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Abstract 

Flexible learning of changing reward contingencies can be realized with different strategies. 

A fast learning strategy involves using working memory of recently rewarded objects to 

guide choices. A slower learning strategy uses prediction errors to gradually update value 

expectations to improve choices. How the fast and slow strategies work together in scenarios 

with real-world stimulus complexity is not well known. Here, we disentangle their relative 

contributions in rhesus monkeys while they learned the relevance of object features at 

variable attentional load. We found that learning behavior across six subjects is consistently 

best predicted with a model combining (i) fast working memory (ii) slower reinforcement 

learning from differently weighted positive and negative prediction errors, as well as (iii) 

selective suppression of non-chosen feature values and (iv) a meta-learning mechanism 

adjusting exploration rates based on a memory trace of recent errors. These mechanisms 

cooperate differently at low and high attentional loads. While working memory was essential 

for efficient learning at lower attentional loads, enhanced weighting of negative prediction 

errors and meta-learning were essential for efficient learning at higher attentional loads. 

Together, these findings pinpoint a canonical set of learning mechanisms and demonstrate 

how they cooperate when subjects flexibly adjust to environments with variable real-world 

attentional demands. 

 

Significance statement 

Learning which visual features are relevant for achieving our goals is challenging in real-world 

scenarios with multiple distracting features and feature dimensions. It is known that in such 

scenarios learning benefits significantly from attentional prioritization. Here we show that beyond 
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attention, flexible learning uses a working memory system, a separate learning gain for avoiding 

negative outcomes, and a meta-learning process that adaptively increases exploration rates 

whenever errors accumulate. These subcomponent processes of cognitive flexibility depend on 

distinct learning signals that operate at varying timescales, including the most recent reward 

outcome (for working memory), memories of recent outcomes (for adjusting exploration), and 

reward prediction errors (for attention augmented reinforcement learning). These results illustrate 

the specific mechanisms that cooperate during cognitive flexibility.   

 

Introduction 

Cognitive flexibility is realized through multiple mechanisms (Dajani and Uddin, 2015), including 

recognizing when the environmental demands change, the rapid updating of expectations and the 

shifting of response strategies to away from irrelevant towards newly relevant information. The 

combination of these processes is a computational challenge as they operate on different time 

scales ranging from slow integration of reward histories to faster updating of expected values given 

immediate reward experiences (Botvinick et al., 2019). How fast and slow learning processes 

cooperate to bring about efficient learning is not well understood.  

 

Fast adaptation to changing reward contingencies depends on a fast learning mechanism. Previous 

studies suggest that such a fast learning strategy can be based on different strategies. One strategy 

involves memorizing successful experiences in a working memory (WM) and guiding future 

choices to those objects that have highest expected reward value in working memory (Collins and 

Frank, 2012; Collins et al., 2014; Viejo et al., 2018; McDougle and Collins, 2020). This WM 

strategy is similar to recent 'episodic' learning models that store instances of episodes as a means 
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to increase learning speed when similar episodes are encountered (Gershman and Daw, 2017; 

Botvinick et al., 2019). 

 

A second fast learning mechanism uses an attentional strategy that enhances learning from those 

experiences that were selectively attended (Niv et al., 2015; Rombouts et al., 2015; Oemisch et al., 

2019). The advantages of this strategy is an efficient sampling of values when there are many 

alternatives or uncertain reward feedback (Kruschke, 2011; Farashahi et al., 2017a; Leong et al., 

2017). Empirically, such an attentional mechanism accounts for learning values of objects and 

features within complex multidimensional stimulus spaces (Wilson and Niv, 2011; Niv et al., 

2015; Hassani et al., 2017; Leong et al., 2017). In these multidimensional spaces, learning from 

sampling all possible object instances can be impractical and slows down learning to a greater 

extent than what is observed in humans and monkeys (Farashahi et al., 2017a; Oemisch et al., 

2019). Instead, learners appear to speed up learning by learning stronger from objects that are 

attended and actively chosen, while penalizing features associated with non-chosen objects 

(Wilson and Niv, 2011; Niv et al., 2015; Hassani et al., 2017; Leong et al., 2017; Oemisch et al., 

2019).  

 

In addition to WM and attention-based strategies, various findings indicate that learning can be 

critically enhanced by selectively increasing the rate of exploration during difficult or volatile 

learning stages (Khamassi et al., 2015; Soltani and Izquierdo, 2019). Such a meta-learning 

strategy, for example, increases the rate of exploring options as opposed to exploiting previously 

learned value estimates (Tomov et al., 2020). This and other meta-learning approaches have been 

successfully used to account for learning rewarded object locations in monkeys (Khamassi et al., 
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2015) and for speeding up learning of multi-arm bandit problems (Wang et al., 2018). 

 

There is evidence for all three proposed strategies in learning, but only a few empirical studies 

characterize the contribution of different learning strategies. Thus, it is unknown whether working 

memory, attention-augmented reinforcement learning (RL) and meta-learning approaches are all 

used and cooperate during learning in differently complex environments.  

  

To address this issue, we set out to test and disentangle the specific contribution of various 

computational mechanisms for flexibly learning the relevance of visual object features. We trained 

six monkeys to learn the reward value of object features in environments with varying numbers of 

irrelevant distracting feature dimensions. Using a larger number of distracting features increased 

attentional load, resulting in successively slower learning behavior. We found that across monkeys, 

learning speed was best predicted by a computational RL model that combines working memory, 

attention augmented RL and meta-learning. The contribution of these individual learning 

mechanisms varied systematically with attentional load. WM contributed to learning speed 

particularly at low and medium load, meta-learning contributed at medium and high loads, while 

selective attention was an essential learning mechanism at all attentional loads. 

 

Materials and Methods 

Experimental Design. Six male macaque monkeys performed the experiments with an age 

ranging from 6-9 years and weighting 8.5-14.4 kg. All animal and experimental procedures were 

in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2020. ; https://doi.org/10.1101/2020.09.27.315432doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.27.315432
http://creativecommons.org/licenses/by/4.0/


 6 

Animals, the Society for Neuroscience Guidelines and Policies, and approved by the Vanderbilt 

University Institutional Animal Care and Use Committee. 

 

The experiment was controlled by USE (Unified Suite for Experiments) using the Unity 3D game 

engine for behavioral control and visual display (Watson et al., 2019b). Four animals performed 

the experiment in cage-based touchscreen Kiosk Testing Station described in (Womelsdorf et al., 

in preparation), while two animals performed the experiment in a sound attenuating experimental 

booth. All experiments used three dimensionally rendered objects, so called Quaddles (Watson et 

al., 2019a), that were defined by their body shape, arm style, surface pattern, and color (Fig. 1A). 

We used up to nine possible body shapes, six possible colors, eleven possible arm types and nine 

possible surface patterns as feature values. The six colors were equidistant within the perceptually 

defined color space CIELAB. Objects extended ~3cm on the screen corresponding to ~2.5° 

degrees of visual angle and were presented either on a 24’’ BenQ monitor or an Elo 2094L 19.5 

LCD touchscreen running at 60 Hz refresh rate with 1920 x 1080 pixel resolution. 

 

Task paradigm. Animals performed a feature-based choice task that required learning through 

trial-and-error which feature of multidimensional objects is associated with reward. The feature 

that was reward associated stayed constant for blocks of 35-60 trials and then switched randomly 

to another feature (Fig. 1B). Individual trials (Fig. 1C) were initiated by either touching a central 

blue square (4 monkeys) or fixating the blue square for 0.5 sec. Following a 0.3 sec. delay three 

objects were presented at random locations of a grid spanning 15 cm on the screen (~24°). The 

animals had up to 5 sec. to choose one object by touching it for 0.1 sec (four monkeys) or 

maintaining gaze at an object for 0.7 sec (two monkeys). Following the choice of an object visual 
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feedback was provided as a colored disk behind the selected object (yellow/grey for rewarded/not 

rewarded choices, respectively) concomitant with auditory feedback (low/high pitched sound for 

non-rewarded/rewarded choices, respectively). Choices of the object with the rewarded feature 

resulted in fluid reward at 0.3 sec. following visual and auditory feedback.  

 

For each learning block a unique set of objects was selected that varied in one, two or three feature 

dimensions from trial-to-trial. The non-varying features were always either a spherical body shape, 

straight arms with blunt ending, grey color and uniform surface. These feature values were never 

associated with reward during the experiment and thus represent reward-neutral features. These 

neutral features defined a neutral object to which we added either one, two, or three non-neutral 

feature values rendering them 1-, 2-, and 3- dimensional (Fig. 1D).  For blocks with objects that 

varied in one feature dimension (1D attentional load condition) three feature values from that 

dimensions were chosen at the beginning of the block (e.g. body shapes that were oblong, 

pyramidal, and cubic). One of these features were associated with reward while the two remaining 

features were not reward-associated, and thus served as distracting features. Within individual 

trials objects never had the same feature values for these dimensions as illustrated for three 

successive example trials in Fig. 1E,F (upper row). The feature values of the unused dimensions 

were the features of the neutral objects in all trials of that block. For blocks with objects varying 

in two feature dimensions, a set of three feature values per dimension was selected to obtain nine 

unique objects combining these features. Only one of the features was associated with reward 

while the other two feature values of that dimension and the feature values of the other dimension 

were not linked to reward. Fig. 1E,F (middle row) illustrates three example trials of these blocks 

of the 2D attentional load condition. For blocks with objects varying in three feature dimensions 
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(3D attentional load condition), three feature values per dimensions were selected so that the three 

presented objects had always different features of that dimension which led to twenty-seven unique 

objects combining these features. Again, only one feature was associated with reward while all 

other feature values were not linked to reward.  

 

Blocks with objects that varied in 1, 2 and 3 feature dimensions constitute 1D, 2D, and 3D 

attentional load conditions because they vary the number of feature dimensions that define the 

search space when learning which feature is rewarded. The specific dimension, feature value, and 

the dimensionality of the learning problem varied pseudo-randomly from block to block. During 

individual experimental sessions, monkeys performed up to 30 learning blocks. 

 

Gaze control. For two animals gaze was monitored with a Tobii Spectrum with 600 Hz sampling 

rate and binocular infrared eye-tracker. For these animals the experimental session began with a 

9-point eye-tracker calibration routine and later reconstruction of object fixations using a robust 

gaze classification algorithm described elsewhere (Voloh et al., 2020).  

 

Statistical analysis. All analysis was performed with custom MATLAB code (Mathworks, Natick, 

MA). Significance tests control for the false discover rate (FDR) with an alpha value of 0.05 to 

account for multiple comparisons (Benjamini and Hochberg, 1995). 

 

General formulation of Rescorla-Wagner Reinforcement Learning Models. The value of 

feature i in trial t, before the outcome was known, is denoted by 𝑉!,#$ . The superscript F stands for 

feature, in order to distinguish it from the value of an object that will be introduced in the next 
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section. The new value, 𝑉!,#%&$   available for decisions on the next trial depends on which features 

were at t+1 present in the chosen object, and whether this choice was rewarded 𝑅# = 1, or not 𝑅# 

= 0. The value of features that were present in objects that were not chosen, and those that could 

appear in the course of the session, but were not present on the current trial, decay with a decay 

constant 𝜔#'(, where RL denotes that the decay component is from the reinforcement component 

of the model as opposed to decay of the working memory introduced below. The features that were 

present in the chosen and rewarded object increase in value, because the reward prediction error, 

𝑅# − 𝑉!,#$  is positive, whereas when the chosen object was not rewarded, the value decays. We have 

summarized these update rules in the following equations:  

𝑉!,#%&$ 			= 𝑉!,#$ + 𝜂#	𝑓!,#
),*(𝑅# − 𝑉!,#$ ) ,   features of objects    (eq. 3) 

= (1 − 𝜔+,'()𝑉!,#$    features of non-chosen objects  (eq. 4)	 

= (1 − 𝜔+-'()𝑉!,#$     non-presented features   (eq. 5) 

We have indicated a trial-dependence in gain 𝜂 and allow the decay constants ω to depend on 

whether the feature was present in the non-chosen object (nc) or whether it as part of the stimulus 

set of the session, but not presented (np) in the current trial. It further carries a superscript RL to 

indicate it is part of the reinforcement learning formulation rather than working memory 

(superscript WM). The setting of these parameters depends on the specific model version. In the 

base RL model, there is no feature-value decay ωnc,t = ωnp,t = 0 and the gain is constant and equal 

to η. In the next model ‘RL gain and loss’, the gain depends on whether the choice was rewarded 

ηt = 𝜂./!+ Rt + 𝜂(011 (1 − Rt), which introduces two new parameters 𝜂./!+and 𝜂(011 for rewarded 

and non-rewarded choices, respectively.  
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In most models the decay for non-chosen and not presented features was equal ωnc,t = ωnp,t = 

ωRL, introducing only a single additional parameter. In the so-called hybrid models we add a 

feature-dimension gain-factor 𝑓!,#
),* , which reflects attention to a particular dimension. It is 

calculated using a Bayesian model, and is indicated by a superscript V because it affects the value 

update. Hence, it acts as if information about the role of a certain dimension in the acquisition of 

the reward is not available. The choice probability 𝑝!,#'( for object i at trial t is determined using a 

softmax function:  

𝑝!,#'( =
23456! ∑ 8",!

$,%&*",!
'

"∈)* 9

∑ 23456! ∑ 8",!
$,%&*",!

'
"∈)+ 9+

		        (eq. 6) 

The sum in the exponent of the preceding expression is over the features j that are part of object i, 

which defines the set Oi. The factor βt in the exponent determines the extent to which the subject 

exploits, i.e. systematically chooses the object with the highest compound value, (reflected in a 

large β) or explores, i.e. makes choices independent of the compound value (reflected in small β). 

In most model versions the β did not change over trials, while in the meta-learning models with 

adaptive exploration its value was adaptive, reflecting the history of reward outcomes and is thus 

trial dependent, see the following subsection.  

 

Adaptive Exploration. For models with adaptive βt values we follow the model of (Khamassi et 

al., 2013), which involves determining an error trace: 

𝛽#%&∗ = 𝛽#∗ + 𝛼%𝑚𝑎𝑥(𝛿# , 0) + 𝛼;𝑚𝑖𝑛(𝛿# , 0)     (eq. 7) 

where the min and max functions are used to select the negative and positive part, respectively, of 

an estimate of the reward prediction error,  

𝛿# =	𝑅# −
&

#(>∈@*)
∑ 𝑉>,#$>∈@*         (eq. 8) 
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This is a different form of the PE than above, because here we need to consider all features in a 

chosen object, rather than each feature separately. The error trace is translated into an actual β 

value using  

𝛽# =
6,

&%BC-5;D-E6!
∗;D/F9

        (eq. 9) 

This adaptive sub model replaces one parameter by five new parameters: α+, α−, βm, ω1 and ω2, 

of which we fixed four in most models, α+ = −0.6, α− = −0.4, ω1 = −6, ω2 = 0.5, and varied βm and 

sometimes varied α− as well.  

 

Attentional dimension weight. The attentional gain factor uses a Bayesian estimate of what the 

target feature 𝑓 is, hence what the relevant feature dimension is and weighs the contribution of 

each feature value according to whether it is the target dimension (Niv et al., 2015; Hassani et al., 

2017; Oemisch et al., 2019). From the target feature probability 𝑝(𝑓|𝒟&:#) we can obtain a target 

dimension probability (see (Hassani et al., 2017) for the derivation) by summing over all the 

feature values 𝑓(d) that belong to a particular dimension d,  

 𝑝H,#I 	= 𝑝(𝑑|𝒟&:#) = ∑ 𝑝(𝑓|𝒟&:#)8∈8(H)       (eq. 10)  

this is turned into a feature gain  

 𝜙H,#) =
E-0,!

1 F
2

∑ E-3,!
1 F3

2	          (eq. 11) 

which weighs feature values in each object according to their dimension d(f), for an object i, this 

becomes 𝑉!,# 	= ∑ 𝜙H(>),#
)

>∈@ 𝑉>,#$ , and which we incorporate as feature dependent factor as 𝑓!,#) =

𝜙H(!),#
)  in the relevant expressions (eq. (3) and (6), for the value and choice probability), indicated 

with additional superscript V and CP, respectively).  

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2020. ; https://doi.org/10.1101/2020.09.27.315432doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.27.315432
http://creativecommons.org/licenses/by/4.0/


 12 

Stickiness in Choice Probability. Stickiness in object choice refers to choosing the object whose 

feature values overlap with the previously chosen one and represents a kind of perseverance 

(Balcarras et al., 2016). It is implemented by making the choice probability dependent on whether 

a feature on the previous trial is present in an object.  

𝑝!J =
23456! ∑ 8",!

$,%&*",!
'

"∈)* 9%∆!4-

∑ 23456! ∑ 8",!
$,%&*",!

'
"∈)+ 9%∆!4-+

		       (eq. 12) 

Here ∆t−1(i), is equal to eγ −1 when object i presented on trial t contains at least one feature that 

was also present in the chosen object on the previous trial (t − 1). By subtracting one, we assure 

that when γ = 0, there is no stickiness contribution to the choice. In our setup it is possible that 

more than one of the current objects contain features that were present in the chosen object.  

 

Combined Working Memory – Reinforcement models. Working memory models are formulated 

in terms of the value 𝑉!,#LM of an object i irrespective of what features are present in it (Collins and 

Frank, 2012). These values are initialized to a non-informative value of &
+5

, where no is the number 

of objects, when each of the objects has this value there is no preference in choosing one above 

the other. When an object is chosen on trial t, the value is set to 𝑉!,#%&LM  = 1 when rewarded, whereas 

it is reset to the original value 𝑉!,#%&LM  = &
+5

  when the choice was not rewarded. All other values 

decay towards the original value with a decay constant 𝜔LM:  

𝑉!,#%&LM = 𝑉!,#LM − 𝜔LM =𝑉!,#LM − &
+5
>        (eq. 13) 

The values are then directly used in the choice probabilities (also denoted pChoice):  

𝑝!,#LM =
234	(667**,!

67)
∑ 234	(667*",!

67)"
          (eq. 14)  
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This component mechanism thus introduces two new parameters, a decay constant 𝜔LM and the 

softmax parameter 𝛽LM, which are separately varied in the fitting procedure.  

 

 

Integrating choice probabilities. In the most comprehensive models, choices are determined by 

a weighted combination of the choice probabilities derived from the RL and WM components, 

referred to as 𝑝!,#O  (T stands for total),  

𝑝!,#O = 𝑤#𝑝!,#LM + (1 − 𝑤#)𝑝!,#'(        (eq. 15) 

A larger 𝑤# means more weight for the WM predictions in the total choice probability. The update 

of 𝑤# reflects the value of the choice probability for the choice made and the capacity limitations 

of the working memory:  

𝑤#%& =
-!
67%P!

P!-!
67%%(&;P!)-!

89%        (eq. 16) 

where 

𝑝#'(Q = 𝑝/(#),#
'( 𝑟# + (1 − 𝑝/(#),#

'( )(1 − 𝑟#).  

This expression selects from amongst two possible values for 𝑝#'(Qdepending on whether 𝑟#= 1 or 

0. Here a(t) is the index of the object chosen on trial t. In  

addition, 

𝑝#LMQ = 𝛼A𝑝/(#),#
LM 𝑟# + (1 − 𝑝/(#),#

LM )(1 − 𝑟#)B + (1 − 𝛼)(
&
+5
)    (eq. 17),  

where 𝛼 = min =1, Q67
+:
>	and 𝐶LM is the working memory capacity, essentially the number of 

objects about which information can be accessed, 𝑛J is the number of objects that can be presented 

during the task. It is determined as the number of objects whose value 𝑉!,#LM exceeds &
+5

 by a margin 

of 0.01. When nS is much larger than 𝐶LM the information in 𝑝		LM, which is unlimited in capacity 
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but decays with time, can not be read out, instead 𝑝#LMQ  = 1/no . Hence, when 𝑝/(#),#
'(  exceeds &

+5
  it 

will win the competition for influence and reduce wt towards WM zero, and with that the influence 

of 𝑝!,#LM.  

 

Cross-validation. We used a cross-validation procedure for evaluating how well the model 

predicted the subject’s choices of (test-) learning blocks that were withheld when fitting the model 

parameters on the remaining (training-) datasets. We repeated the cross-validation 50 times and 

used the average parameter values across these 50 cross-validation runs to simulate the choices of 

the monkey. For each cross validation we cut the entire data set at two randomly chosen blocks, 

yielding three parts. The two largest parts were assigned as training and test set. We did this to 

keep the trials in the same order as the monkey performed them, as the memory dependent effects 

in the model (and presumably the monkey) extend beyond the block boundaries. This is different 

from the standard procedure, where blocks were randomly assigned to test and training sets, hence 

breaking the block ordering that is important for the model. These model simulations provided the 

log likelihood (normalized by the number of choices) that reflect how well the model reproduces 

the monkey’s pattern of correct and erroneous choices. To compare models, we rank-ordered the 

Akaike Information Criterion (AIC) for each model that penalizes models according to the number 

of free parameters. 

 

Results 

Behavioral performance. We measured how six monkeys learned the relevance of object features 

in a learning task while varying the number of distracting, reward-irrelevant feature dimensions of 

these objects from one to three. On each trial subjects chose one of three objects and either did or 
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did not receive reward, in order to learn by trial-and-error which object feature predicted reward. 

The rewarded feature could be any one of 37 possible features values from 4 different feature 

dimensions (color, shape, pattern and arms) of multidimensional Quaddle objects (Fig. 1A) 

(Watson et al., 2019a). The rewarded feature stayed constant within blocks of 35-60 trials (Fig. 

1B). Learning blocks varied in the number of non-rewarded, distracting features (Fig. 1C). 

Subjects had 5 sec to choose an object which triggered correct or error feedback (a yellow or cyan 

halo around the chosen object, respectively, Fig. 1D). The first of three experimental conditions 

was labeled 1-dimensional attentional load because all the distractor features were from the same 

dimension as the target feature (e.g. different body shapes, see examples in top row of Fig. 1E,F). 

At 2-dimensional attentional load, features of a second dimension varied in addition to features 

from the target feature dimension (e.g. objects varied in body shapes and surface patterning). At 

3-dimensional attentional load, object features varied along three dimensions (e.g. varying in body 

shapes, surface patterns, and arm styles) (bottom row in Fig. 1E,F). 

 

Six monkeys performed a total number of 989 learning blocks, completing on average 55/56/54 

(SE: 4.4/4.3/4.2; range 41:72) learning blocks for the 1D, 2D, and 3D attentional load conditions, 

respectively. The number of trials in a block needed to learn the relevant feature, i.e. to reach 75% 

criterion performance increased for the 1D, 2D, and 3D attentional load condition from on average 

6.5, to 13.5, and 20.8 trials (SE’s: 4.2 / 8.3 / 6.9) (Kruskal-Wallis test, p = 0.0152, ranks: 4.8, 10.2, 

13.6) (Fig. 2A,B). Learning did not differ for blocks with a rewarded feature of the same or of a 

different dimension as the rewarded feature in the immediately preceding block (intra- versus 

extradimensional block transitions; Wilcoxon Ranksum test, p = 0.699, ranksum = 36) (Fig. 2C).  
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Flexible learning can be influenced by target- and distractor- history effects (Le Pelley et al., 2015; 

Failing and Theeuwes, 2018; Chelazzi et al., 2019; Rusz et al., 2020), which may vary with 

attentional load. We first considered the possibility of latent inhibition which refers to slower 

learning of a newly rewarded target feature when that feature was a (learned) distractor in the 

preceding block than when the target feature was not shown in the previous block. We did, 

however, not find a latent inhibition effect (paired signed rank test: p = 0.156, signed rank = 3; 

Fig. 2D, left). A second history effect is persevering choosing the feature that was a target in the 

previous block. We quantified this target perseveration by comparing learning in blocks in which 

a previous (learned) target feature became a distractor, to learning blocks in which distractor 

features were new. We found that target perseveration significantly slowed down learning (paired 

signed rank test: p = 0.0312, signed rank = 0; Fig. 2D, right), which was significantly more 

pronounced in the high (3D) than in the low (1D) attentional load condition (paired signed rank 

test, again: p = 0.0312, signed rank = 0; Fig. 2E). These learning history effects suggest that learned 

target features had a significant influence on future learning in our task, particularly at high 

attentional load, while learned distractors had only marginal or no effects on subsequent learning. 

 

Multi-component modeling of flexible learning of feature values. To discern specific 

mechanisms underlying flexible feature-value learning in individual monkeys we fit a series of 

reinforcement learning (RL) models to their behavioral choices (see Material and Methods). These 

models formalized individual mechanisms and allowed characterizing their role in accounting for 

behavioral learning at varying attentional load. We started with the classical Rescorla-Wagner 

reinforcement learner that uses two key mechanisms: (i) The updating of value expectations of 

features 𝑉! every trial t by weighting reward prediction errors (PEs) with a learning gain 𝜂:  𝑉",$%&! =
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𝑉",$! + 𝜂(𝑅$ − 𝑉",$! ) (With reward 𝑅# = 1 for a rewarded choice and zero otherwise), and (ii) the 

probabilistic (‘softmax’) choice of an object O given the sum of the expected values of its 

constituent features Vi, 𝑝𝐶ℎ𝑜𝑖𝑐𝑒"'( =
)*+	(𝛽!" ∑ /#

$
#∈&' )

∑ )*+	(𝛽!" ∑ /(
$

(∈&# )#
 (Sutton and Barto, 2018). These two 

mechanisms incorporate two learning parameters: the weighting of prediction error (PE) 

information by 𝜂 (often called the learning rate), 𝜂(𝑃𝐸), and the degree to which subjects explore 

or exploit learned values represented by 𝛽, which is small or close to zero when exploring values 

and larger when exploiting values.  

 

We augmented the Rescorla-Wagner learning model with up to seven additional mechanisms to 

predict the monkey choices (Supplementary Table 1). The first of these mechanisms enhanced 

the expected values of all object features that were chosen by decaying feature values of non-

chosen objects. This selective decay improved the prediction of choices in reversal learning and 

probabilistic multidimensional feature learning tasks (Wilson and Niv, 2011; Niv et al., 2015; 

Radulescu et al., 2016; Hassani et al., 2017; Oemisch et al., 2019). It is implemented as decay 

𝜔'(	of feature values 𝑉" from non-chosen features and thereby enhanced the value estimate for 

chosen (and hence attended) features for the next trial t: 

 𝑉!,#%&$ = (1 − 	𝜔'()𝑉!,#$      (Eq. 1: Decay of non-chosen feature values). 

 

As second mechanism we considered a working memory (WM) process that uploads the identity 

of rewarded objects in a short-term memory. Such a WM can improve learning of multiple 

stimulus-response mappings (Collins and Frank, 2012; Collins et al., 2017) and multiple reward 

locations (Viejo et al., 2015; Viejo et al., 2018). Similar to (Collins and Frank, 2012) we uploaded 
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the value of an object in WM (𝑉!LM)	when it was chosen and rewarded and decayed its value with 

a time constant &
D67. WM proposes a choice using its own choice probability 𝑝𝐶ℎ𝑜𝑖𝑐𝑒	LM, which 

competes with the 𝑝𝐶ℎ𝑜𝑖𝑐𝑒	'(	from the reinforcement learning component of the model. The actual 

behavioral choice is the weighted sum of the choice probabilities of the WM and the RL component 

𝑤	(	𝑝𝐶ℎ𝑜𝑖𝑐𝑒	LM) + (1 − 𝑤	)𝑝𝐶ℎ𝑜𝑖𝑐𝑒	'(. A weight 𝑤 of >0.5 would reflect that the WM content 

dominates the choice which would be the case when the WM capacity can maintain object values 

for sufficiently many objects before they fade away (see Methods). This WM module reflects a 

fast “one–shot” learning mechanism for choosing the recently rewarded object. 

 

As a third mechanism we implemented a meta-learning process that adaptively increases the rate 

of exploration (the 𝛽 parameter of the standard RL formulation) when errors accumulate. Similar 

to (Khamassi et al., 2013) the mechanism uses an error trace 𝛽#∗, which increases when a choice 

was not rewarded, by an amount proportional to the negative PE for that choice with a negative 

gain parameter 𝛼;, and decreases after correct trials proportional to the positive PE weighted by a 

positive gain parameter 𝛼% (Khamassi et al., 2013): 

𝛽#%&∗ = 𝛽#∗ + 𝛼%⌊𝛿#⌋% − 𝛼;⌊−𝛿#⌋	    (Eq. 2: Adjustment of exploration rate), 

where the PE is given by 𝛿# = 𝑅# − 𝑉#, with V reflecting the mean of all the feature values of the 

chosen object. The error trace contains a record of the recent reward performance and was 

transformed into a beta parameter for the softmax choice according to 𝛽#
'(,/ = 6,;<

&%234	(;D-(6!∗;D/))
 

(Khamassi et al., 2013). Transiently increasing the exploration rate increases the chances to find 

relevant object features when there are no reliable, learned values to guide the choice and there are 

multiple possible feature dimensions that could be valuable. We kept 𝛼% = −0.6, 𝛼; = −0.4	, 
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𝜔& = −6 and 𝜔S = 0.5  fixed, and varied  𝛽T/C  and, in some cases, 𝛼; as well, resulting in a 

fourth model mechanism that could underlie flexible feature learning under increasing attentional 

load. 

 

We tested three other neurobiologically plausible candidate mechanisms that played important 

roles in prior learning studies. A fifth mechanism implemented choice stickiness to account for 

perseverative (repetitive) choices independent of value estimates (Badre et al., 2012; Balcarras et 

al., 2016). A sixth parameter realized an ‘attentional’ dimension weight during value updates 

which is realized by multiplying feature values given the reward likelihood for the feature 

dimension they belong to (Leong et al., 2017; Oemisch et al., 2019). Finally, as a seventh parameter 

we separately modelled the weighting of negative PE’s after error outcomes, 𝜂(011, and the 

weighting of positive PE’s for correct outcomes, 𝜂./!+, to allow separate learning speeds for 

avoiding objects that did not lead to reward (after negative feedback) and for facilitating choices 

to objects that led to rewards (after positive feedback) (Frank et al., 2004; Frank et al., 2007; Kahnt 

et al., 2009; van den Bos et al., 2012; Caze and van der Meer, 2013; Lefebvre et al., 2017; Taswell 

et al., 2018). We constructed models that combined two, three or four of these mechanisms. This 

led to models with two to eight free parameters (see Methods). Each model was cross-validated 

separately for each attentional load condition and for each individual monkey. We calculated the 

Akaike Information Criteria (AIC) to rank order the models according to how well they predicted 

actual learning behavior given the number of free parameters. 

 

Working memory, adaptive exploration and decaying distractor values supplement 

reinforcement learning. We found that across monkeys and attentional load conditions the RL 
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model that best predicted monkey’s choices during learning had four non-standard components: 

(i) working memory, (ii) non-chosen value decay, (iii) adaptive exploration rate, and (iv) a separate 

gain for negative PE’s (𝜂(011) (Fig. 3). This model had the lowest Akaike Information Criterion 

on average across all six monkeys and was ranked first for four individual monkeys (Monkeys 

1,3,4, and 5, Fig 3A,B; Supplementary Table 1 shows the complete list of free model parameters 

for the rank ordered models). It ranked third and fourth for the other two monkeys (Fig 3A). Other 

models ranked in the top 5 contained a stickiness mechanism to account for perseverative choice 

tendencies (models ranked 2nd and 3rd), used an adaptive exploration mechanism with a fixed 

parameter (that thereby reduced the number of free parameters, model ranked 4th), or lacked the 

adaptive exploration mechanism (models ranked 3rd and 5th). The top-ranked, most-predictive 

model reproduced well the learning curves obtained from the monkeys (Fig. 3C).  

 

To discern how the individual model mechanisms of the most predictive model contributed to the 

learning at low, medium and high attentional load, we simulated the choice probabilities for this 

full model and for partial models implementing only individual mechanisms of that full model 

separately for each load condition (Fig. 4A,B). This analysis confirmed that the full model was 

most closely predicting choices of the animals in all load conditions, showing a difference between 

the model choice probabilities and the monkeys choice accuracy of only ~5% (Fig. 4C). The 

reduced (partial) model that performed similarly well across all attentional loads used the decay of 

non-chosen features (𝜔'() (ranked 16th among all models, Fig. 4C). All other partial models were 

performing differently at low and high attentional loads. The partial working memory model (with 

𝜔LM) predicted choices well for the 1D and 2D load conditions but failed to account for choices 

in the 3D load condition (Fig. 4C). The partial model with the adaptive exploration rate (b*) 
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worsened choice probability for the low load condition relative to the standard RL, but improved 

predictions for the 2D and 3D load condition (Fig. 4C). The partial model with the separate 

weighting of negative prediction errors (𝜂(011, ranked 25th, see Fig. 3A) showed overall better 

choice probabilities than the standard RL model (ranked 26th), but still failed in predicting 12-

14% of the monkeys’ choices when used as the only non-standard RL mechanisms (Fig. 4C).  

 

To understand why WM was only beneficial at low and medium attentional load, but detrimental 

at high attentional load, we visualized the choice probabilities that the WM module of the full 

model generated for different objects. We contrasted these WM choice probabilities with the 

choice probabilities for different stimuli of the RL module and of the combined WM+RL model 

(Fig. 5A). Following a block switch the WM module uploaded an object as soon as it was rewarded 

and maintained that rewarded object in memory over only few trials. When the rewarded object 

was encountered again prior to decaying to zero it guided the choice of that object beyond what 

the RL module would have suggested (evident in trial six in Fig. 5A-C). This WM contribution is 

beneficial when the same object instance re-occurred within few trials, which happened more 

frequently with low and medium attentional load, but only rarely during high load. At this high 

load condition, the RL components are faithfully tracking the choice probability of the monkey, 

while the WM representation of recently rewarded objects is non-informative because (1) it can 

only make a small contribution as the number of stimuli in the block is much larger than the 

capacity and because (2) it does not remember rewarded objects long enough to be around when 

the objects are presented another time.  

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2020. ; https://doi.org/10.1101/2020.09.27.315432doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.27.315432
http://creativecommons.org/licenses/by/4.0/


 22 

While the WM contribution declined with load, the ability to flexibly adjust exploration rates 

became more important with high load as is evidenced by improved choice probabilities at high 

load (Fig. 4C). This flexible meta-learning parameter used the trace of recent errors to increase 

exploration (reflected in lower beta parameter values). Such increases in exploration facilitate 

disengaging from previously relevant targets after the first errors following the block switch, even 

when there are no other competitive features in terms of value, because the mechanism enhances 

exploring objects with previously non-chosen features. Our results suggest that such an adjustment 

of exploration can reduce the decline in performance at high attentional load (Fig. 4C), i.e.  when 

subjects have to balance exploring the increased number of features with acting based on already 

gained target information (Fig. 5D,E).  

 

The relative contribution of model mechanisms for learning and asymptotic performance. 

The relative contributions of individual model mechanisms for different attentional loads can be 

inferred from their load-specific parameter values that best predicted monkey’s learning when 

cross-validated for learning at each load separately (Fig. 6). WM was maintained longer for 2D 

than 1D (lower 𝜔LM 	values), but at 3D load showed fast decay (higher 𝜔LM values) signifying 

that WM representations stopped contributing to learning at high load (Fig. 6C). When load 

increased the models showed a consistent decrease of the weighting of positive PE’s (𝜂./!+ from 

~0.15 to 0.1) and of the weighting of negative PE’s (𝜂(011, from ~0.6 to 0.4) (Fig. 6E, and 6G). A 

potential explanation for the decrease in  𝜂./!+ is that with more distracting features more trials 

are needed to determine what feature is the target, which is achieved with slower updating. The 

decay of non-chosen feature values (𝜔'() was weaker with increased load across monkeys 

indicating a longer retention of values of non-chosen objects (Fig. 6F), which reflects protecting 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2020. ; https://doi.org/10.1101/2020.09.27.315432doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.27.315432
http://creativecommons.org/licenses/by/4.0/


 23 

the target value when it is not part of the chosen (hence unrewarded) object. An event that occurs 

more for high loads. Adaptive exploration rates (b*) increased on average from low to medium 

and high load (more negative values) signifying increased exploration after errors at higher load. 

   

The parameter variations at increasing load could relate either to the learning speed or the 

asymptotic performance differences at different loads. To quantify their relative contributions, we 

correlated the values of each model parameter with a model-independent estimate of learning 

speed (number of trials to reach criterion performance), and with asymptotic accuracy (proportion 

of correct trials after learning criterion was reached). We found that values of three parameters 

significantly correlated with learning speed (Fig. 7A). Learning occurred significantly earlier (i) 

with larger prediction error weighting for rewarded trials (𝜂./!+, r = -0.69, p = 0.0008, FDR 

controlled at alpha 0.05), with higher prediction error weight for unrewarded trials (𝜂(011, r = -

0.62, p = 0.0031, FDR controlled at alpha 0.05), and (iii) with less decay (and thus better retention) 

of values of unchosen features (𝜔'( , r = -0.511, p = 0.0144, 1, FDR controlled at alpha 0.05) (Fig. 

7C). The same three parameters also correlated significantly with the asymptotic performance that 

monkey’s showed after learning was achieved (𝜂./!+: r = 0.7, p = 0.0006; 𝜂(011: r = 0.48, p = 

0.022; 𝜔'(: r = 0.53, p = 0.0118, 1; all FDR controlled at alpha 0.05). (Fig. 7B,D). Higher 

asymptotic performance was additionally correlated with lower exploration rates (realized by 

higher b'( , r = 0.54, p = 0.0097, FDR controlled at alpha 0.05). As for the working memory 

components, we found that better asymptotic performance was linked to less influence of working 

memory of recently rewarded objects on current choices as reflected in an association of higher 

bWM value with better performance (r = 0.54, p = 0.0097, FDR controlled at alpha 0.05). In 

summary, better performance followed from a combination of choices that exploited value 
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estimates less (lower bRL), kept a stronger value trace for non-chosen features (higher 𝜔'(), and 

stronger weighting of prediction errors after correct and error outcomes (𝜂./!+, 𝜂(011).   

 

Model parameter values distinguish fast from slow learners. We next tested which model 

parameters distinguished good from bad learners across attentional load conditions by sorting 

subjects according to their learning speed (trials-to-criterion). We then correlated the ranks for 

subjects 1 to 6 for each load condition with the learning speed (Fig. 8). Across all parameters the 

two learning weights (𝜂./!+, 𝜂(011) were significantly larger for subjects that learned faster (𝜂./!+: 

r = -049, p = 0.019; 𝜂(011: r = -0.51, p = 0.015; significance after control for FDR alpha = 0.05) 

(Fig. 8C,D). This finding illustrates that while multiple mechanism correlate with learning success 

(Fig. 7), the key distinction between good and bad learners lies in their updating speed after errors 

and after correct outcomes (Fig. 8).  

 

Discussion 

We found that learning feature values under increasing attentional load is accounted for by a 

reinforcement learning framework that incorporates four non-standard RL mechanisms: (i) a 

value-decrementing mechanism that selectively reduces the feature values associated with the non-

chosen object, (ii) a separate working memory module that retains representations of rewarded 

objects over a few trials, (iii) separate gains for enhancing values after positive prediction errors 

and for suppressing values after negative prediction errors, and (iv) a meta-learning component 

that adjusts exploration levels according to an ongoing error trace. When these four mechanisms 

were combined the learning behavior of monkeys was better accounted for than when using fewer 

or different sets of mechanisms. Critically, the same set of mechanisms were similarly important 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2020. ; https://doi.org/10.1101/2020.09.27.315432doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.27.315432
http://creativecommons.org/licenses/by/4.0/


 25 

for all six animals (Fig. 3), suggesting they constitute a canonical set of mechanisms underlying 

cognitive flexibility. Although subjects varied in how these mechanisms were weighted (Fig. 6) 

those with fast learning and hence high cognitive flexibility were distinguished by stronger 

weighting of positive and negative prediction errors. Taken together these results document a 

formally defined set of mechanisms that underlies flexible learning of feature relevance under 

variable attentional load.    

 

Selective value enhancement is a key mechanism to cope with high attentional load. One key 

finding was that only one non-standard RL mechanism, the decay of values of non-chosen features 

(𝜔'(), contributed similarly to learning across all attentional load conditions, correlating with 

learning speed and with overall accuracy after learning (r=-0.62, r=0.48, respectively, Fig 7C,D). 

This finding highlights the importance of this mechanism and supports previous studies that used 

a similar decay of non-chosen features to account for learning in multidimensional environments 

with deterministic or probabilistic reward schedules (Wilson and Niv, 2011; Niv et al., 2015; 

Radulescu et al., 2016; Hassani et al., 2017; Oemisch et al., 2019). The working principle of this 

mechanism is a push-pull effect on the expected values of encountered features and thus resembles 

a selective attention phenomenon. When a feature is chosen (or attended), its value is updated and 

contributes to the next choice, while the value of a feature that is not chosen (not attended) is 

selectively suppressed and contributes less to the next choice. A process with a similar effect has 

been described in the associability literature whereby the exposure to stimuli without directed 

attention to it causes a reduction in effective salience of that stimulus. Such reduced effective 

salience reduces its associability and can cause the latent inhibition of non-chosen stimulus 

features for learning (Hall and Pearce, 1979; Donegan, 1981; Esber and Haselgrove, 2011) or the 
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slowing of responses to those stimuli (also called negative priming) (Lavie and Fox, 2000). The 

effect is consistent with a plasticity process that selectively tags synapses of those neuronal 

connections that represent chosen objects in order to enable their plasticity while preventing (or 

disabling) plasticity of non-tagged synapses processing non-chosen objects (Rombouts et al., 2015; 

Roelfsema and Holtmaat, 2018). In computational models such a synaptic tag is activated by 

feedback connections from motor circuits that carry information about what subjects looked at or 

manually chose (Rombouts et al., 2015). Accordingly, only chosen objects are updated, resembling 

how 𝜔'( implements increasing values for chosen objects when rewarded and the passive decay 

of values of nonchosen objects. Consistent with this interpretation 𝜔'( was significantly positively 

correlated with learning speed (Fig. 7A). At low attentional load, high 𝜔'( values reflected fast 

forgetting of non-chosen stimuli, while at high attentional load 𝜔'(	adjusted to lower values which 

slowed down the forgetting of values associated with nonchosen objects. The lowering of the 

𝜔'(	decay at high load reflects that values of all stimulus features are retained in a form of choice-

history trace. Consistent with this finding, various studies have reported that prefrontal cortex areas 

contain neurons representing values of unchosen objects and unattended features of objects 

(Boorman et al., 2009; Westendorff et al., 2016). Our results demonstrate that at high attentional load, 

the ability of subjects to retain the value history of those nonchosen stimulus features is a critical 

factor for fast learning and good performance levels (Fig. 7A). 

 

Working memory supports learning in parallel to reinforcement learning. We found 

empirical evidence that learning the relevance of visual features leverages a fast working memory 

mechanism in parallel with a slower reinforcement learning of values. This finding empirically 

documents the existence of parallel (WM and RL) choice systems, each contributing to the 
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monkey’s choice in individual trials to optimize outcomes. The existence of such parallel choice 

and learning systems for learning fast and slow has a long history in the decision-making literature 

(Poldrack and Packard, 2003; van der Meer et al., 2012; Balleine, 2019). For example, WM has 

been considered to be the key component for a rule-based learning system that uses a memory of 

recent rewards to decide to stay or switch response strategies (Worthy et al., 2012). A separate 

learning system is associative and implicitly integrates experiences over longer time periods 

(Poldrack and Packard, 2003), which in our model corresponds to the reinforcement learning 

module.  

 

The WM mechanisms we adopted for the feature learning task is similar to WM mechanisms that 

contributed in previous studies to the learning of strategies of a matching pennies game (Seo et al., 

2014), the learning of hierarchical task structures (Collins and Frank, 2012, 2013; Alexander and 

Brown, 2015), or the flexible learning of reward locations (Viejo et al., 2015; Viejo et al., 2018). 

Our study adds to these prior studies by documenting that the benefit of WM is restricted to tasks 

with low and medium attentional load. The failure of working memory to contribute to learning at 

higher load might reflect an inherent limit in working memory capacity. Beyond an interpretation 

that WM capacity limits are reached at higher load, WM is functionally predominantly used to 

facilitate processing of actively processed items as opposed to inhibiting the processing of items 

stored in working memory (Noonan et al., 2018). In other words, a useful working memory is 

rarely filled with distracting, non-relevant information that a subject avoids. In our task, high 

distractor load would thus overwhelm the working memory store with information about non-

rewarded objects whose active use would not lead to reward. Consequently, the model – and the 
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subject whose choices the model predicts – downregulate the importance of WM at high attentional 

load, relying instead on slower reinforcement learning mechanism to cope with the task. 

 

Separate learning rates promote avoiding choosing objects resulting in worse-than-expected 

outcomes. We found that separating learning from positive and negative prediction errors 

improved model predictions of learning across attentional loads (Fig. 4B) by allowing a ~3-fold 

larger learning rate for negative than positive outcomes. Thus, monkeys were biased to learn faster 

to avoid objects with worse-than-expected feature values than to stay with choosing objects with 

better-than-expected feature values. A related finding is the observation of larger learning rates for 

losses than gains for monkeys performing a simpler object-reward association tasks (Taswell et 

al., 2018). In our task, such a stronger weighting of erroneous outcomes seems particularly 

adaptive because the trial outcomes were deterministic, rather than probabilistic, and thus a lack 

of reward provided certain information that the chosen features were part of the distracting feature 

set. Experiencing an omission of reward can therefore immediately inform subjects that feature 

values of the chosen object should be suppressed as much as possible to avoid choosing it again. 

This interpretation is consistent with recent computational insights that the main effect of having 

separate learning rates for positive and negative outcomes is to maximize the contrast between 

available values for optimized future choices (Caze and van der Meer, 2013). According to this 

rationale, larger learning rates for negative outcomes in our task promotes switching away from 

choosing objects with similar features again in the future. We should note that in studies with 

uncertain (probabilistic) reward associations that cause low reward rates, the overweighting of 

negative outcomes would be non-adaptive as it would promote frequent switching choices which 

is suboptimal in these probabilistic environments (Caze and van der Meer, 2013). These 
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considerations can also explain why multiple prior studies with probabilistic reward schedules 

report of an overweighting of positive over negative prediction errors which in their tasks 

promoted staying with and prevent switching from recent choices (Frank et al., 2004; Frank et al., 

2007; Kahnt et al., 2009; van den Bos et al., 2012; Lefebvre et al., 2017). 

 

The separation of two learning rates also demonstrates that our task involves two distinct learning 

systems for updating values after experiencing nonrewarded and rewarded choice outcomes. 

Neurobiologically, this finding is consistent with studies of lesioned macaques reporting that 

learning from aversive outcomes is more rapid than from positive outcomes and that this rapid 

learning is realized by fast learning rates in the amygdala as opposed to slower learning rates for 

better-than-expected outcomes that closely associated with the ventral striatum (Namburi et al., 

2015; Averbeck, 2017; Taswell et al., 2018). Our finding of considerably higher (faster) learning 

rates for negative than positive prediction errors is consistent with this view of a fast versus a slow 

RL updating system in the amygdala and the ventral striatum, respectively.  The importance of 

these learning systems for cognitive flexibility is evident by acknowledging that learning rates 

from both, positive and negative outcomes, distinguished good and bad learners (Fig. 8), which 

supports reports that better and worse learning human subjects differ prominently in their strength 

of prediction error updating signals (Klein et al., 2007; Schonberg et al., 2007; Krugel et al., 2009). 

 

Adaptive exploration contributes at high attentional load. We found that adaptive increases of 

exploration during the learning period contributed to improved learning at high load (Fig. 3). 

Adapting the rate of exploration over exploitation reflects a meta-learning strategy that changes 

the learning process itself by adaptively enhancing searching for new choice options irrespective 
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of already acquired expected value (Doya, 2002). Our finding critically extends insights that 

adaptive learning rates are critically important to cope with uncertain environments (Farashahi et 

al., 2017b; Soltani and Izquierdo, 2019) to target uncertainty imposed by increased distractor load. 

In earlier studies, reward uncertainty was estimated to adjust learning rate in tasks with varying 

volatility (Farashahi et al., 2017b), changing outcome probabilities when predicting sequences of 

numbers (Nassar et al., 2010), sharp transitions of exploratory search for reward rules and 

exploitation of those rules (Khamassi et al., 2015), probabilistic reward schedule during reversal 

learning (Krugel et al., 2009), or the  compensation for error in multi-joint motor learning 

(Schweighofer and Arbib, 1998). A commonality of these prior meta-learning studies is a relatively 

high level of uncertainty about the source for reward or error outcomes. In our task, the uncertainty 

about the target feature systematically increases with the number of distracting features. As a 

consequence of enhanced uncertainty, subjects utilized a learning mechanism that increased 

randomly exploring new choice options when non-rewarded choices accumulated, and to reduce 

exploring alternative choices when choices began to lead to reward outcomes. Such balancing of 

exploration and exploitation can be achieved by using a memory of recent reward history to adjust 

undirected vigilance (Dehaene et al., 1998; Khamassi et al., 2013) or other forms of exploratory 

strategies (Tomov et al., 2020) . 

 

Conclusion 

In summary, our study documents that a pure reinforcement learning modeling approach does not 

capture the cognitive processes needed to solve feature-based learning. By formalizing the 

subcomponent processes needed to augment standard RL modeling we provide strong empirical 

evidence for the recently proposed 'EF-RL' framework that describes how executive functions (EF) 
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augment RL mechanism during cognitive tasks (Rmus et al., 2020). The framework asserts that 

RL mechanisms are central for learning a policy to address task challenges, but that attention-, 

action-, and higher-order expectations are integral for shaping these policies (Rmus et al., 2020). 

In our study these 'EF' functions included working memory, adaptive exploration, and an 

attentional mechanism for forgetting nonchosen values. As outlined in Fig. 9 these three 

mechanisms leverage distinct learning signals, updating values based directly on outcomes (WM), 

on prediction errors (RL based decay of nonchosen values), or on a continuous error history trace 

(meta-learning based adaptive exploration). As a consequence, these three learning mechanisms 

operate in parallel and influence choices to variable degrees across different load conditions, for 

instance, learning fast versus slow (WM versus Meta-learning versus RL) and adapting optimally 

to low versus high attentional load (WM versus Meta-learning). Our study documents that these 

mechanisms operate in parallel when monkeys learn the relevance of features, providing an 

starting point to identify how neural systems integrate these mechanisms during cognitive flexible 

behavior.   
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Data and code accessibility 

Data and computational modeling code for reproducing the results of the best fitting model (Fig. 

4) is available on a github link that is activated upon publication of this manuscript.  
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Figure Legends 
 
Figure 1. Task paradigm and feature space. (A) The task used 3D rendered ‘Quaddle’ objects 
that varied in color, pattern, shape and arm style. The features grey color, straight arms and 
spherical body shape were never rewarded in any of the experiments and therefore constitute 
‘neutral’ features. (B) For successive blocks of 30-60 trials a single feature was rewarded. (C) The 
attentional load conditions differed in the number of non-neutral feature dimensions that varied 
across trials in a block. Blocks with 1-D, 2-D, and 3-D objects contained stimuli varying features 
in 1, 2, and 3 features dimensions. (D) Trials were initiated by touching or fixating a central 
stimulus. Three objects were shown at random locations and subjects had to choose one by either 
touching (four monkeys) or fixating an object (two monkeys) for ≥0.7 sec. Visual feedback 
indicated correct (yellow) vs error (cyan, not shown) outcomes. Fluid reward followed correct 
outcomes. (E) Sequences of three example trials for a block with 1-D objects (upper row, shape 
varied), 2-D objects (middle, color and arms varied), and 3-D objects (bottom row, body shape, 
arms and color) objects. (F) Same as E but for an object set varying surface pattern, arms, and 
color. 
 
Figure 2. Learning performance. (A) Average Learning curves across six monkeys for the 1D, 
2D, and 3D load condition. (B) Learning curves for each monkeys (colors) for 1D, 2D, 3D (low-
to-high color saturation levels). All monkeys showed fastest learning for low load and slowest 
learning for the high load condition. Curves are smoothed with a 5 trial forward-looking window. 
(C) Left: The average trials-to-criterion (75% accuracy over 10 consecutive trials) for low to high 
attentional load (x-axis) for blocks in which the target feature was either of the same - intra-
dimensional (ID) - or different dimension - extra-dimensional (ED) - as in the preceding trial. 
Right: Average number of trials-to-criterion across load conditions. Grey lines denote individual 
monkeys. Errors are SE. (D) The red color dneotes average trials-to-criterion for blocks in which 
the target feature was novel (not shown in previous block), or when it was previously a learned 
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distractor. The blue color denotes the condition in which a distractor feature was either novel (not 
shown in previous block), or part of the target in the previous block. When distractors were 
previously targets, learning was slower. (E) Latent inhibition of distractors (red) and target 
perseveration (blue) at low, medium and high load. Errors are SE. 
 
 
Figure 3. Rank ordering of models with different combinations of mechanisms. (A) Models 
(rows) using different combinations of model mechanisms (columns) are rank ordered according 
to their Akaike Information Criterion (AIC). The top-ranked model combined four mechanisms 
that are highlight in red: Decay of non-chosen features, working memory, adaptive exploration 
rate, and a separate learning gain for errors (losses). The 2nd, 3rd, and 4th ranked models are denoted 
with cyan, green and yellow bars. Thick horizonal bar indicates that the model mechanism was 
used in that model. The 26th ranked model was the base RL model that used only a beta softmax 
parameter and a learning rate. Right: Model rank average (1st column) and for each individual 
monkey (columns 2 to 7). See Supplementary Table 1 for the same table in numerical format 
with additional information about the number of free parameters for each model. (B) After 
subtracting the AIC of the 1st ranked model, the normalized AIC’s for each monkey confirms that 
the top-ranked model has low AIC values for each monkey. (C) Average behavioral learning 
curves for the individual monkeys (left) and the simulated choice probabilities of the top-ranked 
model for each monkey. The simulated learning curves are similar to the monkey learning curves 
providing face validity for the model. 
 
 
 
Figure 4. Choice probabilities of monkeys and models at three different loads. (A) Average 
choice accuracy of monkeys (grey) and choice probabilities of six models. The top-ranked model 
(red) combines WM with RL and selective suppression of nonchosen values, a separate learning 
gain for neg. RPE’s, and adaptive exploration rates. The base RL model (green) only contained a 
softmax beta parameter and a single learning rate. The other models each add a single mechanism 
to this base model to isolate its contribution to account for the choice patterns of the monkeys. 
Columns show from left to right the results for low, medium, and high load conditions and for 
their average. (B) The ratio of monkey accuracy and model choice probability shows that in all 
load conditions, the top-ranked model predicts monkey choices consistently better than models 
with a single added mechanism. (C) Average difference of model predictions (choice probability) 
and monkeys’ choices (proportion correct) at low to high loads for different models. Error bars are 
SE. 
 
 
 
Figure 5. Contribution of working memory, reinforcement learning and adaptive 
exploration to learning behavior. (A) Choice probabilities of the RL component of the top-
ranked model for an example block, calculated for the objects with the new target feature (blue), 
the previous block’s target feature (red) and other target features (yellow). Purple plus signs show 
which object was chosen. (B) Same format and same example block as in A but for choice 
probabilities calculated for objects within the working memory module of the model. Choice 
probabilities of the WM and the RL component are integrated to reach a final behavioral choice. 
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(C) Same as A and B but after combining the WM and RL components in the full model. Choices 
closely follow the RL component, but when the WM representation is recently updated its high 
choice probabilities influences the combined, final choice probability, as evident in trials 6 and 7 
in this example block. (D) The trace of nonrewarded (error) trials for three example blocks with 
low, medium and high load peaks immediately after the block switch and then declines for all 
conditions. Error traces remain non-zero for the medium and high conditions. (E) The same 
example blocks as in D. The adaptive exploration rate (y-axis) is higher (lower beta values) when 
the error trace is high during early trials in a block. 
 
 
 
Figure 6. Model parameter values at different attentional loads. The average parameter values 
(black) of the top-ranked model (y-axis) plotted against the number of distracting feature 
dimensions for the WM parameters (A-C) and the RL parameters (D-H). Individual monkeys are 
in colors. Error bars indicate SE. 
 
 
 
Figure 7. Model parameter values underlying learning speed and asymptotic performance. 
(A) The correlation across monkeys and attentional load conditions of learning (trials-to-criterion, 
i.e. less trials signify faster learning) and parameter values of the top-ranked model. Stars denote 
FDR corrected significance at p < 0.05. Negative correlations denote that higher parameter values 
associate with faster learning.  (B) As A but for correlations of monkey’s asymptotic performance 
accuracy with model parameter values. (C,D) Illustration of the correlations shown in A,B for the 
RL parameters. Y-axis shows the learning speed (trial to criterion) and x-axis the parameter values 
of the top-ranked model. The black line is the regression whose r and p values are given above 
each plot. Each dot is the average result from one monkey in either the 1D (red), 2-D (blue) or 3-
D (green) condition.  
 
 
 
Figure 8. Model mechanisms distinguishing slow and fast learners. (A) The average learning 
speed (the trials to reach criterion, y-axis) plotted against the individual monkeys ordered from 
fastest to slowest learner. (B) Correlation of learning speed (trials-to-criterion) and rank-ordered 
monkeys (ranks #1 to #6). Stars denote FDR corrected significance at p < 0.05. (C,D) The 
weighting of positive prediction errors (C) and negative prediction errors (D) of the top-ranked 
model was significantly larger for fast than for slow learners. 
 
 
 
Figure 9. Characteristics of the working memory, reinforcement learning and meta-learning 
components. The model components differ in the teaching signals that trigger adjustment, in the 
learning speed and in how important they are to contribute to learning at increasing attentional 
load. 
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Figures  

Figure 1. Task paradigm and feature space. (A) The task 
used 3D rendered ‘Quaddle’ objects that varied in color, pattern, 
shape and arm style. The features grey color, straight arms and 
spherical body shape were never rewarded in any of the 
experiments and therefore constitute ‘neutral’ features. (B) For 
successive blocks of 30-60 trials a single feature was rewarded. 
(C) The attentional load conditions differed in the number of 
non-neutral feature dimensions that varied across trials in a 
block. Blocks with 1-D, 2-D, and 3-D objects contained stimuli 
varying features in 1, 2, and 3 features dimensions. (D) Trials 
were initiated by touching or fixating a central stimulus. Three 
objects were shown at random locations and subjects had to 
choose one by either touching (four monkeys) or fixating an 
object (two monkeys) for ≥0.7 sec. Visual feedback indicated 
correct (yellow) vs error (cyan, not shown) outcomes. Fluid 
reward followed correct outcomes. (E) Sequences of three 
example trials for a block with 1-D objects (upper row, shape 
varied), 2-D objects (middle, color and arms varied), and 3-D 
objects (bottom row, body shape, arms and color) objects. (F) 
Same as E but for an object set varying surface pattern, arms, 
and color. 
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Figure 2. Learning performance. (A) Average Learning curves across six monkeys for the 1D, 2D, 
and 3D load condition. (B) Learning curves for each monkeys (colors) for 1D, 2D, 3D (low-to-high 
color saturation levels). All monkeys showed fastest learning for low load and slowest learning for 
the high load condition. Curves are smoothed with a 5 trial forward-looking window. (C) Left: The 
average trials-to-criterion (75% accuracy over 10 consecutive trials) for low to high attentional load 
(x-axis) for blocks in which the target feature was either of the same - intra-dimensional (ID) - or 
different dimension - extra-dimensional (ED) - as in the preceding trial. Right: Average number of 
trials-to-criterion across load conditions. Grey lines denote individual monkeys. Errors are SE. (D) 
The red color dneotes average trials-to-criterion for blocks in which the target feature was novel (not 
shown in previous block), or when it was previously a learned distractor. The blue color denotes the 
condition in which a distractor feature was either novel (not shown in previous block), or part of the 
target in the previous block. When distractors were previously targets, learning was slower. (E) 
Latent inhibition of distractors (red) and target perseveration (blue) at low, medium and high load. 
Errors are SE. 
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Figure 3. Rank ordering of models with different combinations of mechanisms. (A) Models 
(rows) using different combinations of model mechanisms (columns) are rank ordered according to 
their Akaike Information Criterion (AIC). The top-ranked model combined four mechanisms that 
are highlight in red: Decay of non-chosen features, working memory, adaptive exploration rate, and 
a separate learning gain for errors (losses). The 2nd, 3rd, and 4th ranked models are denoted with 
cyan, green and yellow bars. Thick horizonal bar indicates that the model mechanism was used in 
that model. The 26th ranked model was the base RL model that used only a beta softmax parameter 
and a learning rate. Right: Model rank average (1st column) and for each individual monkey 
(columns 2 to 7). See Supplementary Table 1 for the same table in numerical format with 
additional information about the number of free parameters for each model. (B) After subtracting 
the AIC of the 1st ranked model, the normalized AIC’s for each monkey confirms that the top-ranked 
model has low AIC values for each monkey. (C) Average behavioral learning curves for the 
individual monkeys (left) and the simulated choice probabilities of the top-ranked model for each 
monkey. The simulated learning curves are similar to the monkey learning curves providing face 
validity for the model.  
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Figure 4. Choice probabilities of monkeys and models at three different 
loads. (A) Average choice accuracy of monkeys (grey) and choice 
probabilities of six models. The top-ranked model (red) combines WM with 
RL and selective suppression of nonchosen values, a separate learning gain 
for neg. RPE’s, and adaptive exploration rates. The base RL model (green) 
only contained a softmax beta parameter and a single learning rate. The other 
models each add a single mechanism to this base model to isolate its 
contribution to account for the choice patterns of the monkeys. Columns 
show from left to right the results for low, medium, and high load conditions 
and for their average. (B) The ratio of monkey accuracy and model choice 
probability shows that in all load conditions, the top-ranked model predicts 
monkey choices consistently better than models with a single added 
mechanism. (C) Average difference of model predictions (choice 
probability) and monkeys’ choices (proportion correct) at low to high loads 
for different models. Error bars are SE. 
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Figure 5. Contribution of working memory, reinforcement 
learning and adaptive exploration to learning behavior. (A) 
Choice probabilities of the RL component of the top-ranked 
model for an example block, calculated for the objects with the 
new target feature (blue), the previous block’s target feature 
(red) and other target features (yellow). Purple plus signs show 
which object was chosen. (B) Same format and same example 
block as in A but for choice probabilities calculated for objects 
within the working memory module of the model. Choice 
probabilities of the WM and the RL component are integrated 
to reach a final behavioral choice. (C) Same as A and B but 
after combining the WM and RL components in the full model. 
Choices closely follow the RL component, but when the WM 
representation is recently updated its high choice probabilities 
influences the combined, final choice probability, as evident in 
trials 6 and 7 in this example block. (D) The trace of 
nonrewarded (error) trials for three example blocks with low, 
medium and high load peaks immediately after the block 
switch and then declines for all conditions. Error traces remain 
non-zero for the medium and high conditions. (E) The same 
example blocks as in D. The adaptive exploration rate (y-axis) 
is higher (lower beta values) when the error trace is high during 
early trials in a block.  
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Figure 6. Model parameter values at different attentional loads. The 
average parameter values (black) of the top-ranked model (y-axis) plotted 
against the number of distracting feature dimensions for the WM 
parameters (A-C) and the RL parameters (D-H). Individual monkeys are 
in colors. Error bars indicate SE.  
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Figure 7. Model parameter values underlying learning speed and asymptotic 
performance. (A) The correlation across monkeys and attentional load conditions 
of learning (trials-to-criterion, i.e. less trials signify faster learning) and parameter 
values of the top-ranked model. Stars denote FDR corrected significance at p < 0.05. 
Negative correlations denote that higher parameter values associate with faster 
learning.  (B) As A but for correlations of monkey’s asymptotic performance 
accuracy with model parameter values. (C,D) Illustration of the correlations shown 
in A,B for the RL parameters. Y-axis shows the learning speed (trial to criterion) and 
x-axis the parameter values of the top-ranked model. The black line is the regression 
whose r and p values are given above each plot. Each dot is the average result from 
one monkey in either the 1D (red), 2-D (blue) or 3-D (green) condition.  
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Figure 8. Model mechanisms distinguishing slow and fast learners. (A) The 
average learning speed (the trials to reach criterion, y-axis) plotted against the 
individual monkeys ordered from fastest to slowest learner. (B) Correlation of 
learning speed (trials-to-criterion) and rank-ordered monkeys (ranks #1 to #6). 
Stars denote FDR corrected significance at p < 0.05. (C,D) The weighting of 
positive prediction errors (C) and negative prediction errors (D) of the top-ranked 
model was significantly larger for fast than for slow learners.  
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Figure 9. Characteristics of the working memory, 
reinforcement learning and meta-learning 
components. The model components differ in the 
teaching signals that trigger adjustment, in the learning 
speed and in how important they are to contribute to 
learning at increasing attentional load. 
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Supplementary Table 1. Overview of the parameter used in models evaluated and ranked 
according to AIC higher than the base RL model (which is the model ranked 26th). See figure 3 
of the main text for a graphical illustration of the model rank ordering. 

Model 
Rank 

RL gain 
(η)  

RL decay 
(ω)  

RL softmax (β)  RL atn 
(α)  

WM 
decay 
(ω)  

WM 
softmax 
(β)  

WM 
capacity 
(CW M) 

stickiness 
(γ) 

#para  

1 ηGain,ηLoss  ωRL  βm, α− (α+, ω1, 
ω2 fix )  

- ωWM  βWM  CWM  - 8 

2 ηGain,ηLoss  ωRL  βm 
(α+,α−,ω1,ω2fix)  

- ωWM  βWM  CWM  γ 8 

3 ηGain,ηLoss  ωRL  βRL  - ωWM  βWM  CWM  γ 8 

4 ηGain,ηLoss  ωRL  βm 
(α+,α−,ω1,ω2fix)  

- ωWM  βWM  CWM  - 7 

5 ηGain,ηLoss  ωRL  βRL  - ωWM  βWM  CWM  - 7 

6 η ωRL  βm 
(α+,α−,ω1,ω2fix)  

- ωWM  βWM  CWM  - 7 

7 η ωRL  βRL  - ωWM  βWM  CWM  - 6 

8 η ωRL  βm 
(α+,α−,ω1,ω2fix)  

- ωWM  βWM  CWM  - 6 

9 η ωRL  βm, α− (α+, ω1, 
ω2 fix )  

- ωWM  βWM  CWM  γ 7 

10 ηGain,ηLoss  ωRL  βm, α− (α+, ω1, 
ω2 fix )  

- - - - - 5 

11 ηGain,ηLoss  ωRL  βm 
(α+,α−,ω1,ω2fix)  

- - - - γ 5 

12 ηGain,ηLoss  ωRL  βRL  - - - - γ 5 

13 η ωRL  βm 
(α+,α−,ω1,ω2fix)  

- - - - - 3 

14 η ωRL  βRL  - - - - γ 4 

15 η ωRL  βRL  - - - - - 3 

16 η ωRL  βRL  α  ωWM  βWM  CWM  - 7 

17 ηGain,ηLoss  ωRL  βRL  -    
- 4 

18 ηGain,ηLoss  ωRL  βRL  α  ωWM  βWM  CWM  - 8 

19 η - βm 
(α+,α−,ω1,ω2fix)  

- ωWM  βWM  CWM  - 5 

20 η ωRL  βRL  α  ωWM  βWM  CWM  γ 8 

21 η - βRL  - ωWM  βWM  CWM  - 5 
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22 η - βRL  - ωWM  βWM  CWM  γ 6 

23 ηGain,ηLoss  - βRL  - ωWM  βWM  CWM  - 6 

24 η - βRL  - - - - γ 3 

25 ηGain,ηLoss  - βRL  - - - - - 3 

26 η - βRL  - - - - - 2 
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