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ABSTRACT

Cerebral cortical development is controlled by key transcription factors that specify the neuronal identi-

ties in the different cortical layers. These transcription factors are crucial for the identity of the different

neurons, but the mechanisms controlling their expression in distinct cells are only partially known.

Here we investigate the expression and stability of the mRNAs of Tbr1, Bcl11b, Fezf2, Satb2 and Cux1

in single developing mouse cortical cells. We focus on Satb2 and find that its mRNA expression occurs

much earlier than its protein synthesis and in a set of cells broader than expected, suggesting an initially

tight control of its translation, which is subsequently de-repressed at late developmental stages. Mecha-

nistically,  Satb2 3’UTR modulates protein translation of GFP reporters during mouse corticogenesis.

By in vitro pull-down of Satb2 3’UTR-associated miRNAs, we select putative miRNAs responsible for

SATB2 inhibition, focusing on those strongly expressed in early progenitor cells and reduced in late

cells. miR-541, an Eutherian-specific miRNA, and miR-92a/b are the best candidates and their inacti-

vation triggers robust and premature SATB2 translation in both mouse and human cortical cells. Our

findings indicate that RNA interference plays a major role in the timing of cortical cell identity and

may be part of the toolkit involved in specifying supra-granular projection neurons.
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INTRODUCTION

The mammalian neocortex consists of six cell lay-

ers (I-VI) generated by radial  migration of neu-

roblasts  following  an  inside-out  mechanism

(Greig et al., 2013). Glutamatergic projection neu-

rons  are  formed  after  the  generation  of  layer  I

neurons  in  two  main  neurogenetic  waves:  deep

projection  neurons  (DPNs)  of  layers  V-VI  are

generated first, followed by superficial projection

neurons (SPNs) of the supragranular layers II-III

(Figure 1A). Generation of layer IV neurons fol-

lows the generation of DPNs and precedes SPNs

formation. Proper regulation of this developmen-

tal process is crucial and its impairment results in

various disorders such as brain malformations or

psychiatric diseases (Sun and Hevner, 2014). The

capability to generate distinct classes of neurons

depends  on  the  progenitor  cell  cycle  state  and

neuron  birth  date  (McConnell  and  Kaznowski,

1991).  Epigenetic  birthmarks  may  regulate  the

ability of cortical progenitor cells to establish neu-

ron identity already in the first hour following the

last cell division (Telley et al., 2019). After this,

the expression of a few cell identity transcription

factors (CITFs) is necessary to impart distinct cell

fates, with TBR1, BCL11b, FEZF2, SATB2 and

CUX1 playing an important role among them (Al-

camo et al., 2008; Cubelos et al., 2010; Hevner et

al., 2001, 2003; Leone et al., 2015; Srinivasan et

al.,  2012).  These  factors  may  initially  establish

early mutual activating or repressive interactions;

beyond  this  early  phase,  depending  on  the  cell

context and the timing of corticogenesis, some of

these interactions may change and combinatorial

action may ensue to refine terminal  cell  pheno-

type (Alcamo et al., 2008; Britanova et al., 2008;

Chen et al., 2008; Harb et al., 2016; Jaitner et al.,

2016; McKenna et al., 2015). A precise timing of

expression of these and other factors is required to

ensure appropriate  differentiation of  the neocor-

tex.  The  exact  mechanisms  dictating  the  timely

expression of CITFs in one given progenitor cell

and its progeny is still under scrutiny.

The evolution of the mammalian cortex is charac-

terized by the progressive thickening of the supra-

granular cell layer(s) (Dehay and Kennedy, 2007;

Dehay  et  al.,  2015).  A  sudden  evolutionary

change during mammalian cortex evolution may

be  the  heterochronic  appearance  of  the  cortical

transcription  factor  SATB2  with  respect  to  the

corresponding  mRNA.  Indeed,  it  was  recently

shown that SATB2 protein expression is delayed

in Eutherians compared to Metatherians and such

delay seems responsible  for the development  of

the inter-hemispheric callosal connections gener-

ated from the supra-granular cells  in Eutherians

(Paolino et al.,  2020). After its  evolutionary ap-

pearance, the continuous expansion of the corpus

callosum  (CC),  and  of  the  supra-granular  cell

layer it stems from, represents the distinguishing
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feature of the placental neocortex, including that

of  higher  primates.  Notably,  in  higher  primates

SATB2 protein appearance is delayed over an ex-

tended period, possibly crucial for supra-granular

cell  layer expansion (Otani et al.,  2016). In this

aspect,  the  control  of  developmental  timing  of

SATB2 during  cortical  neurogenesis  may  be  of

crucial importance. In this paper, we have first in-

vestigated the differential stability of mRNAs for

key CITFs involved in  mammalian corticogene-

sis, namely Bcl11b, Cux1, Tbr1, Fezf2 and Satb2,

by  exon/intron  stability  analysis  (EISA)  (Gai-

datzis et al., 2015). We find that among them only

Satb2  mRNA shows  an  increase  in  exon/intron

(E/I) ratio due to an improved stability and rate of

its  transcription.  We then show that a post-tran-

scriptional control is played by microRNAs (miR-

NAs) acting on Satb2 3’UTR. We isolated miR-

NAs that bind to this region and focus on miR-

541, a new, Eutherian specific miRNA; we show

that  miR-541 delays,  both  in  vivo and in  vitro,

SATB2 protein production with respect to Satb2

mRNA transcription. We discuss the potential im-

plications  of  miR-541 action  in  the  scenario  of

cortical evolution.

RESULTS

Satb2  is  co-transcribed  with  other  CITFs  in

early cortical cells before its translation. Since

DPNs and SPNs are sequentially generated in an

inside-out  fashion  from  embryonic  day  11.5

(E11.5) to E17.5 in mouse (Figure 1A), we expect

that the mRNA of CITFs is regulated in selected

progenitor  cells  during  this  time  window  and

tested this assumption by re-analyzing single-cell

RNA sequencing (scRNA-seq) datasets of mouse

cortex at  E11.5,  E13.5,  E15.5,  E17.5 (Yuzwa et

al.,  2017). We compared the average expression

level of the 5 CITFs, evaluated as raw counts/cell,

to the that of transcription factors with constitu-

tive expression (Figure 1B). The mRNA expres-

sion levels of all 5 CITFs are comparable to those

of  constitutive  transcription  factor  genes  since

E11.5,  indicating  that  the  expression  of  these  5

mRNAs could have a biological relevance already

at very early stages of corticogenesis. However,

we  did  not  detect  SATB2 translation  at  E  13.5

(Figure 1C). Although a minority of SATB2-posi-

tive  cells  were  reported  at  13.5 (Alcamo et  al.,

2008;  Britanova  et  al.,  2008),  reliable  onset  of

SATB2 protein expression was not described ear-

lier than E14 (Paolino et al., 2020), suggesting a

post-transcriptional regulation of Satb2 mRNA.

To get  insight  on the mechanism of  CITF tran-

scriptional  activation in specific  cell  subsets  we

analyzed  CITF  co-expression  in  single  cells  by

Co-expression  Table  Analysis  (COTAN) (Galfrè

et al., 2020; Galfrè and Morandin, 2020). 
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Figure  1.  CITF  expression analysis. A,  Simplified  outline  of  cortical  layering.  E11.5-E17.5,
embryonic day 11.5-17.5. Layers are labeled by Roman numerals. B, Violin plots show average raw
counts/cell  of genes indicated in labels. Constitutive gene are in  light  grey.  C, Coronal sections of
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mouse embryonic brain showing SATB2 immunodetection at different embryonic (E) developmental
times  of  corticogenesis.  Roman  numerals  indicate  cortical  layers.  IZ,  intermediate  zone.  D,  Top
schematic shows COTAN COEX relation to the pattern of expression of two genes (red and green) in
single  cell.  Bottom  shows  COEX  values  of  pairs  of  constitutive  genes  (left  matrix)  or  neural
differentiation markers (right matrix) at the different developmental times shown in labels. E, COTAN
COEX values of CITFs and genes associated to them by high COEX at E17.5. The  top side of the
matrix shows the COTAN COEX relation between pairs  of CITFs.  The  bottom part  of the matrix
reports COTAN COEX values between distinct CITFs and the genes that are more highly co-expressed
with each of them at E 17.5 (green boxes).

COTAN  can  assess  the  co-expression  of  gene

pairs in a cell and, by extending this analysis to all

gene pairs in the whole transcriptome, it can infer

the  tendency of  a  gene  to  be  constitutively ex-

pressed,  or expressed in a subset of differentiat-

ing/differentiated cells. Positive coexpression in-

dex  (COEX)  denotes  the  co-expression  of  two

genes, while negative COEX indicates disjoint ex-

pression; COEX near 0 is expected if one or both

are constitutive genes (Figure 1D, top) or when

the statistical power is too low. Accordingly, our

analysis gives COEX values close to zero for con-

stitutive  mRNA pairs  (Figure  1D,  left;  Supple-

mentary  files  1-8).  Conversely,  high  co-expres-

sion (positive COEX) is found for mRNA pairs of

known  molecular  markers  of  neural  progenitor

cells (Nestin, Vimentin,  Notch1, Hes1-5)  or post-

mitotic  cells  and  differentiating  neurons  (Dcx,

Tubb3, Map2). Finally, disjoint expression (nega-

tive COEX) is detected between mRNA pairs of

these two groups at all developmental stages (Fig.

1D).  All  CITFs  show  reciprocal  mRNA co-ex-

pression patterns consistent with their known pro-

tein expression pattern in different cell types, ex-

cept Satb2, whose COEX with each of the other 4

CITFs is comparable to that of constitutive genes

at  E11.5 and E13.5 (compare Figure 1A and E,

top).

We  considered  the  genes  most  highly  co-ex-

pressed with each CITF gene (Figure 1E bottom,

Supplementary Figure 1) at E17.5. At this stage,

the final  pattern of  co-expression of each CITF

gene with  co-clustered  markers  (green  boxes  in

Figure  1E)  differs  from  the  patterns  at  earlier

stages  of  corticogenesis  (Figure  1E).  This  sug-

gests  that  initially  CITF gene  expression  is  not

cell  layer-specific,  but  that  cell-specific  CITF

gene  expression  is  reached  towards  the  end  of

layer formation.

COTAN  Gene  Differentiation  Index  (GDI)  dis-

criminates between constitutive and non-constitu-

tive genes by globally integrating COEX values

(Galfrè et al.,  2020) (Figure  2A). We used GDI

analysis to infer the propensity of CITFs to be ex-
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pressed in restricted cell subsets during corticoge-

nesis.  Notably,  the global  relation between GDI

and  mRNA level  values  (Figure  2B),  and  the

global GDI distribution (Figure 2C), are compara-

ble during the four developmental times included

in the analysis.

Figure 2 CITF transcription in distinct cell clusters. A, Schematic shows how GDI can infer the
degree of gene pair co-expression in cell populations with different cell identities. B, plots show GDI
and gene mRNA expression levels at different developmental times. C, violin plots report global GDI
distribution  during  corticogenesis.  D,  Distinct  CITFs  show  different  GDI  according  to  their
translational onset. E, t-SNE clustering of early (DIV13.5), or late (DIV17.5) cells. Panels show read
distribution of the indicated gene on cell clusters.

This observation supports the use of GDI analysis

to evaluate  whether a mRNA species changes its

pattern of cell distribution during corticogenesis,

and becomes restricted to a particular cell lineage/

layer. Unlike  constitutive genes  as  Actb,  CITFs

showed marked GDI changes during corticogene-

sis  (Figure  2D).  Tbr1 mRNA shows  a  peak  at

E11.5, consistent with early localized TBR1 pro-

tein expression in layer 1 neurons (Hevner et al.,

2001).  Bcl11b and  Fezf2, followed by  Satb2 and
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Cux1,  increase their GDI until E15.5 paralleling

their respective onset of protein expression (com-

pare Figure 2D with Figure 1A). 

The  drop  of  GDI  observed  at  E17.5  correlates

with,  and might  be  explained  by,  the  increased

heterogeneity of the cell types co-expressing dif-

ferent combinations of CITF proteins at the end of

corticogenesis  (Lodato  and  Arlotta,  2015),  al-

though it may also be due to post-transcriptional

CITF regulation. Notably, Satb2 displays the low-

est GDI levels among CITFs at E11.5-13.5, when

its  protein is  not  yet  detectable,  suggesting that

post-transcriptional mechanisms account, at least

in part, for the subsequent restricted expression of

SATB2 protein in SPNs. 

Finally, we used a conventional t-SNE analysis of

gene expression on cells clusters (Figure 2E). The

lack of a cell-type restricted distribution of Satb2

mRNA at early stages is also suggested by its par-

tial overlap with Bcl11b mRNA in E13.5 cell clus-

ters, as compared to E17.5 clusters.

Satb2 3’UTR drives  RISC-dependent transla-

tional inhibition in early cortical cells. We then

took  advantage  of  Exon-Intron  Split  Analysis

(EISA) (Gaidatzis et al., 2015; La Manno et al.,

2018) to verify whether a time-dependent instabil-

ity of Satb2 mRNA could account for the inability

to  detect SATB2  protein  at  E13.5,  when  Satb2

transcription  is  already  robust  and  apparently

spread in different cell clusters.  EISA can evalu-

ate if a mRNA species changes its stability during

developmental  processes,  assuming  that  the  in-

tronic sequences are rapidly spliced and that their

levels  reflect  the  gene  transcriptional  rate  (see

schematic in Figure 3A, left). Because layer iden-

tity  commitment  is  established  before  neuron

birth date (McConnell and Kaznowski, 1991; Tel-

ley et al., 2019), we analyzed RNA-seq datasets

of  progenitor  cells  (Chui  et  al.,  2020).  We  ob-

served that  Satb2 Exon/Intron (E/I) ratio signifi-

cantly increases from E11.5 to E17.5,  Bcl11b E/I

increases from E11.5 to E13.5 and  Fezf2 E/I in-

creases from E13.5 to E15.5, while the E/I of the

other  CITFs  and  of  Actb shows  no  significant

changes  (Figure  3A,  middle  panel).  Notably,

Satb2 E/I ratio increase is paralleled by a dramatic

increase of its transcription levels from E11.5 to

E17.5 (Figure  3A, right), as measured by intron

read abundance, making its E/I increase more rel-

evant  than  that  of  Bcl11b and  Fezf2.  Satb2 E/I

fold change between E13.5 and E15.5 settles in

the highest quartile of the E/I increase (Figure 3B,

Supplementary file 9), suggesting high biological

relevance  and  supporting  close  relationship  be-

tween the increase of Satb2 mRNA stability and

the onset of SATB2 translation. We thus focused

our attention on the post-transcriptional regulation

of Satb2.
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Figure 3. Cortical mRNA exon/intron analysis and SATB2 translational inhibition. A, Exon-Intron
split analysis (EISA) of CITF mRNAs. Outline shows different ratios of exonic and intronic sequences
in relation to mRNA stability as rationale at the basis of EISA. Box plots show the ratio of exon/intron
(E/I) read counts, and intron read counts, for distinct CITFs and  Actb (constitutive  control  gene) in
cortical progenitors at different in vivo embryonic times. B, Density plot of Exon/Intron (E/I) ratio fold
change  between  E13.5  and  E15.5.  C,  qRT-PCR evaluation  of  Argonaute  (AGO)-interacting  Satb2
mRNA. Values on Y axis report the ratio of RT-PCR-detected, immunoprecipitated Satb2 mRNA with
respect  to  the  input  (AGO RIP).  GFP RIP,  control  immunoprecipitation  with  anti-GFP Ab.  N= 3
independent experiments. D, Expression of  Satb2 3’ UTR-bearing GFP reporter after  lipofection in
corticalized mESCs. N= 3 independent experiments. Cells were transfected 48 hours before the time of
analysis indicated in labels.

We reasoned that changes in Satb2 mRNA stabil-

ity could be induced by miRNA-dependent RNA

interference. Indeed, by high-throughput analysis

of miRNA-mRNA interactions at single cell level,

distinct miRNAs were recently associated to func-

tional modules involved in the control of different
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cortical cell identities (Nowakowski et al., 2018).

To gain insights on RNA interference during early

corticogenesis,  we  employed  mESCs,  whose  in

vitro neural  differentiation  can  be  steered  to

closely reproduce the early stages of cortical de-

velopment,  including  time-regulated  expression

of TBR1, BCL11B and SATB2 protein (Bertacchi

et al., 2015; Gaspard et al., 2008). In this experi-

mental  system,  we measured  the  enrichment  of

Satb2 mRNA after  AGO2 immunoprecipitation.

By qRT-PCR, a significant enrichment of AGO2-

bound  Satb2 mRNA is detected in cells after 12

days in vitro (DIV) compared to GFP immunopre-

cipitation  used  as  control,  indicating  a  relevant

miRNA silencing activity at an early stage of  in

vitro corticogenesis  (Figure  3C).  Notably,  we

found no enrichment at DIV18, consistent with a

significant  increase  of  SATB2-positive  cells  at

this time (Bertacchi et al., 2015).

The dynamic binding capacity of Satb2 mRNA to

AGO2 at different times of development is in line

with the ability of Satb2 3’UTR to inhibit protein

translation in early, but not late, cortical cells. In-

deed, at DIV12 the transfection of a GFP reporter

carrying  Satb2 3’UTR yields  decreased  fluores-

cence levels compared to control, while at DIV18

the reporter  activity  is  not  significantly affected

(Figure 3D), consistent with robust SATB2 trans-

lation at  this  late  stage (Bertacchi  et  al.,  2015).

Satb2 3’UTR is able to control translation also in

vivo, as shown by  in utero electroporation (IUE)

of a GFP reporter/sponge. At stage E13.5, the pro-

portion of SATB2-GFP double-positive cells with

respect  to  GFP-positive  cells  is  significantly

higher in a cortex electroporated with a 3’UTR-

bearing sensor  compared to  a  control-electropo-

rated cortex (Supplementary Figure 2).  These re-

sults  indicate  that Satb2 3’UTR  can inhibit  the

translation of its  mRNA in early-generated neu-

rons.

miRNAome time trajectories describe cortical

development  progression. We  then  set  out  to

identify miRNA candidates  regulating Satb2 ex-

pression. To this aim, we sorted Sox1::GFP corti-

calized mES cells, which are enriched in progeni-

tors, and first analyzed their global miRNA pro-

files in comparison with the profiles of non neu-

ralized mES cells, post-mitotic corticalized mES

cells obtained by AraC treatment, or mouse cor-

tex, at different developmental times (Figure 4A-

D,  Supplementary  file  10).  MiRNAome  PCA

shows high consistency between miRNA profile

and cell identity. MiRNAomes of non neuralized

mES cells are well separated from those of corti-

calized  mES cells  and of  cortex,  which  instead

cluster  together,  confirming  that  our  protocol

mimics a genuine cortical identity in vitro (Figure

4A). The time of  in vitro differentiation distrib-

utes both neuron (Figure 4B) and progenitor (Fig-
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ure  4C)  miRNAomes  along  PC3,  in  agreement

with the relative position of E12 and P0 cortex

miRNAomes, indicating high conservation of the

mechanisms  accounting  for  the  timing  of  layer

formation in our in vitro conditions. Finally, PC3

discriminates  between  progenitor  and  neuron

miRNAomes  (Figure  4D),  indicating  that  these

distinct cell  states are maintained throughout the

differentiation process. 

Figure 4.  miRNAome time trajectories in corticogenesis. A-C, PCA of miRNA global profiles of
non neuralized mES cells (nn), neural progenitor cells (Sox1::GFP corticalized mESCs), post-mitotic
cells (Ara-C-treated corticalized mESCs) and mouse cortex (ctx) at different developmental times. Four
different combinations of the four above mentioned groups are shown.

Selected miRNAs directly bind Satb2 3’UTR in

early  cortical  cells.  To  select miRNAs that  di-

rectly interact with  Satb2 3’ UTR at DIV12 and

DIV18 we employed miR-catch analysis, which is

based  on  the  recovery  of  mRNA/RISC/miRNA

complex by digoxigenin-labeled  probes  comple-

mentary  to  the  target  mRNA (Marranci  et  al.,

2019; Vencken et al., 2015). This method quanti-

fies bound miRNAs through small RNA-sequenc-

ing,  measuring  miRNA enrichment  with respect

to  the  input  (total  miRNAs)  (Figure  5A).  With

this approach, we found twelve miRNAs that bind

to  Satb2 mRNA and are significantly enriched at

DIV12; among these, miR-541 and miR-3099 are

not  enriched at  DIV18,  thus representing candi-

dates for SATB2 inhibition in early, but not late,

cortical  cells  (Figure  5B,  Supplementary  Figure

3,4, Supplementary File 11).
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Figure 5. Satb2 interacting miRNAs. A, Outline of miR-catch method. B, enrichment of captured
miRNAs (x-axis) with respect to input (Y axis) at the indicated time. CPM, counts per million. Color
labels  indicate  significantly  enriched  miRNAs  (non-parametric  noiseqbio  test  probability  >  0.9)
(Tarazona  et  al.,  2015).  C,  Developmental  expression  patterns  of  Satb2-captured  miRNAs  in
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Sox1::GFP progenitor cells. D, developmental expression of miRNAs with  the  highest monotonic
developmental decrease in Sox1::GFP progenitor cells. CPM, counts per million.

Because  of its  extremely  low  expression  levels

(Figure 5C) we did not further investigate miR-

3099 and focused our attention on the other miR-

NAs.

We analysed the abundance of the twelve cap-

tured miRNAs in progenitor cells and found that

only miR-92a-b and miR-541 show robust de-

crease  between  DIV12  and  DIV16,  when

SATB2 translation is de-inhibited (Figure 5C).

We  thus  focused  our  attention  on  these  three

miRNAs. miR-92 was already shown to play a

major role in inhibiting EOMES (TBR2) trans-

lation and preventing early generation of  basal

progenitors, which  give  rise  to  supragranular

neurons  in  mouse (Bian  et  al.,  2013;

Nowakowski et al., 2013). Conversely, miR-541

has never been found involved in cortical devel-

opment. miR-541  belongs  to  an  evolutionary

new miRNA cluster (mir-379-mir-410 in mouse,

mir-379-656 in humans), which is located into a

large miRNA-containing gene (Mirg) inside the

DLK-DIO3 locus (Edwards et al., 2008; Glazov

et  al.,  2008;  Winter,  2015).  Mirg orthologues

have been found in all Eutherian, which hold in-

ter-hemispheric cortical connections forming the

corpus  callosum,  but  not  in  Metatherian,  Pro-

totherian,  or any other vertebrates,  which lack

corpus  callosum.  Moreover,  gene  targets  for

mir-379/mir-656 cluster  are  significantly  over-

represented in Gene Ontology terms associated

with neurogenesis and embryonic development,

and  miRNA expression  was  detected  in  brain

and placenta,  suggesting that  Mirg appearance

was one of the factors that drove the evolution

of the placental mammals (Glazov et al., 2008).

miR-541 shows an  in vitro pattern of expression

that  closely  matches  the  time-dependent  inhibi-

tion of SATB2 translation and follows a sudden

down-regulation between  DIV12  and  DIV16

(Figure  5  C).  In  addition,  at  E13.5  miR-541 is

widely  expressed  in  the  ventricular  zone  (VZ),

subventricular zone (SVZ) and mantle zone (MZ),

when SATB2  protein  is  undetectable,  while at

E15.5  the  miRNA is  expressed  in  the  cortical

plate  (CP),  when the protein is  detected in  VZ,

SVZ, intermediate zone (IZ) and migrating cells

(Supplementary  Figure 5).  Finally,  miR-541 de-

velopmental decrease is comparable to that of the

most  heavily  downregulated  miRNAs  from

DIV10 to DIV12 (Figure 5D), supporting its can-

didacy for the control of SATB2 inhibition during

the early corticogenesis.

miR-541 and miR-92a/b inhibit SATB2 trans-

lation in both mouse and human early cortical

cells. We then inhibited miR-541 and mir_92a/b
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by transfection of a complementary locked-RNA

(antagomiR)  in  mouse  ES  corticalized  cultures

(Figure 6A). This results in a premature and mas-

sive increase of  SATB2-positive cells  compared

to  control-transfected  cells  (Figure  6B  top,  C).

Notably,  miR-541 has  no predicted  binding site

on Eomes 3’UTR; thus, its effect on SATB2 trans-

lation is unlikely to depend on increased EOMES

translation and consequent induction of basal pro-

genitor identity (Sessa et al., 2008), which may be

the case with miR-92a/b inhibition. miRNA inhi-

bition both anticipates the onset of SATB2 protein

detection, as indicated by the effect of transfec-

tion  at  DIV10,  and  increases  the  efficiency  of

translation at later time points, as emphasized by

the  outcome of  DIV12 transfection.  Finally,  we

observed  a  similar  effect  when  downregulating

miR-541 and  miR-92 in  corticalized  human  in-

duced pluripotent cells (hiPSCs) (Figure 6B, bot-

tom, C), suggesting evolutionary conservation of

the  mechanism of  cell-type-specific  SATB2  ex-

pression.

Figure 6. miR-92a-b and miR-541 function in mouse and human cortical cells. A, Outline of the in
vitro assay of miR-541 inhibition by LNA-antisense oligonucelotide lipofection in corticalized mESCs
(n= 2 independent experiments) or hiPSCs (n= 3 independent experiments). B, Immunocytodetection
show  SATB2-positive  nuclei  2  days  after  mESC lipofection  and  6  days  after  hiPSC  lipofection,
respectively.  C,  Box plots  report  SATB2-positive nuclei  proportion.  Ctr,  scrambled sequence LNA
lipofection. An anti- miR-92 LNA oligonucleotide was used to inhibit both miR-92a and miR-92b,
which share the seed sequence. 

miR-541 targets are enriched in genes related

to the development of supra-granular neurons.

To  infer  the  biological  relevance  of  miR-92a/b

and  miR-541,  we  evaluated their  degree  of
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miRNA-mRNA target  affinity using an  in  silico

prediction approach (Enright et al.,  2003).  First,

we analyzed the affinity of miRNA-Satb2 3’UTR

interaction  in  relation  to  the  average embryonic

cortical  miRNA expression  of  the  mouse  miR-

NAome.  Among  the  annotated  mouse  miRNAs

with significant affinity to Satb2 3’UTR (Supple-

mentary file  12),  miR-92a/b and miR-541 show

high expression in cortical progenitors (miR-92a/

b) or high in silico affinity to Satb2 3’UTR (miR-

541)  (Figure  7A),  in  line  with  their  high  miR-

catch enrichment (Figure 5B). We then compared

miR-92a/b and miR-541 targets with the targets of

three recently described miRNAs of corticogene-

sis,  namely  let7,  miR-9,  miR-128  (Shu  et  al.,

2019).  To this aim, we selected a subset of 395

genes  associated  with  an  embryonic  cortical

marker signature (Galfrè et al., 2020). Among the

6 miRNAs analyzed, let-7 and miR-541 showed

in silico affinity with more than half of the signa-

ture  genes (Figure  7B,  Supplementary  File  13-

14),  suggesting for them a more relevant role in

corticogenesis. 

Interestingly,  when  analysing  the  mRNAs with

the  highest  in  silico affinity  (total  score  higher

than 400) for the 6 miRNAs, only the putative tar-

gets of miR-541 showed significant enrichment in

GO  terms  (Figure  7C).  It  may  be  notable  that

terms related to neuronal projection development

(axogenesis,  neuron  projection  morphogenesis,

cell projection morphogenesis, plasma membrane

cell  projection)  (Figure 7C)  are the most  repre-

sented and that at least 8 out of the 11 putative tar-

get genes are related to cortical neuronal layering

and  migration,  axon  guidance,  corpus  callosum

disturbances  (Supplementary Figure 6).  Interest-

ingly, all these 8 genes are involved in basic pro-

cesses controlling the generation of  supra-granu-

lar  layer  cells  such as polarization,  proliferation

and migration  of  late  cortical  progenitor  cells

(Caubit et al., 2016; Chen et al., 2016; Hatanaka

et al., 2019; Li et al., 2019; Namba et al., 2014;

Okamoto  et  al.,  2013;  Pramparo  et  al.,  2010;

Shinmyo et  al.,  2017;  Ton and  Kathryn Iovine,

2012; Zhang et al., 2016) (Figure 7D). Figure 7E

compares the change of E/I read counts by EISA

of 7 out of the 8 genes (not enough Cdk5r read

counts were available for a significant analysis) to

that of the genes of the embryonic cortical marker

signature.  The  results  indicate  that  all  these  7

genes increase their E/I read count ratio between

E 13.5 and E 17.5 and that there is a general cor-

relation between E/I read count increase and mir-

541/mRNA affinity  score,  supporting  a  relevant

role of miR-541 in their post-transcriptional con-

trol during early corticogenesis. Altogether, these

findings suggest a  possible role of miR-541 as a

hub in the post-transcriptional control of genes in-

volved  in  the  generation  of  supra-granular  neu-

rons.
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Figure 7. In silico analysis of miRNA/mRNA interactions. A, In silico comparison of the affinity of
mouse miRNAome (grey dots), miR-92a-b and miR-541 (colored dots) to Satb2 3’UTR (Ensembl Mus
musculus Satb2-201 cDNA 3’ UTR), in relation to the average miRNA expression levels during cor-
ticogenesis. B, In silico affinity of cortical miRNAs to the 3’ UTR of an embryonic layer gene signature
(385 genes) (Galfrè et al., 2020). C, GO enrichment of the mir-541 gene targets with high  in silico
affinity to Satb2 3’UTR (cumulative score higher than 400, n=48) (Enright et al., 2003) with respect to
the layer gene signature employed in B. D, list of the 8 genes common to all the GO terms shown in C.
E, plot showing E/I read counts developmental increase (x-axis) with respect to miR-541/mRNA affin-
ity score of genes of the embryonic cortical marker signature (Galfrè et al., 2020). Colored dots indi-
cate genes listed in D. Names in labels indicate the 5 genes with the highest E/I read count ratio in-
crease and mir-541/mRNA affinity score. 

DISCUSSION

There is growing evidence that translational con-

trol exerted by RNA-binding proteins or miRNAs

plays a crucial role in setting the appropriate time

of production of key proteins involved in control-

ling the differentiation potential, the final layer of

destination of cortical progenitors, as well as the

differentiative  program  of  the  post-mitotic  neu-

rons  (Kosik  and  Nowakowski,  2018;

Nowakowski et al., 2018; Shu et al., 2019; Zahr et

al.,  2018). For example,  cortical  progenitors ex-

press Brn1 and Tle4 mRNAs, for both deep and

superficial  layer  fates,  respectively,  but  their

translation into the corresponding proteins is ini-

tially repressed by a translational repression com-

plex and subsequently released in due time (Zahr

et al., 2018). Micro-RNAs are especially interest-

ing in this respect and they have been indicated as

heterochronic  modulators  of  vertebrate  develop-

ment (Gulman et al., 2019; Robinton et al., 2019),

also in the context of the vertebrate nervous sys-

tem (Chiu et al., 2014; Nowakowski et al., 2018;

Zahr et al., 2019). 

SATB2  protein  plays  a  central  role  in  cortical

neurogenesis, both in the early embryonic phase

and at later postnatal stages. Inactivation of Satb2

by conventional knockout leads to absence of cor-

pus  callosum and to a  change in  the projection

abilities of upper layer projection neurons, that di-

vert  their  trajectories  to  subcortical  targets  (Al-

camo et al., 2008; Britanova et al., 2008). These

data  were  integrated  by  conditional  knockouts:

when  Satb2 is  inactivated  early,  callosal  axons

fail  to  form,  and  instead  layer  II-III neurons

project  subcortically  or to the septum (Leone et

al., 2015; McKenna et al., 2015; Srinivasan et al.,

2012). On the other hand, when  Satb2 is inacti-

vated at later stages, the corpus callosum appears

intact, though there are consequences for plastic-

ity and long-term memory storage (Jaitner et al.,

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2020. ; https://doi.org/10.1101/2020.10.26.355214doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.26.355214
http://creativecommons.org/licenses/by-nc-nd/4.0/


2016).  Furthermore,  besides  being  involved  in

layer  II-III  callosal  neuron  specification,  Satb2

also plays a role in layer V subcortical projection

neurons (Srinivasan et al., 2012). These data indi-

cate that SATB2 acts in a multifaceted way that is

both cell-context and time dependent, and indicate

that precise control of its expression may be rele-

vant  for  cortical  development.  Significantly,

Paolino et al. (Paolino et al., 2020) have recently

shown that accurate timing of SATB2 protein ap-

pearance in mouse is crucial  for appropriate ax-

onal projection of layer II-III neurons through the

corpus callosum. In fact, while SATB2 protein is

readily translated from its mRNA in the dunnart

marsupial model (where layer II-III axons project

through the  anterior  commissure  and the  CC is

absent), in the mouse SATB2 protein appearance

is delayed with respect to its  mRNA expression

(and axons go through the CC). Strikingly, antici-

pated  SATB2  protein  production  in  the  mouse

reroute layer II-III commissural axons toward the

anterior commissure instead of the corpus callo-

sum. This showed that a post-transcriptional con-

trol may be relevant in timing SATB2 protein ap-

pearance  within  the  developing  early  placental

neocortex (Paolino et al., 2020).

To get more insights into the early regulation of

Satb2 mRNA translation, we initially sought for

evidence  of  differential  stability  of  the  mRNAs

for  Satb2 and other key genes involved in mam-

malian  corticogenesis,  namely  Bcl11b,  Cux1,

Tbr1, and Fezf2. By EISA, we found that among

them  only  Satb2 mRNA shows  an  increase,  in

both its stability and the rate of its transcription,

that could be related  to the delayed SATB2 pro-

tein appearance. Then, in a cell culture model of

cortical  differentiation,  we have  shown that  the

Satb2 3’UTR drives a significant translational in-

hibition of a GFP reporter at an early (DIV 12),

but not at a late (DIV 18), stage of differentiation;

and that Satb2 3’UTR is bound by the AGO/RISC

complex in much a stronger way at an early (DIV

12) than at a late (DIV18) stage of in vitro differ-

entiation,  suggesting  its  regulation  by  miRNAs.

We then have studied the expression of miRNAs

in this same model and identified miR-92a, miR-

92b  and  miR-541  as  candidate  to  modulate

SATB2 onset of translation, on the basis of their

temporal  dynamics  of  expression  and,  signifi-

cantly,  of  miR-catch biochemical  selection.  We

also showed that antagonizing these miRNAs an-

ticipates the appearance of SATB2-positive cells

in  both  mESCs and hiPSCs induced  to  cortical

differentiation  in vitro. While the antagonism of

miR-92a/b might exert this effect by anticipating

the translation of EOMES (TBR2), and then the

differentiation  of  intermediate progenitor  cell

progeny  expressing  SATB2  (Bian  et  al.,  2013;

Nowakowski et al.,  2013), miR-541 has no pre-

dicted binding sites on Eomes mRNA. Therefore,
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the effect of miR-541 on the onset of appearance

of SATB2-positive neurons is directly due to its

binding to Satb2 3’UTR. For this reason, and be-

cause of its peculiar taxon-specificity, we focused

our attention onto miR-541 role in corticogenesis.

In fact, unlike miR-92, let-7b, miR-128 and miR-

9, and other miRNAs involved in cortical devel-

opment  (Chiu  et  al.,  2014;  Nowakowski  et  al.,

2013, 2018; Shu et al., 2019; Zahr et al., 2018),

which are evolutionarily  conserved, mir-541 ap-

peared recently during vertebrate evolution, being

present only in Eutherian mammals (see below).

miR-541 has not been deeply studied, except for a

report  showing its  function in  inhibiting  neurite

growth in PC2 cells (Zhang et al., 2011). miR-541

expression  declines  during  corticogenesis  in  a

temporal pattern opposite to that of SATB2 pro-

tein,  and  its  presence  in  Eutherians,  but  not  in

Metatherians  or  any  other  vertebrates,  suggests

that it might be involved in the up mentioned het-

erochronic  shift  of  SATB2  translation  between

dunnart  and  mouse  (Paolino  et  al.,  2020).  Our

demonstration  that  miR-541  can  bind  Satb2

3’UTR and  inhibits  its translation  both  in  vitro

and in vivo provides a molecular mechanism con-

tributing to this heterochronic shift.

Satb2 is  present  in  all  vertebrates  (Sheehan-

Rooney et al., 2010) and is expressed with other

CITF genes in the dorsal telencephalon (pallium)

of  birds  and reptiles,  though with different  pat-

terns of mutual co-expression, as compared to the

mammalian  neocortex  (Nomura  et  al.,  2018;

Tosches  and  Laurent,  2019).  This  suggests  that

the  same CITFs  have  evolved  different  mecha-

nisms  of  cell  identity  regulation  in  homologous

telencephalic  structures  of  different  vertebrates

(Cárdenas and Borrell, 2019; Nomura et al., 2018;

Tosches  and  Laurent,  2019).  Notably,  in  mam-

mals  Satb2 has  acquired  a  novel  transcriptional

control, due to the genomic insertion of a SINE

sequence  (AS021)  carrying  a  new  cortical-spe-

cific enhancer (Sasaki et al., 2008; Tashiro et al.,

2011). In addition, in the early mammalian neo-

cortex,  SATB2 binds  the  Bcl11b promoter  with

high  efficiency  and  prevents  its  expression,  al-

though at later stages LMO4 relieves this inhibi-

tion (Alcamo et al., 2008; Britanova et al., 2008;

Harb  et  al.,  2016).  In  contrast,  in  reptilian  and

avian pallial cells SATB2 and BCL11B are coex-

pressed,  and SATB2 cannot silence  Bcl11b,  be-

cause of very inefficient binding of its cis-regula-

tory sequences (Nomura et al., 2018). By leading

to differential expression of these two proteins in

separate layers, this mechanism may increase cor-

tical heterogeneity in the mammalian brain (No-

mura et al., 2018). In addition, in higher primates,

SATB2 appearance is delayed over an extended

period,  possibly  crucial  for  cortical  expansion,

during which deep layer neurogenesis is balanced

with the expansion of progenitor cells  (Otani  et

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2020. ; https://doi.org/10.1101/2020.10.26.355214doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.26.355214
http://creativecommons.org/licenses/by-nc-nd/4.0/


al., 2016). Altogether, these observations indicate

that tight  temporal  control and initial  repression

of  SATB2  expression  (Paolino  et  al.,  2020)

(present work) may hold a crucial role in pallial

evolution.  Together  with  other  previously  pub-

lished data (Chiu et al., 2014; Nowakowski et al.,

2013, 2018; Shu et al., 2019; Zahr et al., 2018),

our results suggest that post-transcriptional mech-

anisms of regulation may be of great relevance for

layering down the mammalian neocortex (Figure

8).

Figure 8. Post-transcriptional mechanisms
and  SATB2  heterochronic  shift  in  mam-
malian brain evolution. The genomic inser-
tion of a SINE sequence (AS021) carrying a
new cortical-specific  enhancer  settled  Satb2
cortical expression in mammals (Sasaki et al.,
2008; Tashiro et al., 2011). However, the con-
trol of SATB2 protein expression underwent a
crucial change during mammalian evolution:
a heterochronic shift occurred that may be in-
volved  in  routing  the  axons  of  Eutherian

supra-granular cell layers (green cells in the figure) to the corpus callosum (Paolino et al., 2020). miR-
92a-b and miR-541, and possibly other post-transcriptional regulators, may have contributed to the
shift by inhibiting SATB2 translation in the early corticogenesis phase.

miR-541 is encoded by Mirg (miRNA-containing

gene), present only in Eutherian mammals inside

the  Dlk1-Dio3 locus  (Edwards  et  al.,  2008;

Glazov et al.,  2008; Rocha et al.,  2008; Winter,

2015).  Mirg encodes  about  40  miRNA  genes

(Glazov et al., 2008; Marty and Cavaillé, 2019).

Mirg mRNA was detected in the developing early

nervous  system  as  well  as  in  other  organs,

including the liver (Han et al., 2012). Constitutive

Mirg deletion affects energy homeostasis causing

neonatal  lethality  (Labialle  et  al.,  2014),  and

behavioural disturbances (Lackinger et al., 2019;

Marty et al., 2016). While the metabolic disorders

have  been  related  to  alteration  of  liver  gene

expression program (Labialle et al., 2014),  Mirg

overall role, and of its individual miRNAs, in the

early nervous system and in cortical layering has

not  been precisely defined,  with few exceptions

(Marty  and  Cavaillé,  2019;  Winter,  2015).  For

some of these miRNAs a neurogenic function has

been  shown  or  proposed,  but  several  seem

involved in brain disorders (Gallego et al., 2016;

Shi et al., 2015; Tsan et al., 2016; Winter, 2015).

Furthermore, an overall GO analysis of the targets
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of  these  miRNAs  pointed  to  embryonic  and

neural  development  and  especially  at  axon

guidance  as  key  enriched  terms;  the  possible

involvement  of  Mirg in  the  regulation  of  key

factors  for  formation  of  corpus  callosum  was

suggested by in silico target analysis (Glazov et

al.,  2008). While  we showed that miR-541 may

play a role in timely control of SATB2 expression

in upper cortical layer, it may also be notable that

mRNAs for  axon guidance  molecules  identified

as targets  of other miRNAs of  Mirg (Glazov et

al.,  2008) are  also in silico targets  of miR-541;

conversely,  some  of  miR-541  most  relevant

targets (Supplementary  Table 2) are also targets

of other miRNAs of Mirg. The coordinate action

of  Mirg miRNAs  may  therefore  be  relevant  in

endowing  the  Eutherian  brain  with  some  of  its

characters.

EXPERIMENTAL PROCEDURES

Mouse  ES  cell  corticalization  in  vitro,  cell

transfection  and  analysis  were  performed  as

previously  described  (Terrigno  et  al.,  2018a,

2018b). Human hiPS cells (ATCC-DYS0100 line,

American  Type  Culture  Collection)  were

neuralized  according  to  Chambers  at  al.

(Chambers et al., 2009).

Co-expression  Table  Analysis  (COTAN)  was

performed  on  previously  published  datasets

(Yuzwa  et  al.,  2017)  following  the  protocol  of

Galfrè  et  al.  (Galfre  et  al.,  2020).  Exon-Intron

split analysis (EISA) was performed as described

(Gaidatzis et al., 2015; La Manno et al., 2018) on

available  datasets  (Chui  et  al.,  2020).  RNA

immunoprecipitation, Small RNA-seq  and miR-

catch were carried out as described  (Marranci et

al.,  2019;  Pandolfini  et  al.,  2016),  with  minor

modifications.

miRNA-mRNA in silico affinity was predicted as

described (Enright et al., 2003), using score >120,

energy < -18 kd as thresholds. 3’UTR sequences

were obtained  from Ensembl  resources (Hunt et

al., 2018), using Cran Biomart package. MiRNA

sequences were obtained from miRBase database

(v.22) (Kozomara et al., 2019). Detailed Material

and  Methods  are  described  in  Supplemental

Information.
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