1) has the solutions

Σ̃ij(s, s0) = cijs
λi+λ

∗
j

α +
D̃ijs

α
(

1− λi+λ∗j
α

) ,
where the constants cij are fixed using the boundary con-
dition (C2) which gives Eq. (30) of the main text.

Next, we will deduce some results implied by Eq. (28)
for reaction networks (1) with a single species. In this
case, the solution (30) reduces to

Σ(s, s0) =

s

(α− 2J )

2
(
D + 2J X̄ − αX̄

)(
2

2J
α − 4

) (s0

s

)1− 2J
α

+D

 .

Using this result in Eq. (37), we obtain the concentration
variance

Σ̄ =
β
(
coth

(
1
2β ln 2

)
+ 3
)

3(β + 1)

αX̄

Ωξ

+
β
(
3β − coth

(
1
2β ln 2

))
3 (β2 − 1)

D
Ωξ

, (C3)

where β = ξ
α and ξ = 2α− 2J = −2Jd.

Noting that (C3) increases monotonically with x and

that the ENM yields Σ̄EDM = αX̄
Ωξ + D

Ωξ , we obtain the

bounds

2

3 ln 2
Σ̄ENM ≤ Σ̄ ≤ Σ̄ENM

(
1 +

1

3

αX̄

D + αX̄

)
≤ 7

6
Σ̄ENM,

where the last inequality arises from the fact that D(X̄) ≥
αX̄, which implies Eq. (39). The minimum is achieved
when β → 0 (J = α) and the maximum is achieved when
D = αX̄ and β →∞ (|J | � α).

Similarly, we see that the intrinsic molecule number
variance is

Σint
ABM =

(
2β − 2

)
β

(2β − 1) (β − 1) ln 4

ΩαX̄

ξ

+
x
((

2β − 1
)
β ln 4− 2β(1 + ln 4) + 2 + ln 4

)
(2β − 1) (β − 1)2 ln 4

ΩD
ξ
.

Since the above equation decreases monotonically with x,
we obtain

1 + ln 4

ln 16
Σint

ENM ≤ Σint
ABM ≤ Σint

ENM

1

2 ln2(2)
.

Furthermore, taking also extrinsic variance ΣENM into
account, it follows that 1+ln 4

ln 16 ΣENM ≤ CovΠ[x] ≤
ΣENM

1
2 ln2(2)

and hence Eq. (40).

In the following, we give two examples of common au-
toregulatory circuits of the form

∅ sf(X̄)−−−−→ b× P,

where X̄ is the protein concentration and b is the burst
size following an arbitrary discrete distribution β, that
explicitly achieve these bounds.

a. Negative feedback We consider bursty protein ex-
pression with negative feedback with rate

f(X̄) = k0/((X̄/K)n + 1), (C4)

where k0 is the burst frequency, K is the saturation con-
stant and n is the Hill exponent. The model satisfies the
rate equation αX̄ = Eβ [b]f(X̄). The Jacobian of this
model is J (X̄) = −nα(k0 − αX̄) and the diffusion co-
efficient satisfies D

αX̄
= Eβ [b](1 + CVβ [b]2) ≥ 1, since b

has a discrete distribution β. Thus this example achieves
the maximum amplification of the concentration CV of
around 8% when n→∞ (|J | � α).

b. Positive feedback Consider instead an example of
positive feedback with rate equation

f(X̄) = δ +
k0X̄

n

X̄n +Kn
. (C5)

We find that the parameter choice n = 1, δ � k0, Kα ≈
Eβ [b]k0, achieves the lower error bound of around 2%.
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