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Abstract

It is widely known that neural activity in sensory representations is modulated by cognitive 

factors such as attention, reward value and working memory. In such cases, sensory responses 

are found to reflect a selection of the specific sensory information needed to achieve behavioral 

goals. In contrast, more abstract behavioral constraints that do not involve stimulus selection, 

such as task rules, are thought to be encoded by neurons at later stages. We show that 

information about abstract rules is encoded by neurons in primate visual cortex in the absence of 

sensory stimulation. Furthermore, we show that rule information is greatest among neurons with 

the least visual activity and the weakest coupling to local neuronal networks. Our results identify 

rule-specific signals within a sensory representation and suggest that distinct mechanisms exist 

there for mapping rule information onto sensory guided decisions. 
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Results

Many behaviors can rely on fixed stimulus-response associations. However, more complex 

behaviors, particularly those of primates, rely on the ability to flexibly assign different behavioral 

responses to particular stimuli, depending on the context. For example, orienting toward a 

stimulus under one rule, yet avoiding the stimulus under a different rule requires flexible 

command of behavioral output, and it is a hallmark of executive control (Jonikaitis, Dhawan, & 

Deubel, 2019; Miller & Cohen, 2001; Munoz & Everling, 2004) The neural mechanisms of 

behavioral flexibility have been studied extensively in both human and nonhuman primate 

models, where a dominant role of prefrontal cortex in the implementation of abstract rules is 

well-established (Fuster, 1997; Mansouri, Freedman, & Buckley, 2020; Passingham, 1993). For 

example, neurons in prefrontal cortex exhibit robust representations of the abstract rules 

governing the mapping of sensory stimuli onto behavioral responses (Wallis, Anderson, & 

Miller, 2001; White & Wise, 1999). A number of studies demonstrate a direct influence of 

premotor and prefrontal cortex on signals within sensory cortices (Petreanu et al., 2012; Squire, 

Noudoost, Schafer, & Moore, 2013; Zagha, Casale, Sachdev, McGinley, & McCormick, 2013; 

Zhang et al., 2014), thus raising the possibility that representations of abstract rules may be 

propagated to sensory areas. However, the extent to which neurons in sensory areas signal the 

rules governing stimulus selection, rather than only the selection itself, remains an open question. 

It is known that sensory activity within primate visual cortex is influenced by cognitive 

factors such as attention (Noudoost, Chang, Steinmetz, & Moore, 2010; Reynolds & Chelazzi, 

2004), reward expectation (Baruni, Lau, & Salzman, 2015; Stănişor, van der Togt, Pennartz, & 

Roelfsema, 2013) and working memory (Mendoza-halliday, Torres, & Martinez-trujillo, 2014; 

Supèr, Spekreijse, & Lamme, 2001a; van Kerkoerle, Self, & Roelfsema, 2017).  Typically, 
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variation in these factors is found to influence the selection of specific information by visually 

responsive neurons, information such as visual stimulus features (Bichot, Rossi, & Desimone, 

2005; Motter, 1994) or location (Motter, 1993). This modulation is generally thought to 

contribute to changes in stimulus related aspects of behavioral performance, such as perceptual 

sensitivity to attended stimuli (Noudoost et al., 2010; Reynolds & Chelazzi, 2004), reinforcement 

of particular features (Baruni et al., 2015; Stănişor et al., 2013), or memory of relevant locations 

(Mendoza-halliday et al., 2014; Supèr et al., 2001a; van Kerkoerle et al., 2017). In such cases, 

the selection of stimulus information is inherent in a given behavioral condition, and the 

involvement of sensory neurons in signaling selected stimuli seems clear.  Much less clear is 

whether information about abstract rules is also represented in sensory representations.  Often, 

the rule governing performance on a particular task can be abstract, and thus orthogonal to any 

particular dimension of sensory input and may merely identify appropriate mappings between 

sensory input and behavioral responses (Mansouri et al., 2020; Miller & Cohen, 2001). In such 

cases, neural activity in sensory areas may not reflect abstract rule per se. However, this has not 

been thoroughly examined. One study found that in comparison to premotor and prefrontal 

cortex, where a high proportion of neurons signaled abstract rules, only very few neurons 

signaled task rules within inferotemporal cortex, the final stage of the ventral visual system 

(Muhammad, Wallis, & Miller, 2006). This observation is consistent with the notion that these 

signals emerge largely outside of sensory representations (Fuster, 1997). 

We trained two monkeys (AQ and HB) to perform two versions of a task in which they 

either looked at, or avoided looking at, a memorized location (Methods and Fig. 1A). In the 

‘Look’ task, monkeys memorized a cue location and after a delay period, were rewarded for 

making an eye movement to a target appearing at the cued location. In the ‘Avoid’ task, monkeys 
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were instead rewarded for making an eye movement to a target appearing at a novel location. 

Although the behavioral responses differed between the two tasks, looking at or avoiding the 

cued location, neither could be solved without memorizing that location. The two tasks are 

similar to the match and non-match memory tasks used to measure abstract rule signals in 

prefrontal cortex (Mansouri et al., 2020).  Monkeys performed alternating blocks of Look and 

Avoid trials during each experimental session (AQ: 7 sessions; HB: 8 sessions; Figure 1B). Both 

monkeys performed the two tasks successfully (median performance Look: AQ = 89.6%, HB = 

72.7%; median performance Avoid: AQ = 82.5%, HB = 70.2%), and thus could switch between 

the two task rules. Across sessions, performance varied, and on a given session, could be greater 
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Fig. 1. Look and Avoid tasks. A. In both tasks, following central fixation, a briefly presented cue (open square) 
indicated the location to be memorized. After a delay period, two response targets appeared, one at the cued 
location and one at a location randomly selected from the non-cued locations. In the Look task (left), monkeys 
made a saccadic eye movement to the target matching the cued location. In the Avoid task, monkeys made an eye 
movement to the target at the non-matching location. The Look and Avoid tasks were performed in alternating 
blocks of 150-400 trials. The cue color differed between the different tasks to highlight the current rule. On a 
majority of trials, the display contained a task-irrelevant background texture; on the remainder of trials, it was 
uniform gray. B. example eye movement responses to four target locations during a single session for Look and 
Avoid blocks (monkey AQ). C. The mean error rates during the last 5 (pre) and first 5 trials (post) relative to task 
switches (Look to Avoid or Avoid to Look). D. Mean performance on each of the two tasks across sessions for the 
two monkeys.
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either during the Look or Avoid task. Overall, although average performance was greater in the 

Look task, this difference was only significant in one monkey (AQ: 6.9%, p=0.25; HB: 2.5%, 

p=0.05). 

We asked whether neurons in extrastriate area V4 encoded information about the two 

tasks prior to the start of a behavioral trial. We focused on a 300-ms, pre-cue period during each 

task, when only the task rule was known. Neuronal activity was recorded from neurons in area 

V4 using linear array electrodes which provided simultaneous recordings at 16-24 sites 

distributed across the cortical depth (Methods and Fig. S1). Single and multi-unit activity were 

combined totaling 310 units across 15 sessions in the two monkeys (AQ: 7 sessions, 144 units; 

HB: 8 session, 168 units). Using these data, we first looked for differences in overall firing rate 

during the pre-cue period. In some sessions, indeed we observed clear differences in pre-cue 

firing rate among simultaneously recorded neurons between the two tasks. Yet, in other sessions, 

those differences were absent (Fig. 2A). Across all neurons and sessions, activity was 

significantly higher in the Look task in both monkeys (Figure 2B; AQ, median modulation index 

= 0.06 ± 0.014, p<0.001; HB, median modulation index = 0.03 ± 0.004, p<0.001), amounting to 

a ~6-12% increase in activity. Notably, the task modulation was evident whether or not neurons 

were visually driven by a task-irrelevant background texture (Supèr et al., 2001a) (Fig. 2C). 

However, the change in activity was highly variable across experimental sessions in both 

monkeys. Therefore, we focused all subsequent analyses on the session-by-session data.  

In other forms of visual cortical modulation, different behavioral conditions tend to 

produce largely unidirectional changes in activity across all visual cortical neurons. For example, 

firing rates generally increase for all neurons when attention (Noudoost et al., 2010) or working 

memory (Supèr et al., 2001a) is directed into a RF, or when RF stimuli have a higher reward 
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expectation (Baruni et al., 2015). However, we considered that rule modulation might behave 

differently, and that merely comparing mean firing rates could obscure more robust effects of 

task rule on the pattern of spiking activity. Thus, we adopted a decoding approach to further 

examine how robustly task rule was encoded by the activity of V4 neurons. Using the same data 

set, we employed six commonly used machine learning algorithms to measure the extent to 

which task rule could be accurately decoded during the pre-cue period from the activity of 

neurons simultaneously recorded during each session (Fig. 3A). The chosen algorithms comprise 

7

-300 -150 0 150

1

1.2

1.4

N
or

m
. f

iri
ng

 ra
te

Look
Avoid

1 7
-0.1

0

0.1

0.2

0.3

Ac
tiv

ity
 m

od
ul

at
io

n

Texture on
No texture

-300 -150 0 150
Time to cue, ms

1

1.2

1.4

-0.3 0 0.3
Activity modulation

0.1

0.2

0.3

0.4
p<0.001

Mod.

U
ni

ts

Fixation Cue
AQ S3

1 8
Session

-0.1

0

0.1

0.2
N=168

-0.3 0 0.3

0.05

0.1

0.15

0.2

Pr
op

or
tio

n

p<0.001
N = 144

HB S8

A C

Figure 2
Jonikaitis et al

B

Fig. 2. Modulation of V4 neuronal activity during the pre-cue period. A. Mean firing rate at 16 simultaneously 
recorded V4 sites measured during the pre-cue period in an example session from each monkey (top and bottom). 
Look and Avoid firing rates are averaged across all cue locations. Solid line indicates the period used for pre-cue 
period data analyses. Inset shows the distribution of activity modulation indices calculated for each unit during an 
example session. B. Distributions of Look-Avoid activity modulation indices for all recorded units in each 
monkey. C. Mean activity modulation indices for each recorded session in each monkey. Data are separated by 
Texture-on and No-texture conditions. 
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Fig. 3. Decoding of task rule from V4 neuronal activity during the pre-cue period. A. Six different 
complementary machine learning algorithms were used to decode task rule from V4 activity. Diagrams shown 
with each algorithm highlight the differences between decoding approaches. B. Mean decoding accuracy for each 
algorithm across all sessions in both monkeys (top, bottom). Filled circles denote accuracy obtained from label-
shuffling. C. Decoding accuracy for each individual session and each decoding algorithm for both monkeys. 
Dashed line indicates chance performance (accuracy = 0.5).  D. Decoding accuracy for Texture-on versus No-
texture trials in both monkeys. E. Mean-matching procedure for an example session (AQ session 3; same data as 
Figure 2A). Activity modulation when all data (100th percentile) are used (top). Left panel shows distributions of 
normalized activity (green and red histograms) calculated across all units across trials. In this session, mean 
activity in the Look task exceeded that of the Avoid task. Right histogram shows the distribution of activity 
modulation indices across recorded units in the session. In this example session, modulation was still significant 
after removal of the upper and lower 10% of Look and Avoid trials, respectively (90th percentile). Modulation was 
nonsignificant for the 80th percentile trials. F. Distributions of Look-Avoid activity modulation indices for all 
recorded units in each monkey following mean-matching. G. Decoding accuracy for all trials compared to mean-
matched trials. All error bars denote standard errors of the mean. Some error bars are smaller than the symbols.
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a broad set of complementary approaches based on different decoding principles (Methods). In 

each experimental session, we measured the accuracy of each decoder in classifying the task rule 

(Look/Avoid) using the spiking activity of simultaneously recorded neurons. Remarkably, we 

found that in both monkeys, each of the six decoders could accurately classify the task above 

chance level (Fig. 3B; AQ: 83-94%, HB: 68-79%). Moreover, we observed this in every 

experimental session (Fig. 3C; AQ for each session p<0.001; HB for each session p<0.001). 

Notably, decoding accuracy was unrelated to any differences in behavioral performance observed 

between the two tasks (Fig. S2). Furthermore, decoding accuracy was statistically equal with or 

without the background texture stimulus, indicating that visually driven activity did not 

contribute to the encoding of task rules (Fig. 3D; AQ: ANOVA F(1,6) = 3.79, p=0.1; HB: F(1,7) 

= 4.57, p=0.07). Thus, in spite of the variability in overall firing rate effects across sessions, rule 

information was invariably present in V4 neuronal activity.

The fact that differences in neuronal activity between the two tasks could be detected by 

the decoders in every experimental session suggests that decoder performance was driven by 

factors independent of overall mean firing rate. We confirmed this directly by measuring 

decoding accuracy in subsets of trials in which the mean firing between the two tasks was 

reduced or eliminated. In datasets obtained from each session, we excluded trials on which 

overall mean activity in Look and Avoid trials deviated most from the overall mean (Fig. 3E). As 

a result of this mean-matching procedure, 88% - 91% of the total trials remained in the analysis, 

and the average task modulation was reduced below statistical significance in both monkeys (Fig. 

3F; AQ: median modulation = 0.03±0.01, p=0.23;  HB: median modulation = 0±0.001, p=0.46). 

In spite of the removal of overall mean firing rate differences between the two tasks, decoding of 

task rule remained accurate in every session of data from both monkeys (Fig. 3G). Moreover, 
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when comparing the accuracies of decoding performance, we observed no significant differences 

in the mean-matched trials and all trials (AQ: ANOVA, F(1,5) = 0.00, p=0.95; HB: F(1,7) = 1.38, 

p=0.28). This result demonstrates that rule information is largely encoded in the pattern of 

spiking activity across neuronal populations in V4, rather than in unidirectional firing rate 

changes, as classically observed in visual cortex. 

In addition to cognitive effects, previous studies have also shown that changes in arousal 

state can influence visual cortical activity (Beaman, Eagleman, & Dragoi, 2017; Engel et al., 

2016). Thus, we considered that switches in task rule might systematically affect arousal (e.g. 

increase during the Avoid task), and in turn might alter visual cortical activity. Pupil size has 

been widely used as an index of arousal (Mathôt & Van der Stigchel, 2015; Reimer et al., 2014). 

So, we compared pupil size between the two tasks (Fig. S3A). However, we found no consistent 

differences in pupil size across the two tasks in either monkey, suggesting that arousal was 

largely equal during performance of the two tasks. Moreover, we observed no systematic effect 

of previous reward outcome on pupil size in either task (Fig. S3B). In addition, as it is known 

that fixational eye movements (microsaccades) can alter visual cortical activity (Leopold & 

Logothetis, 1998; Lowet et al., 2018), we also compared microsaccadic behavior between the 

two tasks. Again, we found no consistent differences in the pattern of microsaccades between the 

two tasks (Fig. S4).  Moreover, since the effects of task rule on activity were observed even in 

the absence of visual stimulation, differences in microsaccadic behavior would not be expected 

to influence visually driven activity. Lastly, we considered whether pre-cue activity might reflect 

a representation of the anticipated cue stimulus. However, consistent with previous studies 

demonstrating a lack of feature-based effects in V4 in the absence of visual stimulation 
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(Chelazzi, Miller, Duncan, & Desimone, 2001), we found no evidence that neurons signaled the 

upcoming cue stimulus (Fig. S5). 

A number of previous studies have found evidence that subpopulations of neurons within 

visual cortex may be engaged differently during attention (Mitchell, Sundberg, & Reynolds, 

2007; Nandy, Nassi, & Reynolds, 2017; Pettine, Steinmetz, & Moore, 2019) and working 

memory (van Kerkoerle et al., 2017).  Thus, we next asked if the rule signals we observed might 

be driven disproportionately by distinct subsets of neurons recorded in the daily sessions. To test 

that possibility, we took advantage of the ‘feature importance’ coefficients yielded from the 

decoding analyses; these coefficients scale the influence of each of the component neurons in the 

population on the decoder’s performance (Golub et al., 1999; Guyon & Elisseeff, 2003) 

(Methods).  As expected, in each session, the distributions of feature importance were broad (Fig. 

S6), indicating that particular neurons contributed disproportionately to the encoding of task rule. 

Importantly, feature importance was strongly correlated with the absolute value of the task 

modulation indices computed across neurons in both monkeys (Fig. S7). Using this information, 

we first sought to determine the relationship between rule information and the visual 

responsiveness of V4 neurons. Since attentional modulation tends to co-occur with the largest 

visual responses (Bichot et al., 2005; McAdams & Maunsell, 1999; Motter, 1993; Noudoost et 

al., 2010; Reynolds, Pasternak, & Desimone, 2000), we considered that feature importance might 

be largest among neurons exhibiting the largest visual responses. However, to our surprise, we 

found the opposite in the session-by-session data in both monkeys (Fig 4A-B). Task rule 

information (feature importance) was negatively correlated with the magnitude of visual 

response magnitude across neurons (Fig. 4C) (AQ, mean r = -0.3, p=0.03; HB, mean r = -0.35, 

p<0.001; combined mean r = -0.33, p<0.001), indicating that neurons conveying the most 

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.28.351460doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.28.351460
http://creativecommons.org/licenses/by-nc-nd/4.0/


12

0 0.5 1
Visual response magnitude

-10

-5

0

Fe
at

ur
e 

im
po

rta
nc

e,
 lo

g

0 0.5 1

-10

-5

0
-0.5

0
0.5

C
or

re
la

tio
n 

co
ei

ci
en

t

1 7

1 8
Session

-0.5
0

0.5

AQ

AQ
HBHB

-1 -0.5 0 0.5 1
0

2

4

Se
ss

io
n 

co
un

ts

1 1.04 1.08
stPR

-10

-5

0

Fe
at

ur
e 

im
po

rta
nc

e,
 lo

g

1 1.04 1.08

-10

-5

0

1 8
Session

1 8
Session

1 7

1 7

0
0.5

1

0
0.5

1

-0.5
0

0.5

-0.5
0

0.5

-1 -0.5 0 0.5 1
Correlation coeficient

0

2

4

Se
ss

io
n 

co
un

ts

-1 -0.5 0 0.5 1
Correlation coeficient

0

2

4

Se
ss

io
n 

co
un

ts

unit  a unit  b

Correlation coeficient

C
or

re
la

tio
n 

co
ei

ci
en

t
C

or
re

la
tio

n 
co

ei
ci

en
t

1 16

Triggered spikes
Shuffled

Low

у
-50 0 50

Time to spike, ms

unit  a 1 16unit  b

i=1
stPRunit a  = �уi

у

16

High

0 0.5 1
Visual response magnitude

1

1.04

1.08

st
PR

0 0.5 1
1

1.04

1.08

A B C

E GF

Figure 4
Jonikaitis et al

H JI

D

Fig. 4. Relationship of feature importance to visual activity and population coupling. A. Correlations between 
visual response magnitude and feature importance for each session and each monkey. Each set of points and its 
linear fit shows the trade-off between neuronal feature importance in the decoder and the magnitude of each 
neuron’s response to the visual cue. B. Correlation coefficients obtained for each session and each monkey. C. 
Distribution of correlation coefficients combined across both monkeys. D. Computing the stPR in two example 
units (a) (left) and b (right). Population rates were first computed from the accumulation of spikes from all units 
except the unit in question (indicated by ‘X’). The stPR was then computed as the spike rate triggered on the 
spikes from that unit (green line).  In the two examples, the stPR is greater in b than a. Black line shows the spike-
time shuffled stPR. E-G. Correlations between visual response magnitude and the stPR across sessions in each 
monkey. H-J. Correlations between feature importance and stPR.
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information about task rule were those with the least visually evoked activity. 

A recent study revealed that in both mouse and primate visual cortex, neurons vary 

broadly in the extent to which their activity is coupled to the population firing rate (Okun et al., 

2015). Importantly, the data show that population coupling predicts the magnitude of visually 

evoked activity and of attention-related modulation; strongly coupled neurons exhibit the largest 

visual responses and the largest modulation. Given our observation of reduced visual activity 

among neurons signaling task rule, we considered that the most informative neurons might 

correspond to subpopulations with weak population coupling. Thus, we measured population 

coupling for all of the recorded neurons using the spike-triggered average population response 

for each unit and tested this hypothesis (Methods and Fig. 4D). As in the previous study, 

population coupling was positively correlated with the magnitude of visually driven activity, a 

pattern that was observed across experimental sessions and in both monkeys (Fig. 4E-G; AQ, 

mean r = 0.64, p<0.001; HB, mean r = 0.39, p=0.007; combined mean r = 0.51, p<0.001). 

However, we also found that population coupling was negatively correlated with feature 

importance, a pattern that was also observed across sessions and monkeys (Fig. 4H-J; AQ, mean 

r = -0.32, p<0.001; HB, mean r = -0.28, p=0.04; combined mean r = -0.3, p<0.001). Thus, 

neurons conveying the most information about task rules comprised a distinct subpopulation of 

cells with the least visual activity and weak coupling to the local population. 

Lastly, we found that neurons with robust task rule signals were distributed equally across 

layers of V4. Previous studies have shown that both attention and working memory influence 

neuronal activity differently across layers of visual cortex, including in V4 (Nandy et al., 2017; 

Pettine et al., 2019; van Kerkoerle et al., 2017).  Since our array recordings were made largely 

perpendicular to the cortical surface (Fig. S1, S8A), we could assess whether rule related signals 
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were distributed differently across cortical layers. As in our previous analyses, we looked for 

laminar differences in the session-by-session data. These comparisons revealed that the 

contribution of neurons to rule information was distributed equally across cortical layers (Fig. 

S8B). In addition, rule information did not vary significantly with distance from input layer 4 

(AQ:  r = -0.01, p=0.89; HB: r = 0.11, p=0.19) (Fig. S8C). Thus, although task rule was encoded 

by a distinct subpopulation of neurons, those neurons were evenly distributed across cortical 

layers.

How generally might visual cortical neurons encode abstract rules? Although the two 

rules we employed were sufficient to produce robustly decodable signals in V4, it need not 

follow that V4 neurons signal differences between any arbitrary set of rules. In contrast to 

prefrontal cortex, where neurons appear to signal a multitude of arbitrary stimulus-response 

mappings (Mansouri et al., 2020; Miller & Cohen, 2001), one would not necessarily expect the 

same of visual cortical neurons. Rather, one might expect rule-related signals to emerge only in 

tasks that draw upon the unique functions of visual cortical circuitry, including perhaps non-

sensory functions. Consistent with that notion, the modulation of visual cortical activity observed 

by attention, reward or working memory are typically interpreted as reflecting the role of visual 

cortical neurons in signaling the perceptual relevance of associated sensory stimuli (Baruni et al., 

2015; Reynolds & Chelazzi, 2004; Supèr et al., 2001a). In contrast, the modulation we observed 

indicates that visual cortical activity also signals how forthcoming input is to be mapped onto 

subsequent behavioral responses. On the one hand, this observation is at odds with the classical 

view that visual cortical areas function largely as passive, perceptual filters, particularly areas 

within the primate ventral stream (Milner & Goodale, 2006), such as area V4. On the other hand, 

evidence of a more active role of visual cortical neurons in eye movement preparation has been 
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accumulating for some time (Moore, Armstrong, & Fallah, 2003; Steinmetz & Moore, 2014). 

Thus, the observation that V4 neurons also signal rules about how visual stimuli are to be 

mapped onto eye movements might reflect an engagement of visual cortical activity in the 

preparation of appropriate oculomotor responses. In primates, prefrontal connections with visual 

cortex occurs largely via direct connections between gaze control neurons within the frontal eye 

field and extrastriate areas (Merrikhi et al., 2017; Stanton, Bruce, & Goldberg, 1995). These 

connections might provide one source of the activity differences we observed between tasks 

involving different oculomotor strategies, though it remains to be determined.

 A number of studies have focused on identifying the circuits underlying changes in visual 

cortical processing resulting from extra-retinal factors, including in primates (Fiebelkorn & 

Kastner, 2020; Krauzlis, Lovejoy, & Zénon, 2013; Noudoost et al., 2010). Evidence from these 

studies reveals a number of specific circuits each capable of altering visual cortical activity, 

including input from thalamus (Saalmann, Pinsk, Wang, Li, & Kastner, 2012), prefrontal cortex 

(Squire et al., 2013), or from diffuse neuromodulatory nuclei (Herrero et al., 2008). Although 

these mechanisms are often invoked as possible sources of attention-related modulation, their 

respective roles in other functions, such as reward and working memory remain largely 

unexplored.  It is possible that each modulatory mechanism contributes to a specific function, but 

it is also possible that each mechanism contributes some complementary aspect to multiple 

functions. The rule signals we describe here thus far appear distinct from previously described 

modulations of visual cortical activity. Their prevalence among neurons with minimal visual 

responsiveness differs from the effects of attention (Bichot et al., 2005; McAdams & Maunsell, 

1999; Motter, 1993; Noudoost et al., 2010; Reynolds et al., 2000), and their prevalence among 

neurons weakly coupled to the population contrasts with other top-down influences on V4 
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activity (Okun et al., 2015). Nevertheless, it remains to be seen whether these rule related signals 

emerge from mechanisms that are themselves distinct from those driving other types of visual 

cortical modulation.
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Materials and Methods

General and Surgical Procedures

Two male rhesus monkeys (Macaca mulatta, 10 and 13 kg), monkey AQ and monkey HB, were 

used in this study. All experimental procedures were in accordance with National Institutes of 

Health Guide for the Care and Use of Laboratory Animals, the Society for Neuroscience 

Guidelines and Policies, and Stanford University Animal Care and Use Committee and are 

detailed in a previous report (Armstrong, Chang, & Moore, 2009). 

Behavior: Look and Avoid tasks

Experiments were controlled by a DELL Precision Tower 3620 desktop computer and 

implemented in Matlab (MathWorks, Natick, MA, USA) using Psychophysics and Eyelink 

toolboxes (Brainard, 1997; Cornelissen, Peters, & Palmer, 2002). Eye position was recorded with 

an SR Research EyeLink 1000 desktop mounted eye-tracker (sampling rate of 1000 Hz). Stimuli 

were presented at a viewing distance of 60 cm, on an VIEWPixx3D display (1920 x 1080 pixels, 

vertical refresh rate of 60 Hz). Each behavioral trial began with a fixation spot (a circle of radius 

0.5º, degrees of visual angle, dva) presented at the center of the screen (gray background). After 

the monkey acquired and maintained fixation for 600-800 ms, a cue appeared (colored square 

frame, size 1º x 1º dva) for ~50 ms at a randomly selected location (1 of 4 possible locations 

separated by 90º polar angle; eccentricity from fixation ranged from 5º to 7º dva). Cue 

presentation was followed by a delay period (1600-1800 ms on majority of sessions; as short as 
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1000-1200 ms and as long as 2000-2200 ms), after which fixation disappeared and the response 

targets appeared. Monkeys received a juice reward for making a saccadic eye movement to the 

correct target and maintaining gaze on the target for 200 ms. Failures to acquire fixation, breaks 

of fixation during the delay, or incorrect eye movements were not rewarded. 

Look task. The cue (open square) color was black for monkey AQ and green for monkey 

HB. On 93% of trials, after the delay period, two targets appeared (filled blue circles of radius 1º 

dva). One of the targets always appeared at the previously cued location while the other appeared 

at a randomly selected one of the other of the 3 remaining locations. To be rewarded, monkeys 

had to make a saccadic eye movement to the target at the cued location. On 7% of trials, (probe 

trials), after the delay, only one target appeared (filled black circle, at cued or 180º opposite), and 

monkeys had to make a saccadic eye movement to the probe target to be rewarded. 

Avoid task. Avoid trials were identical to the Look task, except that to be rewarded 

monkeys had to make a saccadic eye movement to the novel target, i.e. the one not previously 

cued. The cue color was green for monkey AQ and black for monkey HB. As in the Look task, 

probe trials occurred on 7% of trials. Look and Avoid task blocks were interleaved. Block 

duration varied, typically ranging from 150 to 400 trials per block. Each session could begin 

either with a Look or an Avoid block. 

V4 recording and visual stimuli

Recording sites within area V4 were identified by neuronal responses to visual stimuli and by 

assessing receptive field sizes as a function of stimulus eccentricity and receptive field location 

(Gattass, Sousa, & Gross, 1988). Recordings were obtained with 16 or 24-channel linear array 

electrodes with contacts spaced 75 or 150 m apart (U-Probes and V-Probes, Plexon, Inc). 
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Electrodes were lowered into the cortex using a hydraulic microdrive (Narishige International) at 

angles roughly perpendicular to the cortical surface. The receptive fields of V4 neurons studied 

were located within the lower contralateral quadrant within ~4º to 8º eccentricity. Neuronal 

activity was measured against a local reference, a stainless guide tube, which was close to the 

electrode contacts. Data were amplified and recorded using the Omniplex system (Plexon Inc., 

Dallas, TX). Wide-band data filtered only in hardware at 0.5Hz highpass and 8kHz lowpass, 

were recorded to disk at 40kHz. Data in each channel was then extracted using 3 standard 

deviations as a threshold for extracellular spike and classified as multi-unit activity. 

During the Look and Avoid tasks, at least one of the four cues appeared within the 

receptive fields of recorded neurons. In order to evoke activity in the recorded neurons during the 

pre-cue period, the display background was filled with a task irrelevant texture (Figure 1A) 

beginning 600 ms before cue onset (Supèr, Spekreijse, & Lamme, 2001b).  The background 

texture consisted of a dense field of 10000 oriented lines (width: 2 pixels, length: 2º dva), one 

orientation per background, selected randomly from 0º to 179º in 30º increments. The 

background texture was presented on ~83% of trials; on ~17% of trials, the background remained 

uniform gray. 

Data analysis

Behavior. Gaze position on each trial was drift corrected by using median gaze position from 10 

previous trials. Drift correction was based on gaze position from 100 ms to 10 ms before the cue 

onset, when stable fixation was maintained. We detected saccades offline using an algorithm 

based on eye velocity changes (Engbert & Kliegl, 2003). We next clustered saccades as ending 

on one of the three potential locations: (1) fixation, (2) correct response target, (3) wrong 
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response target. The clustering procedure used support vector machine algorithm with a Gaussian 

kernel  (Jonikaitis et al., 2019). Saccades directed to the target or distractor had a latency of at 

least of 50 ms after the response cue (Fischer & Boch, 1983). For the microsaccade analysis, we 

used all saccades that did not break the fixation window during the pre-cue period, i.e. saccades 

with amplitudes less than 1 dva. We removed trials if blinks occurred from 100 ms before cue 

onset to the time of saccade target onset. Data from each recording was inspected for saccade 

detection accuracy and data recording noise.

Statistical tests. For statistical comparisons of paired-means, we drew (with replacement) 

10000 bootstrap samples from the original pair of compared values. We then calculated the 

difference of these bootstrapped samples and derived two-tailed p values from the distribution of 

these differences. For repeated measures analysis with multiple levels of comparisons (e.g. 

accuracy of 6 decoders), we used one-way and two-way repeated measures ANOVAS. All 

correlations were computed as Pearson coefficients. All post-hoc comparisons were based on 

bootstrap tests and were Bonferonni corrected. 

Pre-cue activity was measured during the last 300 ms period prior to the cue presentation. 

Activity modulation between conditions was calculated using a standard normalized difference:

(Look-Avoid)/(Look+Avoid). 

Visual responses following the cue onset was measured during a 50-ms window 

beginning 100 ms after cue onset. This period was chosen as it included the peak of activity in 

which the response difference between Look and Avoid cue was greatest. Visual response 

magnitude was defined as (Cue_in – Cue_out) / (Cue_in + Cue_out). 
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Decoding of mean-matched data: Mean matching was performed for each session. First, 

for each selected percentile level (95th, 90th, 85th, 80th and 75th percentile), we removed trials with 

the highest and lowest activity for a given percentile. From this subset of data, we calculated a 

modulation index across channels (that is, 16 or 24 modulation indices per recording). We then 

measured whether distribution of those modulation indices differed from 0. If p>0.1, this reduced 

dataset was used as a mean matched data set. For one session we could not mean match the data 

(AQ session 3). Percentiles for mean matched individual session data were (in order of the 

sessions): AQ – [90, 90, 80, non-matched, 90, 90, 90]; HB – [90, 100, 95, 95, 80, 90, 75, 100]. 

Decoding of V4 activity

We analyzed neuronal spike rates measured during the pre-cue time windows (300 ms). We used 

six different, commonly used, machine learning algorithms to measure how well pre-cue activity 

could be used to decode the current task: Look vs. Avoid. Specifically, we used a Decision Tree, 

Naïve Bayes, K-Nearest Neighbors (KNN), Logistic Regression, Random Forest, and a support 

vector machines (SVM) algorithm to train classifiers from each experimental session. We chose 

six standard algorithms, as opposed to one, as a means of corroborating the decoding results 

using complementary decoding schemes. The Decision Tree algorithm we used is based on the 

entropy and information gain theorem, by which the algorithm creates its decision paths by 

prioritizing the features (neurons) whose values (firing rate) provide a maximal amount of new 

information (AKA Information Gain) when forming the decision tree (Quinlan, 1987). The Naïve 

Bayes algorithm is a maximum likelihood estimator which is mainly based on Bayes theorem, 

and conditional and prior probabilities that exist in the data (Duda, Hart, & Stork, 2001). The 

KNN algorithm does not induce a model (in contrast to the other five algorithms used); instead it 
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is based on distance calculations (e.g., the Euclidian Distance) between each pair of samples 

(e.g., trials) in the data. A new trial is classified based on the class majority of the K samples to 

which the trial has maximal resemblance (Cover & Hart, 1967). The logistic regression algorithm 

is suitable for binary classification problems, like those in our data. To produce an accurate 

model, it uses a nonlinear (sigmoidal) function probability calculation to select the maximum 

likelihood fitting curve for the given data, based on an iterative process of data point shifting 

(Kleinbaum & Klein, 2002). The SVM algorithm is based on solving a quadratic programming 

optimization problem in an attempt to find a separating hyperplane between the two classes in 

the given data, so that the distance (i.e., margin) between the samples of the two classes is 

maximal. We also used the radial basis function kernel (RBF) which projects the given data into 

a higher dimensional space, thus achieving a better separation of the data and improved decoding 

accuracy (Cortes & Vapnik, 1995). The random forest algorithm is based on the randomization 

and selection of different feature subsets and the creation of a sub-decision tree for each subset of 

features (Ho, 1995).  This yields a set (forest) of sub-decision trees, and ultimately an ensemble 

of decisions and a final decision is produced by using a majority over intermediate decisions.

Each of the six algorithms was trained on all of the datasets, and each classifier employed 

was evaluated separately on the datasets from each recording session using a standard 10-fold 

cross-validation procedure where 90% of the dataset was used for training, and the remaining 

10% was used for testing. The evaluation included 10 repetitions in which the divisions of the 

training and test set were randomized with respect to the trials in order to reduce the variance. 

The session’s classification performance was computed from an area under the curve (AUC) 

measure and was based on the average AUC of the 10 repetitions. Since the best performance 

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.28.351460doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.28.351460
http://creativecommons.org/licenses/by-nc-nd/4.0/


was achieved when using bin size 300 ms (one bin), we only present the performance of 

decoders for a single bin window.

Feature importance coefficients were obtained by applying a feature selection method 

using a filters approach (Guyon & Elisseeff, 2003) in which a specific measure is used to 

evaluate the correlation of each individual feature (i.e. neuron) to the class (Look/Avoid). A 

variety of measures and methods exist, but we chose to use the simple, yet efficient, Fisher score 

method (Golub et al., 1999). This method measures the difference between the negative (i.e. 

Avoid) and positive (i.e Look) samples (i.e. trials) relative to a certain feature (i.e. neuron), in 

terms of mean and standard deviation. Equation 1 defines the calculation applied by the Fisher 

score method for each feature, in which Ri is the calculated rank of a specific feature i (neuron i), 

demonstrating the proportion of the substitution of the mean of the feature i values in the 

negative examples (N) and the positive examples (P), and the sum of the standard deviation. The 

larger the calculated Ri value, the larger the difference between the values of positive and 

negative examples relative to feature i.  Thus, a higher value feature is more important for 

discriminating between the Avoid and Look trials.

After applying the Fischer score feature selection method on neuronal activity, each 

neuron was also given a rank. The rank quantified each neuron’s expected contribution to the 

classification task (regardless of the machine learning algorithm) from which neurons with the 

top X ranks can be selected to train the learning algorithm and yield an accurate classifier.
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Spike-triggered population response. Population coupling.

For each unit, a spike-triggered population response (stPR) was computed similar to methods 

described previously (Okun et al., 2015). The stPR captures the relationship of a given unit’s 

activity to the summed activity of all neurons recorded in the recorded population at a given 

moment in time (Fig. 4D). In computing the stPR, the population rate was first measured by 

accumulating all the detected spikes in the interval -100 to 100 relative to spike onset with 1 ms 

resolution, and smoothing the result with a Gaussian of half-width 12 ms. For each unit in 

question, this rate did not include the spikes of that unit and was used to compute the unit’s stPR. 

Each unit’s stPR was normalized by the time-shuffled stPR.

Laminar designation

To identify the input layer, we performed a current source density (CSD) analysis for each 

recording session (Higley, 2012). LFP signals were aligned to the onset of visual cue and 

averaged over all trials to produce the event related potential (ERP) of each recording channel. 

The CSD is commonly estimated as the second order derivative of ERPs across channels 

(Mitzdorf, 1985). To reduce the effect of channels with poor signal quality and obtain a smoother 

CSD pattern, we conducted an optimization procedure based on the assumption that CSD is a 

smooth function across cortical depth, which led to the following constrains: 1) the third 

derivative of ERPs is small, and 2) the modified ERPs do not deviate much from the original 

data. After the optimization procedure, we calculated the second order derivative of the modified 

ERPs. For each session, the center depth of the input layer was then identified as the channel that 
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showed the earliest sink in the CSD pattern. Based on the input layer designation, we could 

compare different layers across cortical depths.
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Supplemental figure 1

Fig. S1. An example linear array recording showing neuronal RFs measured across 16 recording 

sites spaced every 150 µm across the cortical depth (2250 µm total). In this case, successive, 

largely overlapping RFs were obtained in all, but one of the 16 recording sites. 
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Supplemental figure 2

Fig. S2. Relationship of task performance (difference between Look and Avoid tasks) to 

decoding accuracy.
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Supplemental figure 3

Fig. S3. Comparison of pupil size across Look and Avoid tasks in both monkeys. A. Pupil size in 

each session is shown normalized to the session mean. Small differences in pupil size between 

the Look and Avoid tasks were observable in some sessions. However, those differences were not 

consistent across experimental sessions in either monkey (AQ: Look = 1 ± 0.005, Avoid = 0.99 ± 

0.008 , p=0.28; HB: Look = 0.99 ± 0.001, Avoid = 0.98 ± 0.005, p=0.53). B. The influence of 

previous trial outcome (i.e. reward, no reward) on pupil size across Look and Avoid tasks in the 2 

monkeys. A small reduction in pupil size was observed after incorrect trials in one monkey (AQ, 

F(1,6) = 11.56, p=0.01, HB: F(1,7) = 0.62, p=0.46). However, there was no effect of task on 

pupil size (AQ: F(1,6) = 1.09, p=0.33, HB: F(1,7) = 1.83, p=0.21) and no significant interaction 

between task and trial outcome in either monkey (AQ: F(1,6) = 0.03, p=0.86, HB: F(1,7) = 3.80, 

p=0.09).
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Supplemental figure 4

Fig. S4. Comparison of fixational eye movements (microsaccades) between the Look and Avoid 

tasks. A. The frequency of microsaccades in the 2 tasks across sessions in the 2 monkeys. The 

overall frequency of microsaccades in monkey AQ was slightly, but significantly, greater during 

Avoid trials (mean Look = 0.4 ± 0.07, mean Avoid = 0.45 ± 0.06 Hz, p=0.04). However, this 

pattern was reversed in monkey HB (mean Look = 1.33 ± 0.1, mean Avoid = 1.23 ± 0.11 Hz, 

p=0.06). B. The distribution of microsaccade frequencies across movement directions. In both 

monkeys, the distributions  of microsaccade frequencies were statistically indistinguishable 

across directions (AQ, F(9,54) = 1.52, p=0.16; HB, F(9,63) = 1.14, p=0.34) and the two tasks 

(AQ: F(1,6) = 5.32, p=0.06; HB: task F(1,7) = 2.85, p=0.14) and there was no significant 

interaction (AQ: F(9,54) = 1.38, p=0.22; HB: F(9,63) = 0.87, p=0.56). 34
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Supplemental figure 5

Figure S5. Relationship of pre-cue activity to cue selectivity. A. Normalized mean visual 

responses to the Look and Avoid cues across recordings sessions in the 2 monkeys. The cue 

stimulus was reversed across monkeys. For AQ, the Look cue was a green square and the avoid 

cue was a black square. Visual responses were general larger for the (brighter) green square in 

the 2 monkeys. B. Relationship between the cue stimulus selectivity for neurons and their 

selectivity to the 2 tasks. Stimulus and task selectivity were both measured as modulation indices 

(MIs)(Methods). Positive task MIs denote greater activity during Look trials, and positive cue 

selectivity MIs denote greater activity during the presentation of the Look cue. C. Correlations 

between task and cue selectivity MIs in the 2 monkeys. Each set of points and its linear fit shows 

the correlations for each session. D. Distribution of correlations across sessions in the 2 

monkeys. If pre-cue activity represents the features of the upcoming cue stimulus, then the two 

measures should be positively correlated, e.g. neurons selective for the Look cue should exhibit 

greater activity in the pre-cue period during the Look task. However, we found that these 

35

-0.3 0 0.3
Cue selectivity

-0.3

0

0.3

1 8
Session

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
Correlation

1

2

3

-0.3 0 0.3

-0.3

0

0.3

Ta
sk

 M
I

1 7
-1

-0.5

0

0.5

1

C
or

re
la

tio
n

-1 -0.5 0 0.5 1

1

2

3

Se
ss

io
n 

co
un

ts

AQ

HB

-200 0 200 400
Time from cue, ms

1

1.5

2

2.5

Look
Avoid

-200 0 200 400
1

1.5

2

2.5

N
or

m
al

iz
ed

 fi
rin

g 
ra

te

A C D

Figure S5
Jonikaitis et al

B

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.28.351460doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.28.351460
http://creativecommons.org/licenses/by-nc-nd/4.0/


measures were unrelated across sessions in both monkeys. Combined distributions were not 

significantly different from 0 in either monkey (AQ: p=0.21; HB: p=0.1) indicating that the pre-

cue activity did not predict the responses to the cue stimulus. 
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Supplemental figure 6

Fig. S6. Distribution of feature importance (log units) across sessions in the 2 monkeys. 
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Supplemental figure 7

Fig. S7. Relationship of feature importance to task modulation. A. Plots showing the 

relationship between neuronal feature importance in the decoder and the task modulation index 

for the two monkeys (top and bottom). Higher feature importance was associated both with 

higher and lower modulation indices. B. Correlations between feature importance and the 

absolute task modulation index for each monkey. Each set of points and its linear fit shows the 

correlations for each session. C. Correlation coefficients for each session and monkey. D. 

Distribution of correlation coefficients for both monkeys. 
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Supplemental figure 8

Fig. S8.  Feature importance as a function of cortical depth. A. Example CSD time-course 

heatmaps for monkey AQ and HB. At time 0 full screen texture appeared (600 ms before cue 

onset). Input layer (denoted as 0) was determined as the channel with earliest sink response 

onset. Deeper layers (negative values) and upper layers (positive values). B. Decoder weights as 

a function of depth from the input layer. Data is shown for each individual recording session. C. 

Average decoder weights as a function of absolute distance from input layer. Individual dots 

represent individual sessions.  
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