SUPPLEMENTAL RESULTS:

Table S1: List of sgRNA used in the study.

```
SpCas9 VQR/EQR sgRNAs targeting sequences of 17 to 22 nucleotides tested:
sgRNA 22bp ATTCTGCATCCATCTTCACTTC
sgRNA 21bp TTCTGCATCCATCTTCACTTC
sgRNA 20bp TCTGCATCCATCTTCACTTC
sgRNA 19bp CTGCATCCATCTTCACTTC
sgRNA 18bp TGCATCCATCTTCACTTC
sgRNA 17bp GCATCCATCTTCACTTC
SaCas9 sgRNAs tested:
sgRNA 22bp ATTCTGCATCCATCTTCACTTC
sgRNA 21bp TTCTGCATCCATCTTCACTTC
sgRNA 20bp TCTGCATCCATCTTCACTTC
sgRNA 19bp CTGCATCCATCTTCACTTC
sgRNA 18bp TGCATCCATCTTCACTTC
sgRNA 17bp GCATCCATCTTCACTTC
```

Table S2: Example of Deep-Sequencing analysis.

	Target-AID-SpCas9nVQR 19	BE3 SpCas9nVQR 19
Total reads	100%	100%
Wild-Type	31,8	66,0
C1	3,8	1,0
C2	3,0	0,3
C3	0,1	3,6
C4	0,3	0,0
C5	0,8	0,3
C1+C2	26,2	0,0
C1+C3	0,2	2,1
C1+C4	0,2	0,0
C1+C5	0,2	0,0
C2+C3	0,1	0,2
C2+C4	0,1	0,0
C2+C5	0,2	0,0
C3+C4	0,1	0,2
C3+C5	0,0	0,2
C4+C5	0,0	0,0
C1+C2+C3	2,0	1,0
C1+C2+C4	1,6	0,0
C1+C2+C5	4,2	0,0
C2+C4+C5	0,0	0,0
C2+C3+C5	0,0	0,0
C1+C2+C3+C4	0,1	0,1
C2+C3+C4+C5	0,3	0,2
C1+C3+C4+C5	0,0	0,0
C1+C2+C4+C5	0,0	0,1
C1+C2+C3+C5	0,2	0,0
C1+C2+C3+C4+C5	0,3	0,2
Total	$24,40 \%$	$24,30 \%$
Mis-sequencing		
	$0,60 \%$	

Table S3: Percentage of reduction of amyloid- β peptides 40 and 42 induced by the addition of the A673T mutation to wild type APP gene or to an APP gene containing the London mutation or containing a C1 deamination (E674K). The addition of the $A 673$ T mutation reduced the production of $A \beta 40$ and $A \beta 42$ peptides in all 3 situations.

FAD mutation	Wild-Type	V717I (London)	A673T+E674 K (C1+C2)
Abeta42 Decrease (\%)	-46	-65	-53
Abeta40 Decrease (\%)	-63	-81	-44

Figure S1.

Figure S 1 : Percentages of cytidine deamination produced by various enzymes and sgRNAs. BE3_SpCas9nEQR, BE3_SpCas9nVQR, BE3_SaCas9nKKH enzymes test in SH-SY5Y cells. The figure illustrates the means $+/-\operatorname{SEM}(\mathrm{n}=4)$.

Figure S2.

Figure S2: Percentages of cytidine deamination produced by various enzymes and sgRNAs.
BE4_SpCas9nVQR and BE3_SpCas9nVQR enzymes test in SH-SY5Y cells. The figure illustrates the means +/- SEM ($\mathrm{n}=3$).

Figure S3.

Figure S3: Percentages of cytosine deamination produced by BE3_SpCas9nVQR, BE4_SpCas9nEQR, BE3_SpCas9nEQR, BE3_SaCas9nKKH, Target-AID_SpCas9nEQR, Target-AID_SaCas9nKKH enzymes. In \mathbf{A}, test in HEK293T cells. In \mathbf{B}, test in SH-SY5Y. The figure illustrates the means $+/-\mathrm{SEM}(\mathrm{n}=3)$.

Figure S4.

Figure S4: Deamination efficiencies using various Cas9n-deaminases and sgRNAs targeting various numbers of nucleotides. The difference of deamination in HEK293T cells of cytidines C 1 to C 5 produced by the Target-AID-SpCas9nVQR and BE3_SpCas9nVQR enzymes and two copies of a sgRNA targeting 17 to 20 nucleotides. The figure illustrates the means $+/-\operatorname{SEM}(n=3)$.

Figure S5

Figure S5: Deamination efficiencies using various Cas9n-deaminases and sgRNAs targeting various numbers of nucleotides. Difference between YE1-BE3_SpCas9nVQR and BE3_SpCas9nVQR in HEK293T cells. The figure illustrates the means $+/-\operatorname{SEM}(n=4)$.

Figure S6:

Off-Target Sites

Copy TSV

Sequence	PAM	Score	Gene	Locus
CTGCATCCATCTTCACTTC	AGAG	100.0	APP (ENSG00000142192)	chr21:+25897633
CTGAAGCCATCTTCACTTC	GGAG	1.4		chr5:-74133250
CTGCCTCCATCTTCACATG	TGAG	0.5	chr11:-70758797	
CTGCTTCCAACTTCACTTT	GGAG	0.5	SPOCK2 (ENSG00000107742)	chr10:-72059638
CAGGATCCATCTTAACTTC	TGAG	0.4	chr12:-47654519	
CTGCTTCCATCTTCTGTTC	AGAG	0.4	chr3:-36729648	
CTGCATCCTTCTCCACTTG	GGAG	0.4	chr8:-67603274	
CTGAATCAATCTCCACTTC	AGAG	0.4	chr12:-56572869	
ATCCATGCATCTTCACTTC	AGAG	0.3	chr11:-20359838	
CTGCCCCCACCTTCACTTC	TGAG	0.3	chr9:+85398673	
CTGCATCCATCTCTCCTTC	AGAG	0.3	chr3:-1776747607	
CTATTTCCATCTTCACTTC	AGAG	0.3	chr9:-21442550	
ATGTATCCATCTTCACTGT	TGAG	0.1	chr14:-35505959	
TTTCATCCATCTCCACTTT	AGAG	0.1	chr5:-44542656	chr10:-120808163
TTTCATCCATCTTAACTAC	AGAG	0.1	chr4:-10179124	
ATCCATCCACCTTCACTTG	TGAG	0.1		

Figure S6: Off target analysis performed with Benchling.com interface.

