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Abstract 

Major depressive disorder (MDD) is associated with coexisting disturbances in low-level sensory 
processing and high-order cognitive functions. However, the neurobiological mechanism underlying 
these phenotype deficits remains poorly understood. Here, we collect large-sample, multisite resting-
state functional magnetic resonance imaging data (1,150 patients with MDD and 1,084 healthy controls) 
and postmortem gene expression data. We show downgraded and contracted connectome gradients that 
are mainly involved in primary sensory and transmodal regions in patients with MDD relative to healthy 
controls, leveraging an association with gene expression enriched in transsynaptic signaling and calcium 
ion binding. Machine learning approaches based on support vector regression suggest that the alterations 
of connectome gradients in patients significantly predict depressive symptoms. These results shed light 
on gradient dysfunction of the large-scale functional connectomes in MDD and consolidate the spectrum 
deficits of sensory and cognitive processing in this disorder. 
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Introduction 

Major depressive disorder (MDD) is one of the most common and globally burdening psychiatric 
disorders1. Neuropsychological studies suggest that patients with MDD present with deficits not only in 
low-level sensory processing but also in high-order cognitive functions such as self-awareness, 
rumination, working memory, executive control, and reward processing2, 3, 4, 5. Although many prior 
studies have reported widespread abnormalities in brain structure and function in MDD6, 7, 8, 9, 10, 11, the 
neurobiological mechanism underlying the coexisting deficits in sensory and cognitive processing 
remains to be elucidated.   

Hierarchical architecture is one of the fundamental organizational principles of the human brain, 
allowing for efficient encoding and integration of information communication from sensation to 
cognition12. Resting-state functional MRI (R-fMRI)13 and the cutting-edge gradient decomposition 
framework14 enable researchers to noninvasively investigate the hierarchical architecture of the 
macroscale functional connectome in vivo14, 15. In healthy adults, the network architecture of the 
macroscale connectome follows a principal gradient along the axis from the primary to the transmodal 
systems. Such a pattern provides insights into the brain basis of the spectrum of sensory input and 
cognitive processing14 and is largely comparable to various cortical features, including microstructural 
myelination16 and transcriptional profiles17, 18. Moreover, the connectome hierarchy is altered during 
development19 and in brain disorders such as autism20. Regarding MDD, connectome dysfunction using 
R-fMRI has been frequently reported, involving the primary visual and sensorimotor systems6, 21, 22, 23 
and transmodal systems such as the default mode network (DMN) and frontoparietal network (FPN)21, 22, 

24, 25, 26. However, no studies have investigated whether and how the functional connectome hierarchy is 
disrupted in patients with MDD. The characterization of the hierarchical architecture of the functional 
connectome in MDD is highly relevant to an understanding of the network mechanisms underlying the 
interplay between abnormal sensory and cognitive processing in MDD patients.  

Notably, much research has indicated that MDD is a moderately heritable disorder27. Genome-wide 
association studies (GWAS) have identified several risk variants of genes linked to MDD, and some of 
the replicably identified genes play roles in the biological functions of presynaptic differentiation and 
neuroinflammation28. To date, measuring gene expression in brain tissue in vivo has been extremely 
difficult. The integration of gene expression profiles in the postmortem brain with connectomes derived 
from neuroimaging data provides unprecedented opportunities to bridge the gap between the microlevel 
transcriptome profile and the macroscale brain network18, 29, 30, 31. The fundamental architectures of 
functional connectomes (e.g., network hubs) are associated with gene expression profiles involving ion 
channel activity and oxidative metabolism30, 32. Distinct gene expression profiles can also explain the 
variances in the spatial patterns of alterations in brain structures in different psychiatric states, including 
schizotypy33 and autism34. If patients with MDD exhibit disturbances in the macroscale connectome 
hierarchy, we speculate that a microlevel molecular mechanism for coding these functional brain 
abnormalities might exist.  

To address these issues, in the present study we collected a large multisite R-fMRI dataset from 2,234 
individuals in China and the postmortem gene expression data from the brains of six donors from the 
Allen Institute for Brain Science (AIBS)29. We investigated the functional connectome hierarchy in 
MDD and established their associations with the transcriptome profile. Specifically, we hypothesized 
that (i) the connectome hierarchy is disrupted in patients with MDD, where abnormalities exist in both 
the global hierarchy shapes and regional gradient scores of low-level sensory and high-order transmodal 
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systems; (ii) the regions with an altered connectome hierarchy in MDD are associated with multiple 
functional domains, including primary processing, such as somatosensory and visual perception, and 
high-order cognitive functions, such as theory of mind, reward, and working memory; and (iii) the 
spatial patterns of MDD-related hierarchy alterations are associated with gene expression profiles that 
are enriched in particular biological processes, such as synaptic functions.  

Results  

This study included R-fMRI data from 2,234 participants (1,150 patients with MDD, 33.8 ± 14.99 years 
old, 58.5% female; 1,084 HCs, 34.0 ± 13.87 years old, 56.8% female; 622 drag-naïve patients, 54.1%) 
who were recruited from ten research centers in China through the Disease Imaging Data Archiving - 
Major Depressive Disorder Working Group (DIDA-MDD; Table 1 and Supplementary Table 1). For 
each individual, we first constructed high-resolution voxelwise functional connectomes (18,933 nodes) 
and then applied the diffusion map embedding approach14, 20 to estimate the connectome hierarchy 
architecture. The resultant gradient maps were further aligned across individuals using the Procrustes 
rotation20 and corrected for the center effect using the ComBat model6, 35. We found that the first three 
gradients explained 28.5% ± 3.9% of the total variance in the connectome across all individuals (MDD, 
28.2% ± 3.9%; HC, 28.9% ± 3.9%, Supplementary Fig. 1). The principal gradient (G1) was organized 
along a gradual axis from the primary visual/sensorimotor networks (VIS/SMN) to the DMN (Fig. 1A), 
replicating recent findings revealing connectome gradients from the primary to the transmodal cortices 
in healthy adults14. The second gradient (G2) extended between the DMN and the ventral attention 
network (VAN) and the third gradient (G3) separated the SMN from the VIS network (Fig. 1B and C). 
The spatial patterns of the group-averaged gradient maps were remarkably similar between the MDD 
and HC groups, with Spearman’s ρ = 0.999, 0.998, and 0.998 for G1, G2, and G3, respectively (all P < 
0.00001, Supplementary Fig. 2). Visual inspection of the histogram revealed that the extremes of all 
three gradients were contracted in MDD relative to the control range (Fig. 1A-C). 

Alterations of Connectome Hierarchy in MDD  

Statistical between-group comparisons showed that G1 and G3 explained less variance in the functional 
connectome in the MDD group than in the HC group (P = 0.0002 for G1 and P = 0.019 for G3, Fig. 2A), 
suggesting a downgraded status of the hierarchal organization in MDD. Moreover, the patients with 
MDD showed a narrower range of the gradient scores of all three gradients and less spatial variations in 
G1 and G3 (all P < 0.0003, Fig. 2A) than the HCs, indicating a contracted connectome hierarchy in 
MDD.  

To further identify regions with hierarchy alterations, we compared the gradient scores at the voxel-level 
between MDD and HCs using a general linear model controlling for effects of age and sex. Compared 
with the HC group, the MDD group showed significantly altered gradient scores (voxel-level P < 0.001, 
Gaussian random field (GRF) cluster level-corrected P < 0.05) (Fig. 2B and Supplementary Table 2-4): 
(i) in G1, lower gradient scores in the DMN but higher scores in the VIS and SMN; (ii) in G2, lower 
scores in the DMN but higher scores in the VAN and subcortical regions (SUB); and (iii) in G3, lower 
scores in the FPN but higher scores in the SMN. To synoptically visualize the trajectory of the MDD-
related alterations in these regions, we mapped the gradient scores into a space spanned by the three 
gradients, where the group-averaged gradient scores were anchored in the DMN, VIS, SMN and VAN 
(Supplementary Fig. 3). The identified clusters, particularly the regions in the DMN, VIS and SMN, 
showed a strong shift from the periphery to the center in this space, indicating the less-specialized 
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connectivity profiles of these regions in MDD (Fig. 2C). Moreover, the displacement of these clusters 
was significantly system dependent (F = 387.3, P < 0.001), where the VIS, SMN and DMN showed a 
larger displacement than that expected by chance (all P < 0.05, permutation test, Bonferroni corrected, 
Supplementary Fig. 4).  

To further determine the cognitive processes that were most associated with MDD-related gradient 
alterations, we used Neurosynth (https://neurosynth.org/), a metanalytic tool36, to decode the thresholded 
Z-maps against cognitive terms derived from experimental task conditions. In Fig. 2D, we found the 
following: (i) the regions with G1 alterations were mainly involved in sensorial and perceptional 
processes, such as visual, somatosensory and acoustic process, and were activated by DMN-related 
terms in theory of mind, memory-retrieval, and autobiographical memory; (ii) the regions with G2 
alterations were best converged with meta-analytic maps of reward, incentive, and reactivity and DMN-
related terms; and (iii) G3 alterations were located in regions that were activated by perceptional terms 
and goal-directed task-related performance, including working memory, attention, and maintenance. 
These results suggest that these gradient alterations are potentially related to abnormal sensory and 
cognitive processing in patients with MDD.   

Associations Between MDD-related Gradient Alterations and Gene Expression Profiles  

To explore the potential molecular substrates associated with the MDD-related alterations in the 
connectome gradients, we used the gene expression datasets of six adult human brain specimens from 
the AIBS29. Partial least squares (PLS) regression was applied to investigate the relationship between the 
between-group Z-maps of the connectome gradients and gene expression profiles. The first component 
of the PLS regression defined a weighted sum of gene expression that explained 12.5% of the variance 
in the MDD-related alterations in the connectome gradients (P < 0.001, permutation test, Fig. 3A), 
representing a transcriptional profile characterized by high expression mainly in the posterior parietal-
occipital areas but low expression in prefrontal areas (Fig. 3B). The regional mapping of this component 
positively correlated with the Z-map of G1 (r = 0.551, P < 0.001) but negatively correlated with the Z-
map of G2 (r = -0.264, P < 0.001, Fig. 3C). We ranked the genes according to their weights in the PLS 
model, where the top genes obtained after sorting in descending order were denoted the upregulated set, 
and those obtained after sorting in ascending order were denoted the downregulated set. Using the Gene 
Ontology enrichment analysis and visualization tool (GOrilla, http://cbl-gorilla.cs.technion.ac.il/), we 
found that the downregulated genes were significantly enriched in biological processes related to 
transsynaptic signaling and molecular function of calcium ion binding (FDR-corrected q < 0.01, Fig. 3D 
and Supplementary Table 5).  

Clinical Relations to Connectome Gradients in MDD 

Next, we investigated whether the connectome hierarchy was related to clinical variables, including 
episode number, medication, and onset age in MDD. We divided patients into subgroups according to 
their clinical variables (i.e., episode, medication, and onset age) and compared the connectome hierarchy 
metrics between subgroups. Patients in their first episode (N = 512) had a smaller G2 range than 
recurrent patients (N = 80) (P = 0.027, Fig. 4A). Patients with an onset in adolescence (age ≤ 21 years, 
N = 303)8 showed a significantly narrower gradient range for G1 (P = 0.001) and G2 (P = 0.011) and a 
smaller region variation for G1 (P = 0.026) than patients who had an onset age older than 21 years (N = 
293) (Fig. 4B). There were no significant differences between patients who were and were not taking 
medication (Supplementary Table 6). Voxelwise comparisons showed that there was no difference in 
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regional gradient scores between any of these clinical category pairs after correcting for multiple 
comparisons. We further utilized supervised machine learning37 to examine whether the connectome 
gradient features were able to predict depressive symptoms in the patients. Using support vector 
regression (SVR) and 10-fold cross-validation (where the predictive model was repeatedly trained on 9 
folds of the data and tested on the 10th fold), we found that the regional displacement in the gradient 
space of the clusters with MDD-related alterations could significantly predict the total score of the 
Hamilton Depression Rating Scale (HDRS; mean average error (MAE) = 5.6, mean r = 0.15, P < 
0.0001, permutation test, Fig. 4C). The most contributive features were located in several primary and 
high-order systems, such as the SMN (percentage of total feature weights in SVR: 27.2%), DMN 
(21.1%), and VIS (15.1%) (Fig. 4D and E).  

Reproducibility Validation 

We estimated the reproducibility of the identified MDD-related gradient alterations by considering 
several potential confounding factors. First, we used a leave-one-site-out cross- validation strategy to 
examine whether alterations were associated with specific sites. This was done by repeating the 
between-group comparisons on the data, excluding one site at a time. Second, some of the participants 
were younger than 18 years old, which may explain the between-group difference in brain development. 
Thus, we reperformed the data analysis for only adult participants (1,002 patients with MDD and 1,034 
HCs). Finally, to further control for the effect of head motion on R-fMRI connectivity measures, we 
repeated the between-group comparisons with the mean framewise displacement as an additional 
covariate. Together, the MDD-related disruption patterns of the connectome gradient remained highly 
similar to those in our main findings, suggesting a high reproducibility of the results (Supplementary 
Fig. 5-6 and Supplementary Table 7-8).  

Discussion 

In this study, based on a large cohort of R-fMRI data, we demonstrated a hierarchical dysfunction in the 
large-scale functional connectomes in patients with MDD. Specifically, patients with MDD exhibited a 
downgraded and contracted connectome hierarchy, and the most significant alterations were noted in 
gradient scores in the sensory and transmodal areas. These gradient changes are tightly associated with 
transcriptional profiles, and the most correlated genes are enriched in transsynaptic signaling and 
calcium ion binding. These findings offer insights into the understanding of the neurobiological 
mechanisms underlying the coexisting deficits in low-level sensory processing and high-order cognitive 
functions in patients with MDD.  

Downgraded and Contracted Connectome Hierarchy in MDD 

We identified a downgraded and contracted connectome hierarchy in MDD, indicated by a less-
explained variance in the functional connectome and a narrower distribution range of gradient scores. 
Disturbances in the architecture of the macroscale functional brain network have recently been 
considered critical in the pathology of depression21, 38, 39. Notably, although the changes in the topology 
of the functional connectomes in MDD remain inconsistent in direction across the literature, likely as a 
result of differences in patient inclusion criteria and methodological choices40, many studies have 
demonstrated a replicable pattern towards a randomized configuration of the functional brain networks 
in patients with MDD23, 40, 41. The downgraded connectome hierarchy in MDD observed here is 
supported by these prior reports. Randomized network connections can break the natural balance 
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between integration and segregation in healthy individuals with miswired connections. Therefore, the 
probability of incomplete or redundant pathway formation for information processing is increased, 
which results in a less prioritized hierarchical architecture in the functional connectome in MDD. 
Intriguingly, such an alteration was not the result of the disconnection of a single system but that of 
widely distributed systems from the low-level primary to the high-order transmodal cortices.  

We observed that several specific regions in the SMN/VIS and DMN shifted from the periphery to the 
center in the hierarchical space, implying a trend towards dedifferentiated connection profiles between 
these systems. This phenomenon is comparable to previous findings from connectome modular studies 
in MDD, where hyperconnections were found among the primary visual and sensorimotor systems and 
the transmodal DMN and FPN22, 25 and could be used to distinguish remitters from nonremitters42. In a 
hierarchical brain organization, the low-level primary systems receive external stimulation signals and 
process them into abstract representations43, while the high-order systems integrate the processed 
information with internal control, memory, and emotion to guide interactions with the external 
environment12, 43. Specifically, the primary sensory cortices, including the occipital cortex, superior 
temporal cortex, and postcentral gyrus, have been recognized to play roles in the visual, auditory, and 
somatosensory systems, particularly for visuospatial, face, language, and perception processes44, 45, 46. 
The core regions of the DMN, such as the medial prefrontal cortex, posterior cingulate cortex, and 
precuneus, are considered densely connected hubs in the functional connectome and play the most 
important roles in the theory of mind, memory retrieval, autobiographical memory, and working 
memory47, 48, 49. Consistent with simultaneous clinical and cognitive impairments in multiple domains in 
MDD, the contracted hierarchy involving multilevel systems in the functional connectome may reflect 
incomplete or blunt bottom-up information processing from the primary systems and failures in the 
corresponding top-down processing from the high-order systems50. Additionally, the degree of 
downgrade and contraction in the connectome hierarchy increases as the patient onset age decreases, 
indicating that an early onset is linked with more severe changes in the connectome hierarchy. A recent 
study showed that the principal DMN-SMN/VIS gradient pattern observed in healthy adults is not fully 
developed in neonates19. Therefore, the early onset of MDD in childhood and adolescence may have an 
interactive effect on the development of the connectome hierarchy, which needs to be studied in the 
future.   

Gene Expression Profiles for Transsynaptic Signaling and Calcium Ion Binding in MDD 

Our connectome-transcriptome association analysis established a link between MDD-related changes in 
connectome gradients and gene expression enriched in transsynaptic signaling and calcium ion binding. 
Transsynaptic signaling is one of the most fundamental biological processes that contributes to a series 
of critical molecular functions, including instructing the formation of synapses, regulating synaptic 
plasticity, and matching pre- and postsynaptic neurons51, 52. It enables the establishment of complex 
neuronal networks supporting effective information transfer and processing throughout the brain. The 
variation in synaptic signaling across the cerebral cortex has been demonstrated to be organized along 
the axis of the cortical hierarchy, which corresponds well to the principal gradient of macroscale 
functional connectomes17, 53. Notably, disruptions in transsynaptic signaling in many of the key 
pathways can influence the formation and stability of synapses and have been known to play roles in the 
pathology of depression54. For example, studies in postmortem tissues and rodent models revealed that 
exposure to chronic stress can disrupt the pathway of brain-derived neurotrophic factor (BDNF)-
tropomyosin-related kinase B (TrkB) receptor signaling by reducing the downstream extracellular 
signal-regulated kinase (ERK) and Akt pathways in the hippocampus and prefrontal cortex55, 56. 
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Disturbances in these pathways can decrease the expression and function of BDNF and further cause 
neuronal atrophy in regions that are implicated in depression57. Consistent with our findings, a recent 
study combining gene coexpression networks and genome-wide summary statistics also revealed that 
MDD risk genes were enriched in gene modules involving transsynaptic signaling58. In addition to 
transsynaptic signaling, calcium ion binding is another crucial molecular function for intracellular 
signaling. In particular, calcium ion binding can occur in signal transduction resulting from the 
activation of ion channels or as a second messenger in wide-ranging physiological pathways involving 
synaptic plasticity. In MDD, evidence from postmortem studies suggests that the density of calbindin-
immunoreactive GABAergic neurons is significantly reduced in the dorsolateral prefrontal cortex of the 
patients59. Here, our findings provide further evidence that the disrupted connectome hierarchy 
architecture in MDD is associated with the gene expression profile related to these two general 
molecular mechanisms. However, we were unable to determine whether microlevel transcriptional 
dysregulation resulted in macrolevel connectome dysfunction or whether either of these were causally 
influenced by risk factors for MDD, such as environmental risk factors. 

Limitations and Further Considerations 

First, cognitive performance was not fully recorded for each patient, which limited the opportunity to 
study the associations between connectome hierarchy disruptions and different aspects of cognitive 
domains in MDD. Alternatively, we compared the gradient alteration maps to the meta-analytic 
cognitive topic maps from the widely used Neurosynth database36 to illustrate cognitive terms. Second, 
longitudinal treatment datasets of MDD were not included in the current study. Previous studies have 
suggested that the functional brain abnormalities can be normalized after anti-depressant60, 
electroconvulsive therapy61, or deep brain stimulation surgery62 in patients with MDD. Future studies 
using longitudinal datasets are critical for understanding the effects of treatment on connectome 
hierarchy architectures in MDD and for providing imaging biomarkers for evaluating treatment effects. 
Finally, the gene expression data from the AIBS were sampled from donors without a diagnosis of 
MDD. Thus, the observed association between connectome hierarchy and transcriptome profiles should 
be considered cautiously. Future studies with larger samples of whole-brain genome-wide gene 
expression data for MDD could provide stronger evidence to address this issue. 
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Materials and Methods 

Imaging Dataset  

This study included 2,414 participants (1,276 patients with MDD and 1,138 HCs) who were recruited 
from ten research centers in China through the DIDA-MDD (China Medical University, CMU; Central 
South University, CSU; Guangzhou University of Chinese Medicine, GCMU (two datasets); Kunming 
Medical University, KMU; Peking University Sixth Hospital, PKU; Sichuan University, SCU; 
Southwest University, SWU; National Yang-Ming University, YMU; and Zhengzhou University, ZZU). 
All patients were diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders IV 
(DSM-IV) criteria for MDD63 but not for any other Axis I disorders. The severity of depression was 
rated using the HDRS64. The HCs did not have a current or lifetime history of any Axis I disorder. The 
exclusion criteria for all participants included MRI contraindications, a history of drug or alcohol abuse, 
concomitant major medical disorders, head trauma with consciousness disturbances or any neurological 
disorders. Quality control was performed for both clinical and imaging data, and 180 participants were 
excluded due to a lack of demographic information (N = 5), age (7 years old, N = 1), a change in their 
diagnosis during follow-up interviews (N = 7), duplicate data in the data transfer or errors in the raw 
DICOM data (N = 10), different scanning parameters or incomplete scans (N = 24), abnormalities in the 
anatomical brain images (N = 14), excessive head motion (exceeding 3 mm of translational movement, 
3° of rotational movement or 0.5 mm of mean framewise displacement, N = 71), incomplete coverage of 
the entire brain (N = 46), error in normalization (N = 1), and an abnormal temporal signal-to-noise ratio 
(N = 1). The final sample included 2,234 participants (1,150 patients with MDD and 1,084 HCs, Table 
1). The study was approved by the ethics committees of each center, and written informed consent was 
obtained from each participant. The R-fMRI data of all participants were obtained on 3.0-T MRI 
scanners with gradient-echo planar imaging sequences. During the scan, the participants were instructed 
to keep their eyes closed without falling asleep and to move as little as possible. Detailed scanning 
parameters for each center are listed in Supplementary Table 1. A subset of the dataset was used to study 
regional activity and functional connectivity in MDD6 but not connectome gradients.  

Data Preprocessing 

R-fMRI image preprocessing was conducted with SPM12 (www.fil.ion.ucl.ac.uk/spm/) and SeeCAT 
(www.nitrc.org/projects/seecat), an in-house toolbox. Briefly, the first ten time points (the first five time 
points for the CSU, GCMU1 and ZZU datasets due to their short scan times) were discarded. 
Subsequent preprocessing steps included slice-timing correction and head-motion correction. Next, the 
motion-corrected functional images were normalized to the standard space using an echo planar imaging 
(EPI) template, resampled to 3-mm isotropic voxels, and further smoothed with a 6-mm full-width at 
half-maximum Gaussian kernel. Linear detrending was performed, and several confounding covariates, 
including the Friston-24 head-motion parameters and the white matter and cerebrospinal fluid signals, 
were regressed out from the time series for all voxels. Subsequently, temporal bandpass filtering (0.01-
0.08 Hz) was applied. Finally, a “scrubbing” procedure was performed on individual preprocessed 
datasets to remove outlier data due to head motion65. Specifically, for volumes with a framewise 
displacement exceeding a threshold of 0.5 mm, we replaced the volumes and their adjacent volumes (2 
forward and 1 backward frames) with linearly interpolated data. 

Connectome Hierarchy Analysis 
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We constructed individual functional connectomes at the voxel level. To reduce the computational 
complexity, we resampled the preprocessed R-fMRI images to a 4-mm isotropic resolution. For each 
individual, a functional connectivity matrix was first estimated by calculating the Pearson correlation 
coefficients between each pair of gray matter nodes (18,933 voxels). The top 10% of the connections 
were retained for each node, and the cosine similarity was calculated between each pair of nodes. The 
similarity matrix was further scaled into a normalized angle matrix to avoid negative values19, 66. Then, 
diffusion map embedding was applied to capture the gradient components that could explain the 
variance in the connectivity pattern of the functional connectome. Following the previous 
recommendation, we set the manifold learning parameter α = 0.514, 19, 20. For each gradient map, the 
explanation ratio for the connectome variance, distribution range and spatial variance were calculated. 
Procrustes rotation was performed to align individual gradient maps across subjects19, 20. Finally, we 
utilized the ComBat model, an empirical Bayes-based multivariate linear mixed-effects regression, to 
correct for site effects on the gradient map and measurements6, 35. The between-group differences in the 
gradient measurements were determined by two-sample t test with age and sex controlled. The 
significance level of the voxelwise comparison was set to a voxel-level P < 0.001 with a cluster-level 
Gaussian random field-corrected P < 0.05. 

Cognitive Topics Relevant to Alterations in Gradients in MDD 

We used Neurosynth (https://neurosynth.org/)36 to assess the topic terms associated with the alterations 
in the connectome gradient in MDD. The thresholded Z-maps derived from the between-group 
comparisons for each gradient were first divided into MDD-positive and MDD-negative maps. The 
resultant maps were then uploaded to Neurovault and analyzed using the “decoder” function of 
Neurosynth website. For each of the maps, the noncognitive terms (e.g., anatomical and demographic 
terms) were removed and the top 30 cognitive terms were selected. The cognitive terms were visualized 
on a word-cloud plot with the font size scaled according to their correlation with corresponding meta-
analytic maps generated by Neurosynth.  

Gene Expression Dataset  

The microarray-based gene expression data of the Human Brain Atlas were downloaded from the AIBS 
website29. The human brain tissue samples in this atlas were collected from the brains of six adult donors 
(mean age: 42.5 years, 1 female), including two complete brains and four left hemispheres. Each 
postmortem hemisphere of the brain had been dissected into approximately 500 anatomically discrete 
samples. Each sample had been spatially registered to the Montreal Neurological Institute (MNI) 
coordinate space according to the T1-weighted images obtained before dissection, and the locations of 
all samples are given in MNI coordinates. Normalization processes were conducted by the AIBS to 
minimize the potential effects of nonbiological biases and ensure the gene expression data were 
comparable among samples within and across the brains.  

Gene Expression Data Preprocessing 

Given that the AIBS dataset did not cover the whole brain at the voxel level, we utilized cortical 360-
region brain parcellation18, 67 to perform gradient-gene expression association analysis. We performed 
preprocessing for the gene expression microarray data of brain tissue samples by using the Allen Human 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.24.352153doi: bioRxiv preprint 

https://neurosynth.org/
https://doi.org/10.1101/2020.10.24.352153
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 

Brain Atlas (AHBA) processing pipeline (https://github.com/BMHLab/AHBAprocessing) with the 
default recommended setting68. This preprocessing procedure is built on a systematic assessment of 
workflow for combining AHBA and neuroimaging data68. Briefly, the probe-to-gene annotations were 
verified using the hg38 sequencing database. Then, probes with values that did not exceed background 
noise were filtered. The probe with the highest correlation to RNA-seq data was selected to index 
expression for a gene. Then, each tissue sample was assigned to its nearest cortical region of the 360-
parcellation. Samples with a distance greater than 2 mm to any of the 360 regions were excluded. These 
procedures resulted in 820 brain tissue samples covering 284 regions with each sample containing the 
expressions of 10,027 genes. Subsequently, a two-step scaled robust sigmoid normalization approach 
was used to correct for both intersample and intersubject variability. For each sample, normalization was 
applied across all the probes within the sample. Then, for each subject, normalizations were performed 
for each probe across all the samples. Finally, for each region, the gene expression was obtained by 
averaging all samples from six donors, resulting in a gene expression map (284 regions × 10,027). Four 
regions were excluded in the following analysis due to the low overlapping percentage (< 50%) between 
the cortical 360-region brain parcellation and the gray matter mask in this study. 

Association Analysis Between Gradient Alterations and Gene Expression  

We used partial least squares (PLS) regression to explore the association between transcriptional profiles 
and the alterations in the connectome gradients in MDD. PLS regression can define several components, 
each of which is a linear combination of the predictor variables (i.e., gene expression) that can explain 
most of the variance in the response variables (i.e., between-group difference t-maps of connectome 
gradients). The predictor variables matrix X and the response variables matrix Y are first centered, 
resulting in X0 and Y0, respectively. Component i of the PLS regression is then weighted by pi and qi to 
calculate the component scores Ti and Ui for X0 and Y0, respectively:  

𝑇𝑇𝑖𝑖 = 𝑋𝑋0𝑝𝑝𝑖𝑖 + 𝐸𝐸; 𝑈𝑈𝑖𝑖 = 𝑌𝑌0𝑞𝑞𝑖𝑖 + 𝐹𝐹 

where E and F are error terms. Then, the weight vectors pi and qi and the component scores Ti and Ui are 
estimated to ensure the maximum covariance between Ti and Ui. Thus, the regression of the predictor 
variables and response variables can be defined as follows:  

𝑈𝑈𝑖𝑖~𝑇𝑇𝑖𝑖 or 𝑌𝑌0𝑞𝑞𝑖𝑖 = 𝐵𝐵0𝑖𝑖 + 𝐵𝐵1𝑖𝑖𝑋𝑋0𝑝𝑝𝑖𝑖 + 𝐺𝐺 

where G is an error term and B1i and B0i are the regression coefficient and intercept, respectively. The R2 
of the fitting for each component illustrates how much the predictive variables can explain the variance 
in the response variables. Here, in our PLS model, the gene expression data of the brain nodes (280 
nodes × 10,027 genes) were set as the predictor variables X, and the Z values of gradient gradients 1, 2, 
and 3 of the brain nodes (280 nodes × 3 statistics) were set as the response variables Y.  

A permutation test was performed to determine whether the R2 derived from PLS regression analysis 
was significantly greater than that expected by chance. In each permutation, the labels of the nodes of 
the response variables were shuffled, and surrogate Z values were assigned to each node. Then, the 
surrogate Z values were used as the response variable in the PLS regression, and the corresponding R2 
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values were recorded. The permutation was repeated 10,000 times to generate the null model. The real 
R2 values of the first few components that explained over ten percent of the variance in the response 
variables (here, only one component over ten percent) were compared with those from this null model to 
determine whether the real R2 values were significantly greater than those expected by chance. Then, for 
each significant component, we used a bootstrapping method to assess the estimation error of the weight 
of each gene and further divided the weight by the estimated error to obtain the corrected weight of each 
gene69.  

We ranked the genes according to their corrected weights, which represent their contribution to the PLS 
regression components. Both the positive and negative sequences were enrolled for the following gene 
enrichment analysis. The Gene Ontology enrichment analysis and visualization tool (GOrilla, http://cbl-
gorilla.cs.technion.ac.il/)70 was used to identify the enriched Gene Ontology terms of the ranked genes 
from each significant component. Specifically, we used a P-value threshold of 10-6 in the advanced 
parameter settings and applied the Benjamini-Hochberg false discovery rate (FDR) method to correct for 
the multiple tests. In the main results, the Gene Ontology terms with an FDR q-value less than 0.01 were 
reported. The Reduce Visualize Gene Ontology (REVIGO, http://revigo.irb.hr/) tool was used to 
summarize the obtained Gene Ontology terms by removing redundant terms.  

Predicting Individual Depressive Symptoms with a Machine Learning Model 

We performed support vector regression (SVR) with a linear kernel to examine the ability of the 
connectome gradients to predict patient symptoms. A 10-fold cross-validation strategy was adopted to 
estimate the accuracy of the prediction. Here, the participants were first sorted according to their HDRS 
scores and were then assigned to the corresponding fold (e.g., 1st, 11th, …, to the first fold; 2nd, 12th, …, 
to the second fold; 3rd, 13th, …, to the third fold; etc.). Nine folds of the data were defined as the training 
set in turn, and the remaining fold was defined as the test set. During each training procedure, an internal 
5-fold cross-validation was performed to optimize the parameters of the SVR with a grid search (i.e., C 
= 10-3, 10-2, 10-1, 100, 101, 102, 103, 104, and 105). To avoid the bias caused by features with greater 
numeric ranges, we linearly scaled each feature to the range of 0–1 across the training dataset, and 
applied the estimated scaling parameters to the testing dataset. The final accuracy was reported as the 
Pearson’s correlation coefficient between the predicted and observed HDRS scores across all patients. 
The nonparametric permutation test (10,000 times) was performed to assess the statistical significance of 
the prediction accuracy. During each permutation, the observed HDRS scores of the patients were 
randomly shuffled prior to SVR and cross-validation. Thus, the null distribution of the correlation 
coefficients was obtained, and a P-value was calculated by dividing the number of times that the 
permutations had higher correlation coefficients than the real coefficient by 10,000. The codes for this 
prediction analysis were mainly modified from Cui and Gong 71 
(https://github.com/ZaixuCui/Pattern_Regression_Matlab) and the libsvm 
(www.csie.ntu.edu.tw/~cjlin/libsvm/). 

Data availability 

The data collected and analyzed during the current study are available from the corresponding author on 
reasonable request. All relevant codes are publicly available upon publication.  
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Figure Legends 

 

Fig. 1. Connectome gradient mapping in patients with MDD and controls. (A) The principal gradient 
was organized along a gradual axis from the primary visual/sensorimotor networks to the default mode 
network. (B) The second gradient extended between the default mode and the ventral attention networks. 
(C) The third gradient separated the sensorimotor from the visual networks. Global and system-based 
histograms show that the extreme values were contracted in patients with MDD relative to the controls 
for all three gradients. Surface rendering was generated using BrainNet Viewer 
(www.nitrc.org/projects/bnv/)72 with the inflated cortical 32K surface67. VIS, visual network; SMN, 
sensorimotor network; DAN, dorsal attention network; VAN, ventral attention network; SUB, 
subcortical regions; LIB, limbic network; FPN, frontoparietal network; DMN, default mode network. 
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Fig. 2. Statistical comparison of gradient metrics. (A) Case-control differences in global gradient 
metrics. *, P < 0.05; ***, P < 0.001; n.s., not significant. (B) Voxelwise statistical comparisons between 
controls and patients with MDD, and higher/lower values in MDD are presented as warm/cold colors. 
The significance level was set as voxel-level P < 0.001 and Gaussian random field cluster level-
corrected P < 0.05. (C) Scatter plot for each pair of the first three gradients in controls and patients with 
MDD illustrates a contracted distribution of gradient scores in MDD. Each dot represents a voxel and its 
color indicates the corresponding system. The circles represent the peak of the clusters with case-control 
differences and indicate their displacement from the periphery to the center in this space. (D) Word 
clouds of cognitive terms associated with brain regions that exhibited higher (red) or lower (blue) 
gradient scores in MDD. The font size of the cognitive terms corresponds to the correlation of 
corresponding meta-analytic maps generated by Neurosynth. 
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Fig. 3. Association between MDD-related gradient alterations and gene expression. (A) The percentage 
of variance in response variables explained by components in the partial least squares regression 
analysis. ***, P < 0.001. (B) The first partial least squares component (PLS 1) identified a gene 
expression profile with high expression mainly in the posterior parietal-occipital areas but low 
expression in prefrontal areas. (C) This transcriptional profile was positively correlated with the 
between-group Z-map of Gradient 1 but negatively correlated with the between-group Z-map of 
Gradient 2. The shadow indicates 95% confidence intervals. Each dot represents a region. (D) The 
inversed gene rank of PLS 1 is enriched for genes related to Gene Ontology of the biological process of 
trans-synaptic signaling and molecular function of calcium ion binding. 
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Fig. 4. Clinical influences and symptom prediction. (A) Group differences in the range of Gradient 2 
between patients in their first-episode and recurrent patients. (B) Group differences in the range of 
Gradient 1 and Gradient 2 and variance of Gradient 1 between patients with an onset age ≤ 21 years and 
those with an onset age of older than 21 years. *, P < 0.05; ***, P < 0.001. (C) Scatter plot presents 
significant positive correlations between the observed Hamilton Depression Rating Scale and the 
predicted scores derived from the SVR analysis with 10-fold cross-validation using MDD-related 
displacement in gradient space as features (permutation-tests; P < 0.0001). Each dot represents the data 
from one patient, and the dashes indicate the 95% prediction error bounds. (D) The absolute weight in 
10-fold cross-validation were summed and mapped onto brain surface. Regions with higher/lower 
predictive power were colored in white/red. (E) The radar map represents the distribution of predictive 
power in different systems, and the SMN, DMN and VIS contributed the top predictive power (27.2%, 
21.1%, and 15.1%, respectively). FED, first-episode; OA, onset age; HDRS, Hamilton depression rating 
scale. 
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Tables 

Table 1. Demographic, clinical and imaging quality characteristics 

Center Group Age, mean 
(SD), yr 

Sex (M/F) Education, 
mean (SD), yr 

Duration of 
illness, 
mean (SD), 
yr 

Medicated 
(Yes/No) 

HDRS*, 
mean (SD) 

Mean FD, 
mean (SD), 
mm 

CMU,  Controls (N=249) 27.24 (8.20) 103/146 14.85 (3.23)     1.10 (1.68) 0.11 (0.06) 
Shenyang Patient (N=125) 27.91 (9.70) 39/86 12.15 (3.07) 1.65 (3.17) 49/76 21.44 (8.67) 0.11 (0.07) 
  t or χ2/P 0.70/0.484 3.33/0.068 7.72/<0.001     33.71/<0.001 1.07/0.286 
                  
CSU,  Controls (N=108) 32.31 (7.96) 62/46 11.84 (3.40)     0.62 (0.88) 0.13 (0.06) 
Changsha Patient (N=177) 36.28 (10.21) 77/100 10.16 (3.43) 2.52 (3.83)  N.A. 31.39 (7.82) 0.14 (0.07) 
  t or χ2/P 3.45/0.001 5.19/0.023 4.02/<0.001     36.52/<0.001 0.88/0.382 
         
GCMU1, Controls (N=34) 30.09 (10.88) 10/24 13.68 (3.07)    0.10 (0.03) 
Guangzhou Patient (N=34) 29.41 (8.27) 9/25 13.00 (3.44) 0.65 (0.70) 0/34 21.85 (2.25) 0.09 (0.03) 
 t or χ2/P 0.29/0.774 0.07/0.787 0.86/0.395    0.32/0.750 
         
GCMU2, Controls (N=66) 29.33 (10.12) 31/35 12.47 (2.53)    0.09 (0.04) 
Guangzhou Patient (N=66) 29.48 (9.91) 25/41 12.18 (3.09) 0.76 (1.00) 0/66 22.30 (3.57) 0.09 (0.06) 
 t or χ2/P 0.29/0.774 1.12/0.291 0.59/0.559    0.29/0.770 
         
KMU, Controls (N=50) 39.72 (11.97) 28/22 15.72 (3.88)    0.17 (0.06) 
Kunming Patient (N=41) 34.20 (9.37) 20/21 11.73 (4.35) 1.13 (1.28) N.A. 23.61 (4.64) 0.19 (0.08) 
 t or χ2/P 2.47/0.015 0.47/0.492 4.62/<0.001    1.26/0.211 
                  
PKU,  Controls (N=73) 31.90 (9.01) 42/31 15.23 (2.28)       0.18 (0.07) 
Beijing  Patient (N=75) 31.51 (7.86) 44/31 13.76 (3.02) 0.52 (0.47) 0/75 25.35 (4.77) 0.18 (0.06) 
  t or χ2/P 0.29/0.775 0.02/0.889 3.39/0.001       0.91/0.363 
                  
SCU,  Controls (N=41) 34.83 (17.69) 17/24         0.12 (0.07) 
Chengdu Patient (N=50) 34.44 (12.90) 25/25 16.08 (4.22) 1.17 (1.60) 25/25 22.88 (4.25) 0.11 (0.07) 
  t or χ2/P 0.12/0.904 0.66/0.416         0.71/0.479 
                  
SWU,  Controls (N=254) 39.65 (15.80) 88/166 12.80 (4.25)       0.13 (0.06) 
Chongqing Patient (N=282) 38.74 (13.65) 99/183 11.83 (3.72) 4.20 (5.52) 124/125 20.78 (5.88) 0.13 (0.05) 
  t or χ2/P 0.72/0.472 0.01/0.911 2.84/0.005       1.68/0.094 
         
YMU,  Controls (N=109) 51.12 (11.70) 88/166 14.83 (3.64)       0.13 (0.06) 
Taipei Patient (N=105) 57.05 (16.21) 99/183 11.44 (4.36) 1.21 (1.54) 79/26 11.66 (6.99) 0.14 (0.08) 
  t or χ2/P 3.06/0.003 0.01/0.911 6.15/<0.001       1.17/0.243 
         
ZZU,  Controls (N=100) 22.43 (4.49) 47/53 15.02 (3.71)       0.09 (0.04) 
Zhengzhou Patient (N=195) 18.40 (5.54) 97/98  1.28 (1.48) 0/195 22.43 (5.71) 0.10 (0.04) 
  t or χ2/P 6.29/<.001 0.20/0.655        2.16/0.032 

Abbreviations: SD, standard deviation; M, male; F, female; HDRS, Hamilton depression rating scale; FD, framewise 
displacement; CMU, China Medical University; CSU, Central South University; GCMU, Guangzhou University of Chinese 
Medicine; KMU, Kunming Medical University; PKU, Peking University; SCU, Sichuan University; SWU, Southwest 
University; YMU, National Yang-Ming University; ZZU, Zhengzhou University; N.A., not available. 
*The 17-item HDRS was used in the research centers of CMU, GCMU, KMU, PKU, SCU, SWU and ZZU. The 21-item 
HDRS was used in the research center of YMU. The 24-item HDRS was used in the research center of CSU. 
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