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Abstract 

Allosteric inhibitors of mutant IDH1 or IDH2 induce terminal differentiation of the mutant 

leukemic blasts and provide durable clinical responses in approximately 40% of acute myeloid 

leukemia (AML) patients with the mutations. However, primary resistance and acquired 

resistance to the drugs are major clinical issues. To understand the molecular underpinnings of 

clinical resistance to IDH inhibitors (IDHi), we performed multipronged genomic analyses 

(DNA sequencing, RNA sequencing and cytosine methylation profiling) in longitudinally 

collected specimens from 68 IDH1- or IDH2-mutant AML patients treated with the inhibitors. 

The analysis revealed that leukemia stemness is a major driver of primary resistance to IDHi, 

whereas selection of mutations in RUNX1/CEBPA or RAS-RTK pathway genes was the main 

driver of acquired resistance to IDHi, along with BCOR, homologous IDH gene, and TET2. 

These data suggest that targeting stemness and certain high-risk co-occurring mutations may 

overcome resistance to IDHi in AML.  
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Introduction 

Somatic mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) can be detected in 

approximately 20% of patients with acute myeloid leukemia (AML) 1. Mutations are almost 

exclusively found in the Arg132 (R132) residue in IDH1 and Arg140 (R140) or Arg172 (R172) 

residues in IDH2. Wild-type IDH1 and IDH2 catalyze the oxidative decarboxylation of isocitrate 

to produce α-ketoglutarate (α-KG). On the other hand, mutant IDH1 and IDH2 acquire 

neomorphic catalytic activity and produce an oncometabolite, (R)-2-hydroxyglutarate [(R)-2HG 

or 2HG] 2,3, which competitively inhibits α-KG-dependent enzymes such as the ten-eleven 

translocation (TET) family of DNA hydroxylases, lysine histone demethylases, and prolyl 

hydroxylases 4-6. As a result, IDH-mutant AML exhibits CpG hypermethylated phenotype 

(CIMP) and increased histone methylation, leading to an aberrant gene expression profile and 

differentiation arrest 7,8.  

Allosteric inhibitors to IDH mutant proteins (e.g. enasidenib for mutant IDH2 and ivosidenib for 

mutant IDH1) suppress 2HG production 9 and demonstrate an approximately 40% overall 

response rate in patients with IDH1- or IDH2- mutant relapsed and refractory AML 10,11. Clinical 

responders to the inhibitors show improvement in tri-lineage hematopoiesis and reduction of 

leukemic blasts. In the majority of the responders, IDH mutations are stably detected in matured 

neutrophils, indicating that the clinical response to the inhibitors is mediated by the terminal 

differentiation of leukemic blasts 9. This mechanism of action is consistent with the observations 

in preclinical models12,13  and patient-derived xenograft models14,  as well as in longitudinally 

profiled hematopoietic stem cell populations from patients who responded to enasidenib 15.  

While the clinical response to IDHi can be durable, primary and secondary resistance to single-

agent therapy are major clinical challenges 10,11. In a phase 2 study of enasidenib, co-occurrence 
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of NRAS mutations or high co-mutation burden were associated with a poor response to the drug 

9. Intlekofer and colleagues reported 3 cases that developed secondary resistance to enasidenib or 

ivosidenib 16. These cases acquired second-site mutations in the IDH2 dimer interface (p.Q316E 

and p.I391M) or IDH1 p.S280F, which were predicted to interfere with the IDHi binding. The 

same group of investigators also reported 4 cases of “IDH isoform switching”, which refers to 

the emergence of the mutation in homologous IDH gene counterpart during the inhibition of the 

other IDH mutant (e.g., emergence of IDH1 mutation during IDH2 inhibition, and vice versa) 17. 

Additionally, Quek and colleagues studied paired samples at baseline and relapse in 11 AML 

patients treated with enasidenib 15. They did not find the second-site mutations but observed 

diverse patterns of clonal dynamics (including IDH isoform switching) or selection of sub-clones 

associated with the relapse. 

While the data from the small case series are accumulating, the entire landscape of clonal 

heterogeneity and its association with IDHi resistance has not been elucidated. Moreover, the 

evidence accumulated so far has been restricted to the association between gene mutations and 

IDHi resistance. To what extent, DNA methylation changes or gene expression profiles are 

associated with clinical resistance to IDHi is not well understood.  

Here, we performed an integrated genomic analysis combining DNA sequencing, RNA 

sequencing, and methylation profiling microarray on bone marrow samples collected 

longitudinally from AML patients treated with IDHi and described genetic and epigenetic 

correlates of response to IDHi. The analysis revealed that gene expression signatures with 

stemness is associated with primary resistance to IDHi, whereas selection of the resistant 

mutations plays role in acquired resistance to the drugs. These data add novel insights into the 

resistance mechanisms of IDHi in AML.  
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Results 

Clinical characteristics of the studied patients  

Clinical characteristics of the 68 patients are provided in the Figure 1A. Thirty-nine (57%) 

patients were IDH2-mutated, 28 (38%) were IDH1-mutated, and 1 (1%) had both mutations.  

Thirty-eight (56%) patients were treated with enasidenib, 22 (32%) with ivosidenib, 7 (10%) 

with IDH305, and 1 (1%) with AG-881. The selection of patients was solely based on 

availability of samples, resulting with a cohort of 38 clinical responders (56%) and 29 non-

responders (43%) (response not evaluable in 1 patient). Overall response rate (ORR) was not 

significantly different between patients treated with IDH1 inhibitors (ORR 66%) and IDH2 

inhibitors (ORR 49%) (P = 0.204). Among the 38 responders, 25 patients relapsed after a median 

duration of response of 6.6 months (interquartile range: 3.6-13.5). Compared with the samples 

that were not analyzed in this study (due to the lack of sample availability), the studied cohort 

were older and contained more responders (Supplemental Table S1). 

 

Co-occurring RUNX1 or RAS signaling mutations are associated with primary resistance to 

IDH inhibitors 

Targeted deep sequencing of pre-treatment samples identified 294 high-confidence somatic 

mutations (200 single-nucleotide variants [SNVs] and 94 small insertions and deletions [indels]) 

in 38 cancer genes (Figure 1B). Mutations that co-occurred with IDH1/2 mutations were most 

frequently found in DNMT3A (N = 31, 46%), SRSF2 (N = 27, 40%), ASXL1 (N = 26, 39%), and 

RUNX1 (N = 18, 27%). Relative timing of the mutation accrual was inferred based on the 

estimated cancer cell fraction (CCF) of the co-occurring mutations. In relative to IDH1/2 

mutations, mutations in SRSF2, U2AF1, DNMT3A, and RUNX1 were predicted to have occurred 
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earlier, whereas mutations in oncogenic RAS pathway genes (NF1, PTPN11, CBL, and NRAS) 

were likely acquired later (i.e., subclonal, Figure S1).   

The analysis of co-occurring mutations and clinical response revealed that patients with 

concurrent RUNX1 mutations had significantly inferior complete remission (CR) rate, and 

patients with concurrent NRAS mutations, previously associated with a poor CR rate with 

enasidenib , had a trend toward lower CR rate (Figure 1C and Figure S2). Of note, none of the 

patients with co-occurring TP53 (N = 3) or FLT3 mutations (N = 2) responded to the therapy 

while the association was not statistically significant due to the small number of cases. When 

genes were grouped with functional pathways, co-occurring mutations in hematopoietic 

differentiation transcription factor (TF) genes (RUNX1, CEBPA, and GATA2) were associated 

with a significantly worse CR rate and mutations in RAS-RTK pathway (NRAS, KRAS, CBL, 

NF1, PTPN11, and FLT3) had a trend toward worse CR rate (Figure 1C). In contrast, co-

occurring mutations in cohesin genes (STAG2, SMC1A, and RAD21) were associated with a 

trend toward better response (Figure 1C). In the current cohort, we did not find a significant 

association between treatment response and the total number of co-occurring mutations (Figure 

S3).  

 

Leukemia stemness is associated with primary resistance to IDHi 

Consensus k-means clustering of promoter methylation profiles in pre-treatment samples 

revealed two major clusters;  Cluster 1 with relative hypomethylation and Cluster 2 with relative 

hypermethylation (Figure 2A-2B and Figure S4). DNMT3A mutations were significantly more 

frequent in Cluster 1 compared to Cluster 2 (Figure 2C), which likely accounts for the relative 

hypomethylation of the cluster, since co-occurrence of DNMT3A mutations with IDH mutations 
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has been shown to cause methylation antagonism18. None of the other driver mutations had a 

significant correlation with the methylation-based clusters (Figure 2C). 

Notably, Cluster 2 (hypermethylated cluster) was associated with significantly poor response to 

IDHi (Figure 2D). The analysis of differentially methylated probes (DMP) between the two 

clusters showed that promoters in genes related to hematopoietic differentiation, such as RUNX1 

targets, transcriptional regulation of stem cells, and KIT signaling, are significantly 

hypermethylated in Cluster 2 (Figure 2E). While the expression of more than half of the DMP 

genes were downregulated in Cluster 2 compared to Cluster 1, there was no consistent trend for 

promoter hypermethylation and gene downregulation in DMP genes (Figure S5).  

We then analyzed the difference in gene expression profiles between the two clusters. Gene Set 

Enrichment Analysis (GSEA) comparing gene expression profiles between the two clusters 

revealed upregulation of genes associated with leukemia stem cells (LSCs) in Cluster 2 (Figure 

2F). To further explore the molecular drivers of Cluster 2 phenotype, we performed NetBID 

analysis, a data-driven network-based Bayesian inference that identifies hidden drivers in a given 

transcriptome19. Among the top driver transcription factors genes enriched in Cluster 2 included 

FOXC1, which is one of the critical regulators of LSC function (Figure 3A)20. Additional drivers 

identified for Cluster 2 included CD99 and CDK6, both of which encode essential signaling 

proteins for LSC (Figure 3B)21,22. In addition, DNMT3A was identified as one of the drivers in 

Cluster 2, that is consistent with the lack of DNMT3A mutations in the cluster because DNMT3A 

mutations are generally loss of function mutations (Figure 3B). Together, these data suggest that 

Cluster 2 is enriched with samples manifesting increased stemness, which might be associated 

with resistance to IDHi.      
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To determine the association between leukemia stemness and IDHi resistance, we calculated the 

17-gene LSC score (LSC17) for each sample, which has been associated with leukemia stemness 

and chemoresistance in AML23. Non-responders to IDHi had a significantly higher LSC17 

compared with responders (Figure 3C). LSC17 predicted response to IDHi (CR) with AUROC 

(area under the curve of receiver operating curve) of 0.75 (P = 0.018), which was better than the 

predictability of ELN cytogenetic risks (AUROC = 0.5), RUNX1 mutations (AUROC = 0.54), or 

RAS-RTK mutations (AUROC = 0.58) (Figure 3D-E). Multi-logistic regression analysis also 

showed that LSC17 was the significant covariate predicting response to IDHi (Figure 3F). 

Collectively, these data indicate increased stemness as one of the mechanisms of primary 

resistance and  the stemness score as a potential predictive biomarker for IDHi response. 

 

DNA methylation changes after IDHi  

We then analyzed the changes in DNA methylation after IDHi therapy. While there were some 

heterogeneities among samples, overall, we observed significant demethylation after IDHi 

(Figure 4A). Demethylation was observed in samples regardless of the methylation-based 

clusters (Cluster 1 vs. 2) or treatment response. Consistent with this, plasma 2HG was also 

suppressed after IDHi in most of the patients regardless of the clusters and treatment responses 

(Figure 4B). While Cluster 1 and Cluster 2 both exhibited incremental demethylation after the 

therapy, Cluster 2 remained relatively hypermethylated after the therapy compared to Cluster 1 

(Figure 4A). The analysis of methylation changes in individual CpGs revealed that the same set 

of CpGs were demethylated between Cluster 1 and Cluster 2 (Figure 4C). Consistent with this, 

post-treatment DMPs between the two clusters were largely the same with those at baseline, with 

most of the DMPs remained hypermethylated in Cluster 2 (Figure 4D-E). The same trend was 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.27.357111doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.27.357111


9 
 

observed when we compared the methylation changes in individual CpGs between responders 

and non-responders (Figure 4F). GSEA comparing gene expression profiles of post-treatment 

samples in Cluster 1 and 2 showed that LSC-associated genes are still upregulated in Cluster 2 

(Figure 4G), suggesting that the stemness is not reversed by IDHi. Collectively, these results 

suggest that incremental changes in DNA methylation are likely the consequence of 2HG 

suppression by IDHi therapy and does not necessarily contribute to the clinical response.  

 

Clonal selection of driver mutations frequently accompanies relapse after IDHi 

We then investigated the mechanisms of acquired resistance to IDHi by analyzing mutational 

changes in longitudinal samples collected after IDHi therapy. With regards to the IDH mutations, 

variant allele frequency (VAF) of the mutations stayed unchanged in 73% of the responders 

(N=22), whereas 27% of the responders (N=8) had a substantial reduction (>= 75% decrease of 

VAF) or clearance of the mutations at response (Figure S6). The baseline VAF or the types of 

IDH mutations did not predict the clearance of the mutations (Figure S7). Also, there was no 

correlation between IDH mutation clearance and the patterns of co-occurring mutations (Figure 

S8). We did not observe a significant difference in survival between patients who cleared the 

IDH mutation and who did not (Figure S9). In non-responders, IDH VAF were mostly 

unchanged but 4 patients had a substantial reduction on therapy (Figure S10).  

Co-occurring mutations demonstrated variable dynamics during therapy. Emergence of 

previously undetectable mutations or selection of subclonal mutations frequently accompanied 

the relapse or disease progression (Figure 5A). Among the 23 patients with pre-treatment and 

relapse pairs, emerging or selected mutations were detected in 19 (83%) patients at the time of 

relapse (Figure 5A). Mutations that were frequently acquired or selected at relapse involved 
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RUNX1 and BCOR in 5 cases each, followed by KRAS and NRAS in 3 cases each (Figure 5B). 

IDH dimer-interface mutations were not detected in this cohort. Isoform switching occurred in 1 

case. Overall, relapse-associated mutations involved RAS-RTK pathway (39%), chromatin 

structure (35%), hematopoietic transcription factors (30%), and DNA methylation pathways 

(22%) (Figure 5B). These relapse-associated mutations were remarkably similar to those 

associated with poor initial response to IDHi (Figure 1B and Figure 1C), highlighting their 

crucial role in the clinical resistance of IDHi. To determine whether the relapse-associated 

mutations are part of or independent of IDH mutations, we performed a single-cell DNA 

sequencing (scDNA-seq) in a subset of relapsed samples. In UPN2394529, the relapse was 

associated with emerging KRAS p.Q61H and NRAS p.G12S mutations (Figure 5C). The scDNA-

seq revealed that the emerging NRAS and KRAS mutations were independent of IDH2 mutation, 

indicating that non IDH-mutant clones were driving the relapse in this case (Figure 5E). In 

contrast, in UPN2297707, the relapse was accompanied with the selection of RUNX1 p.K152fs 

mutation, which co-occurred with the IDH1 mutation (Figure 5D and Figure 5F).  

GSEA comparing the gene expression profiles between pre-treatment and relapse pairs showed 

the enrichment of genes downregulated in LSC in relapsed samples (Figure S11), which 

contrasts to the samples with primary resistance, indicating for a difference between primary 

resistance and acquired resistance. Instead, relapsed samples were associated with upregulation 

of genes in E2F targets, TNF alpha signaling via NF-kappa B, G2M checkpoint, and PI3K, AKT, 

MTOR signaling pathway genes, that are consistent with the frequent acquisition of RAS-RTK 

pathway mutations at relapse (Figure 5G). Collectively, these results underscore the role of co-

occurring mutations, particularly RUNX1 and RAS-RTK pathway mutations in acquired 
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resistance to IDHi, and that the co-occurring mutations can be part of or independent of IDH-

mutant clones.  

 

Mapping genetic and epigenetic evolution during IDHi therapy in individual cases 

The heterogeneity in genetic evolution and methylation changes after IDHi prompted us to 

investigate the dynamic changes in genome and epigenome during IDHi therapy at individual 

patient-level. Sixteen patients (5 responders and 11 non-responders) had a set of multi-

dimensional data available at longitudinal timepoints to map the evolution of somatic mutations 

and DNA methylation along with clinical parameters and plasma 2HG in individual cases. This 

analysis identified three major patterns of epigenetic evolution in responders, which correlated 

with the underlying genetic evolution.  

In the first pattern, IDHi effectively suppressed plasma 2HG and bone marrow DNA methylation 

level at response and the suppression of both markers continued at relapse. The pattern was 

observed in 2 caess, UPN1825001 and UPN2463247, of which the relapse was associated with 

growing KRAS mutations. In both cases, plasma 2HG remained suppressed at the time of disease 

progression, which correlated with sustained suppression of DNA methylation (Figure 6A-6B).  

In the second pattern, IDHi similarly suppressed both plasma 2HG and bone marrow DNA 

methylation at response, however, at relapse, we observed de-suppression of DNA methylation 

while plasma 2HG remained low. This pattern was associated with emerging TET2 mutations at 

relapse, which is consistent with the role of TET2 mutation in causing hypermethylation 

phenotype (observed in UPN2297625 and UPN2620771; Figure 6C-6D). In both pattern 1 and 2, 

IDHi remained functionally active at relapse (i.e., ongoing 2HG suppression).   
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The third pattern was observed in one case UPN2370759, which was consistent with “IDH 

isoform switching” previously described 17. The case initially had IDH2 mutation and was treated 

with AG221, however, the relapse was associated with an emergence of IDH1 p.R132C 

mutation. In this case, both plasma 2HG and methylation levels increased at relapse, which is 

consistent with the emergence of IDH1 mutation during IDH2 inhibition (Figure 6E). The IDH1 

p.R132C mutation that emerged was not detectable at baseline by both targeted sequencing and 

the digital droplet PCR (ddPCR) assay (sensitivity 0.01%), making it more likely that the 

mutation was acquired de novo at relapse (Figure S12).  

In non-responders, 9 of 11 samples showed co-suppression of plasma 2HG and DNA 

methylation after IDHi therapy while it did not lead to clinical response in these patients. In 2 

cases, despite suppression of plasma 2HG, we did not observe demethylation. Underlying 

mechanisms of this discrepancy is not clear. Genetic and epigenetic evolution of non-responders 

are shown Figure S13.  

 

Discussion 

Using a multipronged genomic analysis on longitudinally collected samples from the clinical 

trials, we studied genetic and epigenetic correlates of response to IDHi in AML. While 

confirming previous findings about the role of certain co-occurring mutations (RAS and RUNX1) 

in primary resistance to IDHi9, we additionally and notably revealed that leukemia stemness is 

associated with IDHi primary resistance. In the current cohort, higher LSC17 score was the 

strongest predictor of response to IDHi. Since the clinical activity of IDHi is driven by the 

induction of terminal differentiation of leukemic blast14, it is plausible that stemness phenotype 

causes inherent resistance to the differentiating mechanism of action of IDHi monotherapies. The 
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underlying mechanisms driving stemness in IDH-mutant AML is unclear. Increased stemness 

was associated with hypermethylated phenotype (Cluster 2) in this cohort, which had a further 

association with the absence of co-occurring DNMT3A mutations. Whether the hypermethylation 

(or the lack of co-occurring DNMT3A mutations) is directly causing an increased stemness is not 

clear. While hypermethylated DMPs were enriched in promoters associated with hematopoietic 

differentiation genes, the effect on the corresponding gene expression was modest. Since IDH-

mutations broadly affects methylation status including enhancers and histones, further 

investigation is needed to understand the mechanisms driving the stemness in IDH-mutated 

AML and the connection between the stemness and hypermethylation status. Nonetheless, our 

findings, while require validation in independent cohort, offer a possibility that stemness 

signatures may function as a predictive biomarker for IDHi response.  

Co-occurring mutations and the selection of resistant mutations were also critical factors for 

IDHi resistance, particularly in the setting of acquired resistance24. There was no single dominant 

gene mutation associated with the resistance, however, the mutations implicated for the 

resistance were remarkably consistent in both primary and acquired resistance settings, 

underscoring their role in clinical resistance to IDHi. One of the major pathways affected by the 

mutations were hematopoietic differentiation transcription factors, particularly involving 

RUNX1. RUNX1 co-mutation(s) at baseline was associated with lower CR rate in our cohort. 

RUNX1 mutations were also among the most frequently acquired or selected mutations at 

relapse. In addition, 4 of 5 patients with co-occurring CEBPA mutations did not respond to IDHi 

and the mutation were also acquired at relapse in 2 patients (Figure 5A). Since RUNX1 and 

CEBPA both encode essential transcription factors for hematopoietic and myeloid differentiation, 
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mutations in these genes likely abrogates differentiation signals induced by IDHi, thus 

contributing to the clinical resistance.  

Mutations in the RAS-RTK pathway represent another major mechanism of the resistance. The 

association between co-occurring RAS pathway mutations and primary resistance to enasidenib 

or ivosidenib has been previously reported9,25. In our cohort, co-occurrence of NRAS mutations at 

baseline trended with a poor response to the IDHi therapy. Additionally, NRAS or KRAS 

mutations had been acquired at relapse in nearly 30% of the cases. Intriguingly, in at least one 

case that had acquired KRAS and NRAS mutations at relapse (UPN2394529), the mutations did 

not co-occur with IDH mutation by the single-cell sequencing, suggesting that selection of non-

IDH clone can also drive relapse.  

While co-occurring mutations in RUNX1/CEBPA or RAS-RTK genes were the major pathways to 

IDHi resistance, we also observed other less frequent but intriguing mechanisms. One was an 

acquired mutation in the homologous gene. The same phenomenon (described as “isoform 

switching”) was previously reported in 2 cases of AML treated with ivosidenib 17. This pattern 

was associated with an increase in plasma 2HG and DNA hyper-methylation at relapse. We also 

observed acquisition of TET2 mutation as a likely IDHi resistance mechanism. In contrast with 

the isoform switching, these TET2-acquired cases showed continued suppression of plasma 2HG 

at relapse while DNA hypo-methylation did not occur. We also observed frequent acquisition of 

loss-of-function mutations in the BCOR gene at relapse. BCOR is part of non-canonical PRC1.1 

complex, which acts as a transcription corepressor 26. It is not yet clear how loss of BCOR 

function contributes to IDHi resistance, but the data offer hypothesis that BCOR target genes 

may be involved in IDHi resistance. In our cohort, we did not observe the acquisition of second-

site mutations at the dimer interface of IDH1/2 16. This was also not found in 11 cases of post 
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enasidenib relapse analyzed by Quek et al 15. A recent study by Choe et al. identified the second-

site mutations in 14% of IDH1-mutant AML patients who relapsed after ivosidenib25. Although 

the dimer interface mutations in IDH1/2 represent a compelling mechanism of acquired 

resistance to IDHi, further studies are needed to understand the true prevalence of this 

mechanism. We have reviewed and summarized the available evidence related to the molecular 

mechanisms of IDHi resistance in Figure 6F. 

This study also analyzed dynamic changes in CpG methylation during IDHi therapy. The drug 

induced hypomethylation in bone marrow samples that is consistent with the suppression of 2HG 

(likely through the restoration of TET family protein activity). However, the incremental changes 

in DNA methylation occurred in the same CpGs among responders and non-responders, and 

there was no concordance between DNA methylation changes and clinical response. These data 

suggest that incremental changes in DNA methylation mirror the 2HG dynamics except in rare 

cases with co-occurring TET2 mutations, and do not correlate with clinical response to IDHi.  

There are several limitations in our study. First, we could not independently validate the 

association between stemness signature and IDHi response. This finding needs to be confirmed 

in an independent cohort of AML patients treated with IDHi. Second, the sample size of this 

study was underpowered to capture rare molecular predictors of IDHi response, for example 

FLT3 and TP53. Results from the several independent studies correlating gene mutations and 

IDHi response are now available, and meta-analysis of the combined dataset might reveal the 

entire landscape of gene mutations and their impact on IDHi response. Third, due to the limited 

amount of the available specimens, multi-omics analyses were not possible in all sample, leading 

to inconsistencies in data generation among samples (Figure S14). Fourth, our cohort included 

heterogeneous patient populations who were at the different stages of their disease and also 
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included small number of patients with MDS/CMML. Also, different types of IDH inhibitors 

were given to the patients (enasidenib, ivosidenib, IDH305, and AG881). While we do not 

believe these heterogeneities affect overall conclusion of our study, our findings need to be 

validated in patients with more uniform characteristics. Lastly, the targeted DNA sequencing 

might have missed low VAF mutations for mutation clearance and clonal dynamics analysis. 

With all these limitations in mind, we believe that our study adds novel insights into genetic and 

epigenetic mechanisms of resistance to IDHi.   

In summary, the molecular profiling of IDHi-treated AML samples revealed that leukemia 

stemness plays major role in primary resistance to the drug, whereas co-occurring mutations, 

particularly in hematopoietic transcription factor genes (RUNX1 and CEBPA) and RAS-RTK 

genes, are critical factors for acquired resistance. These results suggest that novel strategies 

targeting stemness and co-occurring mutations may improve the therapeutic efficacy of IDHi in 

AML. The results from ongoing combination therapy trials (IDHi with azacitidine, 

cytarabine+daunorubicin, MEK inhibitor, or venetoclax) are warranted to understand how these 

approaches can overcome these resistance mechanisms.  

 

Methods 

Patients and samples 

We studied 68 patients with relapsed or refractory myeloid malignancies (AML N =62, MDS N 

= 5, and CMML N =1) who received IDH inhibitor therapy in one of the 4 clinical trials 

conducted in our institution: NCT01915498 (enasidenib for IDH2 mutated patients), 

NCT02074839 (ivosidenib for IDH1 mutated patients), NCT02381886 (IDH305 for IDH1 

mutated patients), and NCT02481154 (AG-881 for IDH1 or IDH2 mutated patients). Selection of 
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the studied patients was based on the sample availability alone. Bone marrow mononuclear cells 

were collected longitudinally (pre-treatment, post-treatment, and relapse) from the trial 

participants and were subject for the analyses. Clinical response to the therapy was determined 

by the clinical investigators and followed the modified 2003 International Working Group 

criteria27. We defined “responders” as having overall response to the therapy, which included 

CR, CR with incomplete hematologic or platelet recovery, partial response, and MLFS. In MDS 

patients, hematologic improvement was also considered as response. “Non-responders” were 

defined as having stable disease or progressive disease. Written informed consent for sample 

collection and analysis was obtained from all patients. The study protocols adhered to the 

Declaration of Helsinki and were approved by the Institutional Review Board at The University 

of Texas MD Anderson Cancer Center. Detailed information about the sample availability is 

shown in Figure S14.  

 

Targeted deep sequencing and data analysis  

We used a SureSelect custom panel of 295 genes (Agilent Technologies, Santa Clara, CA) which 

are recurrently mutated in hematologic malignancies (Table S2). Details of the sequencing 

methods have been described previously 28. The same panel was used for all baseline and 

longitudinal samples. Briefly, genomic DNA was extracted from bone marrow mononuclear 

cells using an Autopure extractor (QIAGEN/Gentra, Valencia, CA). All longitudinal samples 

were analyzed by the same targeted panel sequencing. DNAs were fragmented and bait-captured 

in solution according to manufacturer’s protocols. Captured DNA libraries were then sequenced 

using a HiSeq 2000 sequencer (Illumina, San Diego, CA) with 76 base pair paired-end reads. 

The median of median depth of the targeted regions was 393x (IQR: 332-485x). Bioinformatic 
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pipelines calling high-confidence somatic single nucleotide variants (SNVs) and indels from 

targeted capture DNA sequencing were described previously 28. Detailed description is available 

in supplementary material. 

 

Methylation array profiling and data analysis 

DNA methylation analysis was performed using Illumina’s Infinium MethylationEPIC assay 

(EPIC) according to the manufacturer’s protocol as previously described 29. Data analysis was 

conducted using the ChAMP algorithm30 as previously described using default parameters. 

Briefly, The IDAT files were taken as input files and raw beta values were generated. Following 

initial quality check and probe filtering including removing all SNP-related probes 31 and all 

probes located in chromosome X and Y, the data were normalized using the BMIQ method32. 

Differential methylation analysis was performed by using the limma algorithm33.  

 

RNA sequencing and data analysis 

Strand specific RNA sequencing libraries were constructed using the Illumina TruSeq RNA 

Access Library Prep Kit (Illumina, San Diego, CA) according to the manufacturer’s protocol. 

Briefly, the double stranded cDNA was hybridized to biotinylated, coding RNA capture probes. 

The resulting transcriptome-enriched library was sequenced by an Illumina HiSeq4000 using the 

76 base pair paired end configuration. Raw sequencing data from the Illumina platform were 

converted to fastq files and aligned to the reference genome (hg19) using the STAR algorithm in 

single-pass mode with default parameters 34. HTSeq-count was then utilized to generate the raw 

counts for each gene35. Raw counts were then analyzed by DESeq2 for data processing, 

normalization and differential expression analysis according to standard procedures36. 
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Single-cell targeted DNA sequencing and data analysis 

We performed a single-cell targeted DNA sequencing using Tapestri® platform (Mission Bio, 

South San Francisco, CA) as previously described 37. Briefly, frozen bone marrow cells were 

thawed and resuspended with lysis buffer. Each cell was encapsulated into the microfluidic 

droplet, then was barcoded to label each cell differently. Barcoded samples were amplified using 

50 primer pairs specific to the 19 mutated AML genes covering known disease-related hotspot 

loci (Table S3). The pooled library was sequenced on an Illumina Miseq with 150-basepair 

paired end multiplexed runs. Fastq files generated from the MiSeq machine were processed using 

the Tapestri Analysis Pipeline (https://support.missionbio.com/hc/en-

us/categories/360002512933-Tapestri-DNA-Pipeline) for adapter trimming, sequence alignment, 

barcode demultiplexing, and genotype and variant calling. Loom files generated by the pipeline 

were then analyzed by the in-house pipeline for variant annotation, filtering and results 

visualization.  

 

NetBID activity analysis  

We performed NetBID2 analysis to identify hidden drivers of methylation-based Cluster 1 and 

Cluster 2 using RNA-seq data of baseline samples. We used normalized Log2 read count from 

RNA-seq of 27 Cluster 1 and 13 Custer 2 samples as input to generate networks using 

SJARACNe38. We used P value < 0 .01 and log FC > 0.1 to select drivers.  

 

LSC17 score calculation 
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LSC17 score was calculated using RNA-seq data from baseline samples according to the 

equation published previously23: LSC17 score = (DNMT3B × 0.0874) + (ZBTB46 × −0.0347) + 

(NYNRIN × 0.00865) + (ARHGAP22 × −0.0138) + (LAPTM4B × 0.00582) + (MMRN1 × 0.0258) 

+ (DPYSL3 × 0.0284) + (KIAA0125 × 0.0196) + (CDK6 × −0.0704) + (CPXM1 × −0.0258) + 

(SOCS2 × 0.0271) + (SMIM24 × −0.0226) + (EMP1 × 0.0146) + (NGFRAP1 × 0.0465) + 

(CD34 × 0.0338) + (AKR1C3 × −0.0402) + (GPR56 × 0.0501).  

 

Statistical analysis 

The Chi-square or Fisher’s exact test was used to assess statistical differences in categorical 

variables and odds ratio to evaluate the strength of association. The Mann-Whitney U test or 

Student t test was used to analyze differences in continuous variables. Multiple hypothesis 

testing was corrected by Benjamini-Hochberg method. ROC curve as well as AUROC value 

were generated by pROC R package. A multivariate logistic regression model was performed to 

examine the relationship between CR variable and the predictors of LSC17 Score, RUNX1 

mutation, RAS/RTK mutation and ELN high risk cytogenetics. All applicable tests were two-

sided and p value less than 0.05 was considered as statistical significance. Statistical analyses 

were performed within the analytic software described above or by R computing software (ver. 

3.3.2).  

 

Data availability 

Raw methylation and RNA-Seq data was submitted to GEO with the accession number 

GSE153349. The full list of detected baseline driver mutations was shown in Table S4. 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.27.357111doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.27.357111


21 
 

Code availability  

The custom codes that support the findings of this study is available in GitHub 

(https://github.com/farmerkingwf/IDH_codes.git). 
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Figure Legends 

Figure 1. Clinical and mutational landscape of IDHi-treated AML patients and their 

association with clinical response. (A) Clinical characteristics of the 68 patients treated with 

IDH inhibitors. (B) Landscape of high-confidence somatic mutations detected in baseline 

samples by sequencing with a 295-gene panel. Legend for the best response is located at the top 

left while legend for the mutation classification is located at the top right. Baseline mutation data 

is available for 67 patients. (C) Forrest plot showing enrichment of the mutations at baseline 

against Complete Remission (CR) by logarithmic odds ratio. *P < 0.05. Circles represent odds 

ratios. The error bars represent 95% confidence interval of odds ratio. Baseline mutation data is 

available for 67 patients, out of which 16 achieved CR.  

 

Figure 2. Analysis of DNA methylation at baseline samples reveals two distinct clusters 

associated with treatment response (A) Consensus k-mean clustering of promoter methylation 

data at baseline revealed two distinct clusters. Methylation data is based on methylation beta 

value. Promoter CpG probes from top 1% most variably methylated CpG probes were selected 

for the analysis. Responders were defined as patients achieved best response of CR, CRp, MLFS, 

PR and HI. Non-responders were defined as patients achieved best response of PD and SD. (B) 

Top box plot comparing mean methylation beta value of top 1% most variably methylated CpGs 

among Cluster 1 baseline (N=40) and Cluster 2 baseline (N=17) samples. IDH1/2 wild type 

AML samples (N=8) are used as control. Bottom density distribution of top 1% most variably 

methylated CpG probes with methylation beta values comparing Cluster 1 baseline and Cluster 2 

samples. Kolmogorov–Smirnov test D and P values are shown. IDH1/2 wild type AML samples 

(N=8) are used as control. (C) Forrest plot showing enrichment of the mutations at baseline 
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against being in Cluster 2 by logarithmic odds ratio. *P < 0.05. Circles represent odds ratios. The 

error bars represent 95% confidence interval of odds ratio. Baseline mutation data with clustering 

information is available for 57 patients, out of which 17 is in Cluster 2. (D) Bar plot comparing 

the Overall Response (OR) and CR rate between Cluster 1 and Cluster 2 patients. ** P<0.01 (E) 

Metascape analysis of hypermethylated promoter DMPs  (F) Gene Set Enrichment Analysis 

(GSEA) comparing gene expression profiles between the two clusters revealed upregulation of 

genes associated with leukemia stem cells (LSCs) in Cluster 2.  

 

Figure 3. Leukemia stemness is associated with primary resistance to IDHi. (A) List of top 

driver transcription factors (TF) and signaling genes (SIG) identified by NetBID2 analysis by 

comparing gene expression profiles between Cluster 1 and Cluster 2 (P < 0.01 was used as the 

significance cutoff). Drivers identified for Cluster 1 and Cluster 2 are colored with red and blue, 

respectively. (B) Heatmap of NetBID-based activity of top drivers in Cluster 2. Samples in 

Cluster 1 (CL1) are labeled as red while Cluster 2 (CL2) are labeled as blue. (C) LSC17 score 

was calculated for each baseline sample and compared between patients achieving CR vs. not 

and OR vs. not. * P<0.05. (D-E) Receiver operating curve (ROC) for predicting CR or OR with 

LSC17 score, RUNX1 mutation status, RAS-RTK mutation status, and ELN cytogenetic risk 

classification. (F) Multi-logistic regression analysis against CR by considering following 

variables: LSC17 score (as a continuous variable), RUNX1 mutation status (mutated vs. wild 

type), RAS-RTK mutation status (mutated vs. wild type), and ELN high rick cytogenetics 

classification  (high risk vs. others).  
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Figure 4. DNA methylation changes after IDHi. (A) Longitudinal trend of methylation level at 

Baseline (BL) and Post-treatment (POST) for all, Cluster 1 and Cluster 2 patients. Responders 

and non-responders are color coded. (B) Box plot showing maximum reduction of plasma 2HG 

levels after IDHi treatment (%) in Cluster 1 and Cluster 2 patients as well as responders and non-

responders. (C) Scatterplot showing correlation of the longitudinal methylation changes between 

Cluster 1 and Cluster 2 patients. Each dot represents a CpG probe and was colored based on its 

significance in the longitudinal differentially methylation test in either Cluster 1 or Cluster 2 

patients. The X axis represents the differential methylation level between BL and POST samples 

(i.e., beta value at BL minus beta value at POST) in Cluster 1 patients and the Y axis represents 

the differential methylation level between BL and POST samples in Cluster 2 patients. (D) 

Scatterplot showing correlation of the inter-cluster methylation differences between BL and 

POST time points. Each dot represents a CpG probe and was colored based on its significance in 

the inter-cluster differentially methylation test at either BL or POST time points. The X axis 

represents the differential methylation level between Cluster 1 and Cluster 2 in BL samples (i.e., 

beta value of Cluster 1 minus Cluster 2) and the Y axis represents the differential methylation 

level between Cluster 1 and Cluster 2 in POST samples. (E) Venn diagram showing the 

overlapped DMPs between Cluster 1 and Cluster 2 at baseline (BL) and post-treatment (POST). 

Among 2619 DMPs hypermethylated in Cluster 2, 2002 overlapped between BL and POST, 

suggesting that most of the hypermethylated DMPs in Cluster 2 were the same before and after 

treatment. (F) Scatterplot showing correlation of the longitudinal methylation changes between 

responders and non-responders. Each dot represents a CpG probe and was colored based on its 

significance in the longitudinal differentially methylation test in either responders or non-

responders. The X axis represents the differential methylation level between baseline and 
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response samples in responders (i.e., beta value at BL minus beta value at POST) and the Y axis 

represents the differential methylation level between baseline and non-response samples in non-

responders. (G) GSEA analysis comparing gene expression of post-treatment samples between 

Cluster 1 and Cluster 2 showed that LSC genes are still upregulated in Cluster 2 post-treatment.  

 

Figure 5. Selection of resistant mutations accompanies relapse after IDHi. (A) Longitudinal 

mutation landscape plot showing mutation acquisitions in 19 out of the 23 tested relapsed cases. 

Each column represents an individual case with differentially shaped triangles representing 

mutation status in either baseline or relapse. (B) Bar plot showing percentage of tested relapsed 

cases with acquired mutations in various genes and pathways. (C-D) The longitudinal trajectory 

of mutation VAFs, bone marrow (BM) blast counts, absolute neutrophil count (ANC), 

Hemoglobin (HGB) counts and Platelet (PLT) counts in UPN2394529 (C) and UPN2297707 

(D). Line plots show mutation VAFs and ANC/HGB/PLT counts. Blue shades represent BM 

blast counts. (E-F) Single cell landscape of selected mutations in UPN2394529 (E) and 

UPN2297707 (F). Each column represents one individual cell. 1000 cells scale bar is shown on 

the top left. (G) GSEA comparing gene expression data from RNA sequencing between baseline 

and relapse samples showing significant enrichment of E2F targets, TNF alpha signaling via NF-

kappa B, G2M checkpoint, and PI3K, AKT, MTOR signaling pathways in relapse samples. 

 

Figure 6. Heterogeneous patterns of genetic and epigenetic evolution in AML patients 

treated with IDHi. (A-E) Multi-dimensional longitudinal plot of mutation VAFs, bone marrow 

(BM) blast counts, absolute neutrophil count (ANC), Hemoglobin (HGB) counts, Platelet (PLT) 

counts, 2HG level and DNA methylation level in UPN1825001 (A), UPN2463247 (B), 
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UPN2297625 (C), UPN2620771 (D), and UPN2370759 (E). Line plots show mutation VAFs, 

ANC/HGB/PLT counts and 2HG level. Blue shades represent BM blast counts. Violin plots 

show the methylation distribution. (F) A summary of available evidence for the association 

between molecular alterations and IDHi resistance including the result from the current study.    
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