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Abstract 23 

Background 24 

Feed efficiency is a major driver of the sustainability of pig production systems. Understanding 25 

biological mechanisms underlying these agronomic traits is an important issue whether for 26 

environment and farms economy. This study aimed at identifying genomic regions affecting 27 

residual feed intake (RFI) and other production traits in two pig lines divergently selected for 28 

RFI during 9 generations (LRFI, low RFI; HRFI, high RFI). 29 

Results 30 

We built a whole dataset of 570,447 single nucleotide polymorphisms (SNPs) in 2,426 pigs 31 

with records for 24 production traits after both imputation and prediction of genotypes using 32 

pedigree information. Genome-wide association studies (GWAS) were performed including 33 

both lines (Global-GWAS) or each line independently (LRFI-GWAS and HRFI-GWAS). A 34 

total of 54 chromosomic regions were detected with the Global-GWAS, whereas 37 and 61 35 

regions were detected in LRFI-GWAS and HRFI-GWAS, respectively. Among those, only 15 36 

regions were shared between at least two analyses, and only one was common between the three 37 

GWAS but affecting different traits. Among the 12 QTL detected for RFI, some were close to 38 

QTL detected for meat quality traits and 9 pinpointed novel genomic regions for some harbored 39 

candidate genes involved in cell proliferation and differentiation processes of gastrointestinal 40 

tissues or lipid metabolism-related signaling pathways. Detection of mostly different QTL 41 

regions between the three designs suggests the strong impact of the dataset on the detection 42 

power, which could be due to the changes of allelic frequencies during the line selection. 43 

Conclusions 44 
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Besides efficiently detecting known and new QTL regions for feed efficiency, the combination 45 

of GWAS carried out per line or simultaneously using all individuals highlighted the 46 

identification of chromosomic regions under selection that affect various production traits.  47 

  48 
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Background 49 

Feed efficiency is a major driver of the sustainability of pig production systems. It represents 50 

from 50 to 83 % of cost productions depending on the countries and systems [1]. The feed 51 

efficiency is also a principal lever to reduce the environmental footprints of the production [2]. 52 

The cost of feeding in pig production is usually measured by the computation of feed conversion 53 

ratio (FCR). Indeed, FCR is a ratio between two traits of interest for most breeding schemes 54 

(feed intake and growth rate), and incorporating it in selection indexes makes it difficult to 55 

accurately anticipate responses to selection on this trait and the correlated traits [3]. In 1963, 56 

Koch et al. [4] proposed residual feed intake (RFI) as an alternative to quantify feed efficiency, 57 

to overcome the limits of FCR. The RFI is the difference between individual feed intakes and 58 

predicted feed intake for the animal maintenance and production requirements. It is generally 59 

computed as a multiple linear regression of daily feed intake on production traits (growth rate 60 

and body composition traits in growing animals), and on the average metabolic body weight of 61 

the animal during the period, as an indicator of maintenance requirements. As a result, selection 62 

for RFI generates limited correlated responses on the other production traits, as shown in several 63 

selection experiments in pigs [5, 6], and other species [7]. However, accurate individual feed 64 

intake recording for pigs raised in groups is costly, and large efforts are devoted to facilitate the 65 

improvement of feed efficiency, by either identifying biomarkers [8, 9] or genomic markers 66 

(for instance [10, 11]). Despite these efforts, the difficulty to find quantitative trait loci (QTL) 67 

or genomic variant affecting feed efficiency related traits translates in the PigQTLDB statistics 68 

[12]: only 394 QTL are listed for feed conversion type of traits, and 350 for feed intake type of 69 

traits, whereas more than 2,000 are reported for growth traits, and more than 3,200 for fatness 70 

traits (PigQTLDB, access Sept 2020, https://www.animalgenome.org/cgi-71 

bin/QTLdb/SS/index). Genomic information acquired in established divergent lines for the trait 72 
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of interest can be used to increase the power of detection of genomic variants for lowly heritable 73 

or highly polygenic traits, as  RFI in pigs [10] and litter traits in rabbits [13].  74 

In this study, we aimed at identifying genomic regions affecting RFI and other 75 

production traits in two pig lines divergently selected for RFI during 9 generations [5], by 76 

combining an extensive genotyping of all breeding animals of the lines, and the extensive 77 

phenotyping of their progeny. GWAS were applied to growth, feed intake and feed efficiency, 78 

carcass composition and meat quality traits on the full dataset. Different subsets of the 79 

population were used to suggest biological hypotheses for the genetic background of the traits 80 

in the two divergent lines, and decipher whether the chromosomic regions affecting RFI 81 

differed between lines.  82 

Methods 83 

Ethic statement 84 

All pigs were reared in compliance with national regulations and according to procedures 85 

approved by the French Veterinary Services at INRA experimental facilities. The care and use 86 

of pigs were performed following the guidelines edited by the French Ministries of High 87 

Education, Research and Innovation, and of Agriculture and Food 88 

(http://ethique.ipbs.fr/sdv/charteexpeanimale.pdf). 89 

Design 90 

The data were obtained from a divergent selection experiment on RFI carried out at the INRA 91 

experimental units GenESI since 2000 (Surgères, France, 92 

https://doi.org/10.15454/1.5572415481185847E12), on growing pigs from the French Large-93 

White (LW) population. The selection procedures were described by Gilbert et al. [5]. In brief, 94 

the lines were established from 30 matings of LW animals (F0). From these litters, 116 males 95 

were tested to select the 6 most efficient (LRFI) and 6 least efficient (HRFI) males as founders 96 

of two divergent lines, and about 40 pairs of sibs were randomly assigned to each line. In the 97 
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following generations, from G1 to G9, 96 males from each line were tested for RFI to select 6 98 

extreme low or high boars depending on the line. In addition, 35 to 40 females were randomly 99 

chosen within-line in each generation to produce the next generation. No selection was applied 100 

for females. From G1, matings were organized for at least two successive litters. Until G5, the 101 

first litter provided boars candidates for selection and future breeding females, and castrated 102 

males and females from the second parity were tested to evaluate the direct and correlated 103 

responses to selection on major production traits, including carcass composition and meat 104 

quality traits. After G5, selection was applied to parity 4 or 5, and responses to selection were 105 

measured on pigs born in parity 2 and 3. Hereafter, the breeding animals will be called 106 

“breeders” and animals tested for responses to selection will be called “response animals”. 107 

Phenotypes 108 

In each generation, 48 females and 48 castrated males per line were produced as response 109 

animals, and tested individually during the growing-finishing period (~28 kg to ~107 kg) for 110 

body weight (BW0 at the start of the test and BW1 before slaughter) and daily feed intake (DFI) 111 

using a single-place electronic feeder (ACEMA 64; Skiold Acemo, Pontivy, France) to compute 112 

average daily gain (ADG) and feed conversion ratio (FCR) during the test period. The dressing 113 

percentage (DP) was computed based on weight records of warm carcass at slaughter. Twenty 114 

four hours after slaughter, backfat thickness measured on carcass (carcBFT), and the weights 115 

of ham (Ham_W), loin (Loin_W), belly (Belly_W), shoulder (Shoulder_W), and backfat 116 

(BF_W), following a standardized cut, were recorded on the cold half carcass. The lean meat 117 

content (LMCcalc) was evaluated according to the method of Daumas [14]. Meat quality 118 

measurements included pH on adductor femoris muscle (AD), semimembranosus muscle (SM), 119 

gluteus superficialis muscle (GS), and longissimus dorsi muscle (LM), colorimetry L*, a* and 120 

b* on GS and gluteus medius muscle (GM), and water-holding capacity (WHC) assessed on 121 

GS according to the procedure described by Charpentier et al. [15]. Finally, meat quality index 122 
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(MQI) was calculated from measurements of pH in SM, L* on GS and WHC according to the 123 

model proposed by Tribout et al. [16]. RFI was defined as the residual of a multiple linear 124 

regression as follows: RFI = DFI – (1.48 × ADG) + (23.2 × LMCcalc) – (99.1 × AMBW), 125 

where AMBW is the average metabolic body weight during the test period and is equal to 126 

(BW11.6 −BW01.6)/[1.6 (BW1 − BW0)] [17]. Contemporary group, gender and pen size were 127 

added as fixed effects in the model, as described by Gilbert et al.[5]. 128 

Genotyping 129 

Genomic DNA was purified from individual biological samples of the sires and dams of all 130 

generations using standard protocols. Over time, two different Illumina medium density SNPs 131 

chips were used according to the genotyping protocols defined by the supplier (at Technological 132 

Center, Genomics and Transcriptomics Platform, CRCT Toulouse). First batch comprising 286 133 

animals was genotyped for 64,232 SNPs using the Porcine SNP60v2 BeadChip (60K SNPs 134 

chip), and a second batch of 1,356 animals was genotyped using the Porcine HD Array GGP 135 

chip comprising 68,516 SNPs (70K SNPs chip). Genotypes were obtained using the Genome 136 

Studio software (V2.0.4) and coded as 0, 1 and 2 corresponding, respectively, to individuals 137 

homozygous for the minor allele, heterozygous and homozygous for the major allele. In 138 

addition, 32 G0 founders (12 G0 sires, and 20 G0 dams that had most contribution to the 139 

subsequent generations) were genotyped with the Affymetrix Axiom Porcine HD Genotyping 140 

Array chip (Gentyane Plateform, UMR 1095 INRAE Clermont-Ferrand) consisting of 658,692 141 

SNPs (650K SNPs chip).  142 

For each SNPs panel, quality control was performed using PLINK software (V1.90) 143 

[18]: SNPs  with a call frequency (CF) < 95% and a minor allele frequency (MAF) < 1% were 144 

excluded, and animals with a call rate (CR) <90% were discarded. Unmapped SNPs and SNPs 145 

located on sex chromosomes were removed following the Sscrofa11.1 assembly of the 146 

reference genome (https://www.ensembl.org/Sus_scrofa/Info/Index)[19].  147 
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Genotypes imputation 148 

Two successive imputations were performed using the FImpute software [20]. A first level of 149 

imputation was performed with markers of 60K and 70K SNPs chips, based on 29,957 SNPs in 150 

common, to homogenize the medium density genotyping data available for the 1,632 breeders 151 

of the lines. This leads to an intermediate dataset of 66,988 SNPs imputed from both medium 152 

density (MD) chips (60K and 70K SNPs chips). In a second step, the genotypes of the high 153 

density (HD) SNPs chip were imputed for all breeders using the HD SNPs genotypes of the 32 154 

G0 founders. A set of 45,708 SNPs was in common between MD imputed genotypes and HD 155 

SNPs chip. A total of 570,447 SNPs distributed over the 18 pig autosomes, was finally available 156 

for 1,632 breeding animals.  157 

To evaluate the imputation accuracy, first, five successive batches of 1,000 SNPs were 158 

randomly selected among the common SNPs in the 60K and 70K SNPs chips. For each SNPs 159 

batch, the genotypes of these SNPs were set as missing for all animals genotyped with the 60K 160 

SNPs chip and imputed from the 70K SNPs chip information. Therefore, a total of 5,000 SNPs 161 

with real and imputed genotypes were used to compute Pearson correlations for each of the 286 162 

pigs with 60K genotypes. Similarly, five batches of 1,000 SNPs were randomly selected from 163 

common markers of both MD SNPs chips, animals genotyped with the 70K SNPs support were 164 

re-coded as missing, and Pearson correlations between true and imputed genotypes were 165 

computed for the 1,346 animals with 70K SNPs genotypes. Then, to evaluate the imputation 166 

quality to the HD, the same strategy of removing successively five batches of 1,000 SNPs from 167 

the data was applied using SNPs in common to the three chips. In addition, a leave-one-out 168 

approach was applied to the 32 individuals with HD genotypes to evaluate the imputation 169 

accuracy. 170 
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In addition, a multi-dimensional scaling (MDS) analysis was performed using R 171 

software (V.3.6.2, R Core Team 2019) based on a identity-by-state matrix constructed with the 172 

PLINK software [21]. 173 

Predicted genotypes in response animals  174 

Response animals did not have genotypes themselves. An average expected genotypes of their 175 

parents was computed for each animal from the imputed 650K genotypes. For each marker, 176 

each individual was given the average genotype of the parents (0, 0.5, 1, 1.5 or 2), so within a 177 

litter, all animals were assigned the same genotypes. Depending on the genotypic class, the 178 

obtained genotype was, therefore, an approximation of the real genotype: (i) genotypes 0 and 2 179 

were certain, as they resulted from two homozygous parents for the same allele (0x0  0 and 180 

2x2  2), (ii) genotypes 0.5 and 1.5 included combinations of a homozygous genotype for one 181 

allele and a heterozygous genotype (0x1  0 or 1 and 1x2  1 or 2), and (iii) genotype 1 was 182 

the most heterogeneous class, with a mixture of true genotypes (0x2  1) and uncertain 183 

genotypes (1x1  0 or 1 or 2). Animals with a parent with a missing genotype were excluded 184 

from the analysis. 185 

Genome-Wide Association Studies 186 

GWAS analyses were performed using GEMMA software (version 0.97) [22] on response 187 

animals with their own phenotypes and their average genotypes from parents. Phenotypes were 188 

adjusted for significant fixed effects and covariates (pen size, herd, sex, and contemporary 189 

groups for in vivo measurements, slaughter date as fixed effects, and slaughter age as covariate 190 

for traits recorded at the abattoir, and slaughter BW as covariate for carcBFT) using linear 191 

models as proposed in Aliakbari et al. [23]. The resulting residues were integrated as 192 

phenotypes in GEMMA. To account for the structure of the population in the GWAS analyses, 193 

a pedigree relationship matrix A was computed. Association analyses were performed on the 194 

24 traits available for 2,426 response animals. 195 
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The statistical model used to test one marker at a time was 𝐲 = 𝐱𝛽 + 𝐮 +  𝛆, where y is 196 

the vector of adjusted phenotypes for all individuals; x is a vector of genotypes at the tested 197 

marker; β is the effect of the tested marker; u is a vector of random additive genetic effects 198 

distributed according to 𝑁(0, 𝐀𝜆𝜏−1), with 𝜆 the ratio of the additive genetic variance and the 199 

residual variance 𝜏−1; ε is a vector of residuals 𝑁(0, 𝐈𝜏−1), with I the identity matrix. In 200 

GEMMA, an efficient exact algorithm is implemented to first estimate  𝜆, and next derive 𝛽̂ 201 

and 𝜏̂ for each marker [24]. 202 

The distributions of the p-values for the GWAS of each trait were checked using 203 

quantile-quantile plots (Q-Q plot) and computing regression coefficients of the -log10(observed 204 

p-values) on the -log10(expected p-values under H0). Inflation factors were lower than 1.23 for 205 

all analyses, indicating low deviations from the distribution of the test statistic under H0. A 206 

correction factor was anyway applied to all analyses to control type-I errors, by dividing each 207 

p-value by the corresponding inflation factor to avoid the impact of this low deviation.  208 

To account for the nominative type-I error and multiple testing issue, the significance 209 

threshold was obtained after a Bonferroni correction as follows: 210 

−𝑙𝑜𝑔10 (
0.05

∑(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑡𝑒𝑠𝑡𝑠/𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒) 
), 211 

where number of independent tests was computed per chromosome as the number of principal 212 

components required to describe 99.5% of the genotypic variability of each chromosome, after 213 

a principal component analysis applied to the correlation matrix between genotypes of the SNPs 214 

of the considered chromosome (square root (r²) of linkage disequilibrium (LD) between each 215 

pair of SNPs), as recommended by Gao et al. [25]. The chromosome-wide thresholds obtained 216 

were between 3.09 and 3.16, thus a threshold of 3 was used to identify suggestive associations. 217 

To determine genome-wide significance thresholds, the number of independent tests for the 18 218 

autosomes was summed to apply a correction at the genome level. This threshold (4.5) was used 219 

to identify significant associations. 220 
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Three types of populations were considered for GWAS. First, the full dataset combining 221 

the two lines was analyzed in a global analysis (thereafter called Global-GWAS). Then, to 222 

evaluate if some QTL were segregating in one line only, the analyses were repeated within line 223 

(thereafter called Lines-GWAS, or HRFI-GWAS and LRFI-GWAS when only one line was 224 

referred too).  225 

To define QTL intervals, for each combination of population and trait, the genome was 226 

divided into 1 Mb windows following the Sscrofa11.1 assembly of the reference genome. The 227 

1 Mb windows with at least one SNP with significant p-value at 5% genome-wide (-log10(p-228 

value)≥4.5) were retained, and adjacent windows with significant signals were combined into 229 

a single QTL window per trait. In a second step, the adjacent and overlapping significant 230 

windows between traits were combined using the same approach as presented above, thus 231 

allowing a complete list of QTL regions to be subsequently analyzed. When a QTL region was 232 

significant for several traits, for each of them, the most significant marker and the associated 233 

allelic substitution effect was retained to tag the QTL (trait x region) for this trait in further 234 

analyses – thereafter called SNP-QTL.  235 

The QTL positions were compared to previously mapped QTL in pigs using the 236 

pigQTLdb database [12], and QTL significant for RFI trait were screened for functional 237 

candidate genes using Ensembl annotation V.101 (August 2020).  238 

Changes of allelic frequencies of SNP-QTL 239 

The power of detection in GWAS is strongly influenced by the allelic frequencies of the 240 

analyzed markers [26]. Within each QTL window, the most significant SNP was considered to 241 

examine the changes of allele frequencies with line selection. These SNP-QTL allele 242 

frequencies were estimated for the response animal genotypes, i.e. from their average 243 

genotypes. To find out how selection affected allele frequencies, and thus power of detection, 244 

allele frequencies were computed by adding animals from one generation at a time, starting 245 
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from G1 individuals alone. Then, the allele frequencies adding G2 response animals were 246 

obtained by combining genotypes of G1 and G2 response animals, and so on until G9. The 247 

estimated frequencies in G9 (using all the animals from G1 to G9) corresponded to the 248 

informativeness of the markers used in the main GWAS by line. A regression of the generation 249 

(1 to 9) on the SNP allele frequencies was then applied to test changes of allelic frequencies on 250 

cumulative datasets over generations. For each SNP-QTL, the significance of the slope was 251 

estimated in each line using a Wald test. An average evolution score was compute for each QTL 252 

region (9 generations * (|slope HRFI| + |slope LRFI|)) when the slope value was different from zero 253 

with p < 0.05. To reflect the evolution per trait, an average value over all the QTL regions 254 

detected for each trait was computed. 255 

Results 256 

Genotype quality control and imputation 257 

True SNPs genotyping data were available for all sires and dams from G0 to G9. The quality 258 

control of the genotypes was first carried out for each SNP chip independently. With a CR 259 

threshold of 90%, 10 animals genotyped with the 70k SNPs chip and no individual genotyped 260 

with the 60K and 650K SNPs chips were discarded (Additional file 1). For the SNPs, 15,114 261 

SNPs from the 60K SNPs chip (5,776 for CF < 95% and 9,125 for MAF < 1%), 11,891 SNPs 262 

from the 70K SNPs chip (5,323 for CF < 95% and 6,568 for MAF < 1%), and 99,587 SNPs 263 

from the HD SNPs chip (53,735 for CF < 95% and 45,852 for MAF < 1%) were removed. In 264 

total, genotypes of 286 animals for 49,118 SNPs for the 60k SNPs chip, genotypes for 1,346 265 

animals for 56,625 SNPs for the 70K SNPs chip, and finally genotypes for 32 animals for 266 

559,105 SNPs for the HD SNPs chip were retained for further analyses (Additional file 2).  267 

To obtain HD genotypes for all parents of the design, two successive runs of imputations 268 

were performed. First, the imputation of the missing genotypes on each MD support (60K and 269 

70K SNPs chips) allowed obtaining genotypes for 66,988 SNPs for all sires and dams. The 270 
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imputation accuracy was on average 0.995 regardless the generation of the imputed individuals 271 

(Figures 1a and 1b). A second run of imputation was applied to all breeding animals from the 272 

32 founder individuals genotyped with the HD SNPs chip. The imputation accuracy was also 273 

high, with average accuracies around 0.979 (Figure 1c). Some few animals in G0 and G3 had 274 

accuracies lower than 0.97. The accuracy estimated via the leave-one-out approach confirmed 275 

the values estimated with the correlations, with an average of 0.975. In total, genotypes for 276 

570,447 SNPs were obtained for all parents from G0 to G9. 277 

 278 

Figure 1 Correlations between true and imputed genotypes for animals genotyped on 60K or 70K 279 

SNPs chip. For each analysis, correlations were estimated setting 5,000 SNPs as missing (5 batches of 280 

1,000 SNPs) on one chip among SNPs in common between the two supports used. Animals are sorted 281 

and colored by generation. Correlations between true and imputed genotypes (a) for the 286 animals 282 

genotyped with the 60K SNPs chip using animals with 70K genotypes as reference population, and (b) 283 
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for the 1,346 animals genotyped with the 70K SNPs chip using animals with 60K genotypes as reference. 284 

(c) Correlations between true and imputed genotypes after imputation to 650K SNPs from the imputed 285 

medium density genotypes. 286 

 287 

An MDS analysis was performed on the genotypic matrix to represent the changes of 288 

genomic content of the lines with generations (Figure 2). The first component corresponded to 289 

the dispersion of individuals according to the lines, and the second component corresponded to 290 

the successive generations in both lines. 291 

 292 

Figure 2 Two first axes of the multidimensional scaling (MDS) analysis, based on the 570,447 293 

genotypes. Points represent individuals (corresponding to all sires and dams of the population, N=1,632) 294 

and colors are generations. 295 

 296 

Genome-wide association studies  297 

From the imputed genotypes of all parents, an average genotype was computed for all response 298 

animals. Thus genotypes coded 0, 0.5, 1, 1.5 or 2 were available for 2,426 individuals in total. 299 

Within a sibling, all individuals shared the same average genotype. On average the size of the 300 

siblings was 4.07 (± 2.9).  301 
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First, association studies corresponding to Global-GWAS were carried out on all 302 

response animals, for each of the 24 traits. A total of 54 regions of 1 Mb (38 regions), 2 Mb (12 303 

regions), or 3 Mb (4 regions) were significant for at least one trait, corresponding to 72 QTL 304 

(trait x region). QTL were detected for all 24 traits (Figure 3), the list and characteristics of 305 

these QTL is reported in the Additional file 3. Cut weights were the traits with the lower number 306 

of QTL (1 to 3 per analysis), except for the weight of backfat (BF_W) in the Global-GWAS 307 

(Table 1). Meat quality measurements had the highest number of QTL (up to 7). Thirty regions 308 

associated with growth, feed intake, and feed efficiency were detected, including 12 regions 309 

associated with RFI and 5 with FCR. For all traits (except Belly_W), at least one QTL was 310 

detected in the Global-GWAS.  311 

 312 

Figure 3 Location of all SNP-QTL identified on the 18 autosomes from the Global-GWAS, LRFI-313 

GWAS and HRFI-GWAS. The SNP-QTL corresponding to Global-GWAS are represented by 314 

horizontal bars, LRFI-GWAS by arrows to the right of the chromosomes and HRFI-GWAS by arrows 315 

to the left of the chromosomes. Each color represents one of the 24 traits 316 

LRFI: low RFI line, HRFI: high RFI line 317 

DFI: daily feed intake; ADG: average daily gain; FCR: feed conversion ratio; RFI: residual feed intake; carcBFT: backfat 318 

thickness measured on carcass; a*_GM: a* measured on the gluteus medius muscle; a*_GS: a* measured on the gluteus 319 
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superficialis muscle; b*_GM: b* measured on the gluteus medius muscle; b*_GS: b* measured on the gluteus superficialis 320 

muscle; L*_GM: L* measured on the gluteus medius muscle; L*_GS: L* measured on the gluteus superficialis muscle; 321 

pH24h_AD: pH 24h after slaughter measured on the adductor femoris muscle; pH24h_GS: pH 24h after slaughter measured 322 

on the gluteus superficialis muscle; pH24h_LM: pH 24h after slaughter measured on the longissimus dorsi muscle; pH24h_SM: 323 

pH 24h after slaughter measured on the semimembranosus muscle; WHC: water holding capacity of the gluteus superficialis 324 

muscle; MQI: meat quality index; LMCcalc: lean meat content of the carcass; DP: carcass dressing percentage; Belly_W: belly 325 

weight; BF_W: backfat weight; Ham_W:  ham weight; Loin_W: loin weight; Shoulder_W: shoulder weight 326 

 327 

To assess whether the identified QTL regions were identical and shared in the two lines, 328 

complementary GWAS analyses were performed per line, using either the set of individuals 329 

from G1 to G9 of the HRFI line or the set of individuals from G1 to G9 of the LRFI line. For 330 

analyses performed by line, the number of regions detected for a trait could differ between lines. 331 

For instance, more loci were detected in the HRFI line for b*_GS, L*_GM and WHC, whilst 332 

more regions were detected in the LRFI line for RFI, carcBFT, DP, pH24h_LM and 333 

pH24h_AD. In the HRFI line, 46 QTL were identified in 37 regions, and in the LRFI line, 68 334 

QTL were identified in 61 regions. Only 3 regions overlapped in the two lines: on SSC6, a 335 

region located between 7 to 10 Mb affected pH24h_LM in LRFI and L*_GS, b*_GS, and MQI 336 

in HRFI, on SSC7, a region from 107 to 109 Mb affected L*_GS in HRFI and pH24h_AD in 337 

LRFI, and on SSC12, a region located between 7 to 9 Mb affected ADG in HRFI and RFI in 338 

LRFI. The two first regions affected highly correlated traits related to meat quality, but the last 339 

region affected uncorrelated traits.  340 

Fifteen regions were shared between the 54 regions identified in the Global-GWAS and 341 

the 95 unique regions from the analyses per line, with only 3 regions common to the Global-342 

GWAS and HRFI-GWAS analyses, 10 common to Global-GWAS and LRFI-GWAS, and the 343 

SSC6 and SSC7 regions described above detected in the three analyses (Figure 4a). Among 344 

these regions only 9 QTL (trait x region) were identified jointly in the Global-GWAS and in 345 

one of the Lines-GWAS (Figure 4b), and none was shared in the three analyses.  346 
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 347 

Figure 4 Comparison of GWAS results obtained from Global-GWAS (Global), HRFI-GWAS 348 

(HRFI) and LRFI-GWAS (LRFI). Comparison of the number of identical regions (a) and (b) 349 

comparison of the number of identical QTL (trait x region) 350 

 351 

Very few QTL were thus common to the three GWAS (Figure 3). To assess whether a SNP-352 

QTL significant in one analysis reached significance or suggestive thresholds in the other 353 

analyses, their p-values were compared. First, comparing the Lines-GWAS (Figure 5a), SNP-354 

QTL detected via HRFI-GWAS had -log10(p-values) generally lower than 1 in the LRFI-355 

GWAS, and none reached the suggestive threshold of 3. Similar results were obtained 356 

comparing SNP-QTL of the LRFI-GWAS to their p-values with the HRFI-GWAS. For the 357 

SNP-QTL significant in the Global-GWAS, the -log10(p-values) with the Lines-GWAS were 358 

intermediate and exceeded the suggestive threshold for several QTL. It should be noted that for 359 

these SNP-QTL, when the -log10(p-values) was suggestive in one line, it was lower in the other 360 

line.  361 

 362 
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Figure 5 Plot of the -log10(p-value) of the SNP-QTL. The -log10(p-value) are obtained in first case 363 

with the two lines analyses for all SNP-QTL detected for the lines or the global analyses (a), and in 364 

second case obtained with the global analysis for SNP-QTL detected with the GWAS performed per 365 

line (b). 366 

 367 

In addition, for the SNP-QTL corresponding to the QTL detected in the line analyses 368 

(HRFI-GWAS and LRFI-GWAS), the -log10(p-values) obtained in the Global-GWAS were also 369 

low (Figure 5b), with three-quarters (74.5%) of the SNP-QTL having -log10(p-values) lower 370 

than 3.  371 

Change of allele frequencies over the generations 372 

The allele frequencies of the SNP-QTL detected either in Global-GWAS or in Lines-GWAS 373 

were evaluated in G1 to G9 to reflect the informativeness of these GWAS (called G9 hereafter) 374 

and in G1. When the SNP-QTL was detected in the Global-GWAS, all response animals were 375 

used to compute the frequencies; for SNP-QTL from the Lines-GWAS only the animals of the 376 

significant analysis (HRFI-GWAS or LRFI-GWAS) were used. The resulting frequency 377 

histograms are shown in Figure 6. With G1 only, 87% of the SNP-QTL of the Global-GWAS 378 

had an allele frequency between 0.2 and 0.5, with half of them between 0.4 and 0.5. In addition, 379 

28% of SNP-QTL of the Lines-GWAS have a frequency <0.2 in G1 (Figure 6a), so the 380 

distribution of the allele frequencies of the SNP-QTL between low (<0.2) and medium was 381 

significantly different between the types of analyses (P < 0.02 for a Chi² with 1 df). This 382 

difference in the distribution of the SNP-QTL allele frequencies between the two types of 383 

analyses was preserved in G9 (Figure 6b, P < 0.005): 16% of the SNP-QTL of the Global-384 

GWAS had a frequency <0.2, compared to 35% for the SNP-QTL of the Lines-GWAS. In 385 

addition, 9% of the SNP-QTL of the Lines-GWAS had a frequency >0.6, no marker reached 386 

this frequency among SNP-QTL of the Global-GWAS.  387 
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 388 

Figure 6 Distribution of SNP-QTL allele frequencies of Global-GWAS (in grey) and Lines-GWAS 389 

(in black). Distribution representing individuals from the line of the significant analysis (a) in G1 390 

generation (G1 individuals only) and (b) in G9 generation (G1 to G9 individuals). 391 

 392 

In addition to the estimation of the global allelic frequencies, we controlled if in each line the 393 

detected SNP-QTL evolved differently according to the type of analysis. First, the differences 394 

of allele frequency differences between the HRFI and LRFI lines were estimated in the G1 395 

generation (at the beginning of the selection) (Figure 7). Regardless the analysis in which the 396 

SNP-QTL was detected, more than 65% of the SNP-QTL had low line frequency differences 397 

(<0.1) and less than 10% of the SNP-QTL had a line frequency difference >0.2. These SNP-398 

QTL were not particularly found in one or the other type of analysis, in both types of analyses.   399 

 400 

Figure 7 Distribution of allele frequency differences between the lines. The allele frequency 401 

differences are the absolute values between lines for SNP-QTL resulting from the Global-GWAS and 402 

Lines-GWAS in G1. 403 

 404 
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To better describe the changes of allele frequency over the generations, frequencies of SNP-405 

QTL from Global-GWAS and Lines-GWAS were then successively estimated in each line by 406 

adding data from the next generation to the previous generations:  G1 allele frequencies were 407 

obtained from G1 individuals alone, G2 allele frequencies were obtained from G1 and G2 408 

individuals etc. Using the 9 resulting frequencies computed in each line, a linear regression of 409 

the generation number on the allele frequencies was applied within line. The comparison 410 

between lines of the regression coefficients of the allelic frequencies highlighted 4 distinct cases 411 

(Figure 8): (1) markers whose frequencies did not change with line selection (slope did not 412 

differ from zero Wald test, 5.9%), (2) markers co-selected in the two lines (slopes differed from 413 

zero and had identical sign: 22.6%), (3) markers selected in opposite directions in the lines 414 

(slopes differed from zero with different signs: 40.3%), and (4) markers whose frequencies 415 

changed only in one line (slope different from zero in one line only, 16.7% in LRFI, 14.5% in 416 

HRFI). Again no difference in the mean allele frequency evolution was observed for SNP-QTL 417 

detected in one or the other type of analysis whatever the situation (p-value=0.87 (No-418 

evolution), 0.73 (Co-evolution), 0.50 (Opposite-evolution and 0.70 (One_Line_evolution) for 419 

Student T test on the values of the slopes). 420 

 421 
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 422 

Figure 8 Slopes of the linear regression equations of the allele frequencies on the 9 generations. 423 

Slopes were calculated in each line, for all SNP-QTL identified with Global-GWAS (in grey) and Lines-424 

GWAS (in black). Four situations (differentiated by different labels) were identified according to the 425 

significance of the slope (different from zero with p < 0.05 with a Wald test) in one or the two lines. 426 

 427 

For RFI in the two lines, 9 out of the 12 detected QTL corresponded to regions identified 428 

with strong line frequencies differences: 3 RFI SNP-QTL showed differences in allelic 429 

frequency between lines higher than 0.2 in G1. The other 6 RFI SNP-QTL showed large 430 

changes of allelic frequency (regression slope > 0.024/generation). To summarize the changes 431 

of SNP-QTL allele frequencies for each trait, an average evolution score between G1 and G9 432 

was computed using the estimated evolution scores of the different SNP-QTL detected for each 433 

trait. These averages were between 0.11 (LMCcalc) and 0.24 (RFI). A correlation coefficient 434 

of 0.66 was then estimated between the genetic line differences in G9 computed previously for 435 

the 24 different traits [27] and these averages (Figure 9). 436 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.28.358564doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.28.358564
http://creativecommons.org/licenses/by-nc-nd/4.0/


 437 

Figure 9 Genetic differences in G9 between the two lines. The genetic differences were expressed in 438 

genetic standard deviation of the trait (g) as a function of the average evolution of allelic frequencies 439 

in the QTL regions of the trait between the two lines. The magnitude of the genetic correlation between 440 

each trait and RFI is indicated with a grey gradient. 441 

DFI: daily feed intake; ADG: average daily gain; FCR: feed conversion ratio; RFI: residual feed intake; 442 

carcBFT: backfat thickness measured on carcass; a*_GM: a* measured on the gluteus medius muscle; 443 

a*_GS: a* measured on the gluteus superficialis muscle; b*_GM: b* measured on the gluteus medius 444 

muscle; b*_GS: b* measured on the gluteus superficialis muscle; L*_GM: L* measured on the gluteus 445 

medius muscle; L*_GS: L* measured on the gluteus superficialis muscle; pH24h_AD: pH 24h after 446 

slaughter measured on the adductor femoris muscle; pH24h_GS: pH 24h after slaughter measured on 447 

the gluteus superficialis muscle; pH24h_LM: pH 24h after slaughter measured on the longissimus dorsi 448 

muscle; pH24h_SM: pH 24h after slaughter measured on the semimembranosus muscle; WHC: water 449 

holding capacity of the gluteus superficialis muscle; MQI: meat quality index; LMCcalc: lean meat 450 

content of the carcass; DP: carcass dressing percentage; Belly_W: belly weight; BF_W: backfat weight; 451 

Ham_W:  ham weight; Loin_W: loin weight; Shoulder_W: shoulder weight 452 

 453 

Discussion  454 

The objective of this study was to identify QTL affecting RFI and production traits in pig lines 455 

divergently selected for RFI and to understand if the traits had different genetic backgrounds 456 

between the lines. By optimizing the genotyping to reach a good power to detect QTL in the 457 
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full design and in the two lines separately, QTL were detected for all traits and hypotheses about 458 

the trait genetic background in the two lines can be formulated. 459 

Using average parental genotypes to detect QTL  460 

While the use of SNPs chips now enables the genotyping of an individual at a reasonable cost, 461 

the genotyping of a design comprising several thousand individuals represents nevertheless a 462 

significant investment. In each generation of our design, at least two parities were produced,  463 

one aiming at selecting future breeders, and one to control the responses to the selection on feed 464 

consumption, growth and meat quality traits via measurements at the slaughterhouse. After 9 465 

generations of selection, around 2,500 "response animals" had phenotypes. These individuals 466 

have the advantage of having individual records for unmeasured traits in breeders (post-mortem 467 

measurements). To optimize the costs, we genotyped all 1,632 breeders with MD SNPs chips 468 

to exhaustively survey the segregating alleles in the design. In addition, the 32 main contributors 469 

to the design were chosen from the G0 sires and dams to be genotyped using the HD SNPs chip, 470 

and an imputation step was carried out to have HD genotypes for all breeding individuals. The 471 

strong pedigree relationships in  the design enabled a very good quality of HD imputation, as 472 

they help to better detect long haplotypes used to infer missing SNPs [28]. A second step was 473 

carried out, so that each response non-genotyped animal could have a genotype. These non-474 

genotyped animal imputation have been used in cattle [29] as part of genomic evaluations to 475 

increase the size of the reference populations. In cattle, the most common situation is to 476 

determine by imputation the genotypes of dams of bulls, knowing the genotypes of the maternal 477 

grandsire, one (or more) offspring and the sires with which they were mated [30]. In such cases, 478 

the strategy takes advantage of the family information (Mendelian rule of allele transmission) 479 

and combined with allele frequencies and LD between markers at the population level. In our 480 

case, at each generation n, all response animals had both parents genotyped at generation n-1. 481 

Given these trio structures, an expected genotype at each position could be deduced from the 482 
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genotypes of the parents using simple segregation rules: since the genotypes were coded as an 483 

allelic dosage for one reference allele, the genotype expectation for each offspring was simply 484 

the average of the genotypes of its two parents. As a result, 2,426 animals with genotypes 485 

(predicted) and phenotypes were available for subsequent GWAS analyses.  486 

Understanding the differences of detected regions between analyses 487 

The regions detected with each type of analysis (Global- or Lines-GWAS) were very different 488 

and only 9 QTL out of 177 were shared between Global-GWAS and Lines-GWAS. The SNP-489 

QTL detected with the Global-GWAS were far from reaching the threshold of significance in 490 

the Lines-GWAS. Similarly, most SNP-QTL detected with the Lines-GWAS were far from 491 

reaching the threshold of significance in the Global-GWAS. Although the number of 492 

individuals included in the Global-GWAS was twice higher than in the line analyses, the 493 

addition of individuals belonging to the other line seemed to have reduced the power of 494 

detection of QTL segregating in the first line. The SNP-QTL detected in the Global-GWAS or 495 

Lines-GWAS differed for their allelic frequencies in G1. This difference remained at the whole 496 

line level (G9): more SNPs with low allele frequencies were identified with the Lines-GWAS. 497 

The pedigree kinship matrix was used in the GWAS model to correct for the strong genomic 498 

structure of the population. If successful to control the type-I error of the analyses, this classical 499 

approach also limits the power of detection of QTL in highly differentiated regions between 500 

lines, as their link with the trait variability would be absorbed into the additive genetic 501 

component of the model. The Global-GWAS thus essentially allow the detection of regions 502 

segregating at intermediate frequencies in both lines. As an alternative, the analyses carried out 503 

by line allow detecting regions that got close to fixation with selection in one of the lines. From 504 

these results, it seems that the power of detection related to allele frequencies in each line is the 505 

main difference between QTL-SNPs detected with the Lines-GWAS and Global-GWAS. Given 506 

the power of the design, it is thus likely that the biological pathways involved in RFI variability 507 
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in the two lines are similar, but with different contributions to the trait in each line, contrary to 508 

some previous hypotheses [10, 27]. 509 

Comparison with published regions 510 

Among the 12 QTL detected for RFI, three regions are detected close to RFI QTL already 511 

published. The region on SSC14 at 130-131 Mb is close to the region described by Duy N. Do 512 

et al. [31] who proposed G-protein-coupled receptor kinase 5 (GRK5) (129,114,449-513 

129,343,412) as a candidate gene. Wang & al. [32] reported that a GRK5 deficiency led to 514 

insulin resistance and hepatic steatosis, and to decreases diet-induced obesity and adipogenesis 515 

in mice. In position 131,181,710-131,579,703 FGFR2 (fibroblast growth factor receptor 2) 516 

could also be an interesting candidate. All four FGF receptors and several FGF ligands are 517 

present in the intestine and are key players in controlling cell proliferation, differentiation, 518 

epithelial cell restitution, and stem cell maintenance. FGFR2 is expressed in the human ileum 519 

and throughout adult mouse intestine [33]. The second region closest to published RFI QTL is 520 

the 184-486 Mb interval on SSC13 near QTL reported by Bai et al. [34] and Duy N. Do et al. 521 

[31]. In this region TMPRSS15 (transmembrane serine protease 15) is an interesting candidate 522 

gene. This gene encodes an intestinal enzyme responsible for initiating activation of pancreatic 523 

proteolytic proenzymes. It catalyzes the conversion of trypsinogen to trypsin, which in turn 524 

activates other proenzymes including chymotrypsinogen procarboxypeptidases and 525 

proelastases. TMPRSS15 has been associated to Enterokinase Deficiency, a life-threatening 526 

intestinal malabsorption disorder characterized by diarrhea and failure to thrive [35]. On SSC17 527 

two RFI QTL have been published by Duy N. Do et al. [31] close to the SOGA1 gene 528 

(suppressor of glucose, autophagy-associated protein 1, 40,020,107-40,098,992) and by Onteru 529 

et al. [10] close to the DOK5 gene (docking protein 5, 55,391,074-55,541,561). These two QTL 530 

surround the region we detected and could correspond to one unique QTL. In position 531 

48,090,077-48,100,816, and in position 48,132,911-48,149,732, respectively, PLTP and 532 
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ZNF335 genes are additional candidate genes. In human, Coleman et al. [36] identified the 533 

region encoding ZNF335 as a susceptibility locus for the coeliac disease, a chronic immune-534 

mediated disease triggered by the ingestion of gluten [36]. The PLTP (phospholipid transfer 535 

protein) transfers phospholipids from triglyceride-rich lipoproteins to high density lipoprotein 536 

(HDL). In addition to regulating the size of HDL particles, this protein may be involved in the 537 

cholesterol metabolism. PLTP KO mice absorb less cholesterol than WT mice, and have also 538 

deficient secretion by the intestine [37].  539 

Potential pleiotropic effects 540 

The large number of traits recorded in our design and the known genetic correlations between 541 

these traits [27] enable the detection of pleiotropic regions, i.e. regions affecting multiple traits. 542 

Among the five regions detected for FCR, only the QTL located between 117 Mb and 119 Mb 543 

on SSC7 co-localized with a RFI QTL. For the other traits correlated to RFI (DFI, MQI, WHC, 544 

pH24h_AD, pH24h_GS, and pH24h_SM traits), only 3 QTL were detected within 10 Mb of 545 

the RFI QTL: a QTL at 2 Mb influencing MQI on SSC16 between 11 and 12 Mb, and two QTL 546 

on pH24h_AD at 7 Mb and 10 Mb of QTL for RFI located at 113-114 Mb on SSC14 and 107-547 

109 Mb on SSC7, respectively. Compared to the previously published QTL regions for RFI, 548 

we identified a QTL influencing FCR in a region described by Onteru et al. [10] between 15 549 

and 16 Mb on SSC7, a QTL for pH24h_SM in the 80 and 81Mb interval on SSC15 described 550 

by Duy N Do et al. [31], and a QTL for DFI in the region described by Y M Guo et al. [38] on 551 

SSC3 between positions 126 and 128Mb. Despite the reported correlations between these traits 552 

and RFI, among the 52 QTL detected in our study for DFI, MQI, WHC, pH24h_AD, 553 

pH24h_GS, and pH24h_SM, only seven co-located with RFI QTL identified in our study or in 554 

previously published studies. 555 

Changes of QTL allele frequencies and trait responses to selection 556 
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The allele frequencies of the majority of the detected regions changed between the G1 and G9 557 

generations, with more than 70% of the regions for which SNP-QTL evolved in opposite 558 

directions or in a one line only. However, the magnitude of allelic changes of the QTL regions 559 

varied from one trait to the next, and was strongly correlated with line differences previously 560 

reported in G9 [27]. Indeed, the regions with the highest allele frequency changes were detected 561 

for RFI, which was trait used for selection. For the other traits, the higher the genetic correlation 562 

with RFI, the higher the frequency variation of the associated QTL regions. As a result, QTL 563 

affecting FCR, DFI and MQI had the highest frequency changes with generations. The 564 

responses of QTL affecting meat quality traits are consistent with the high and early responses 565 

to selection previously detected in this experimental population for these traits [5]. Altogether, 566 

our analyses underline a clear relationship between the quantitative responses to selection of 567 

the traits and changes of alleles frequencies in some QTL regions, certainly pointing out 568 

chromosomic regions that were selected during the experiment, whereas in such populations of 569 

low effective size and strong directional selection, detecting selection signatures with standard 570 

methodologies [39] can have low power due to the major effect of drift on the changes of the 571 

allele frequencies. However, recently developed new methods, based on genetic time series 572 

could provide new insights for the detection of regions under selection in small populations 573 

[40]. 574 

Conclusions 575 

This study aimed at characterizing the molecular architecture of RFI in two lines divergently 576 

selected for this trait. Besides efficiently detecting known and new QTL regions, the 577 

combination of GWAS carried out per line or simultaneously using all individuals allowed the 578 

identification of candidate regions of the genome under selection, which can explain the 579 

responses to selection of different traits reported before. Analyzing the allelic frequencies from 580 

G1 to G9, we concluded that the majority of the QTL regions responded to selection in a 581 
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divergent way in the lines, and that the same metabolic pathways were certainly involved in 582 

both lines. Several new regions determining RFI variability were identified in this study and 583 

new candidate genes were proposed to complement the data acquired in previous published 584 

analyses. 585 
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Table 726 

Table 1 Number of QTL identified for each trait with the 3 groups of association studies 727 

Trait Global HRFI LRFI Total 

DFI 3 2 4 9 

ADG 1 3 0 4 

FCR 2 1 2 5 

RFI 3 0 9 12 

carcBFT 4 1 5 10 

a*_GM 4 0 1 5 

a*_GS 1 4 4 9 

b*_GM 3 1 1 5 

b*_GS 7 5 1 13 

L*_GM 1 5 2 8 

L*_GS 3 4 6 13 

pH24h_AD 2 0 3 5 

pH24h_GS 5 1 2 8 

pH24h_LM 4 3 6 13 

pH24h_SM 4 1 2 7 

WHC 3 6 1 10 

MQI 4 2 2 8 

LMCcalc 4 1 2 7 

DP 3 1 7 11 

Belly_W 0 0 2 2 

BF_W 5 2 3 10 

Ham_W 3 1 1 5 

Loin_W 2 1 1 4 

Shoulder_W 1 1 1 3 

Total 59 39 48 186 

Association studies on the full population (Global-GWAS, Global) and for each line separately (HRFI-728 

GWAS, HRFI and LRFI-GWAS, LRFI) were performed. Traits with more than 3 QTL differences 729 

between the HRFI-GWAS and LRFI-GWAS analyses are highlighted in grey 730 

DFI: daily feed intake; ADG: average daily gain; FCR: feed conversion ratio; RFI: residual feed intake; 731 

carcBFT: backfat thickness measured on carcass; a*_GM: a* measured on the gluteus medius muscle; 732 

a*_GS: a* measured on the gluteus superficialis muscle; b*_GM: b* measured on the gluteus medius 733 

muscle; b*_GS: b* measured on the gluteus superficialis muscle; L*_GM: L* measured on the gluteus 734 

medius muscle; L*_GS: L* measured on the gluteus superficialis muscle; pH24h_AD: pH 24h after 735 

slaughter measured on the adductor femoris muscle; pH24h_GS: pH 24h after slaughter measured on 736 

the gluteus superficialis muscle; pH24h_LM: pH 24h after slaughter measured on the longissimus dorsi 737 
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muscle; pH24h_SM: pH 24h after slaughter measured on the semimembranosus muscle; WHC: water 738 

holding capacity of the gluteus superficialis muscle; MQI: meat quality index; LMCcalc: lean meat 739 

content of the carcass; DP: carcass dressing percentage; Belly_W: belly weight; BF_W: backfat weight; 740 

Ham_W:  ham weight; Loin_W: loin weight; Shoulder_W: shoulder weight  741 
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Additional files 742 

Additional file 1 743 

Format: additionalfile1.xlsx 744 

Title: Number of animals used for the analyses after quality control 745 

Description: Details of the number of aniamls before and after application of filter on the call 746 

rate (CR) were given for chips (60K, 70K and 650K SNPs chips), imputation levels (MD/HD 747 

imputation) and average genotypes calculated from the genotypes of both parents (HD 748 

predicted). 749 

 750 

Additional file 2 751 

Format: additionalfile2.xlsx 752 

Title: Number of SNPs used for the analyses after quality control 753 

Description: Details of the number of SNPs before and after application of filters on the call 754 

frequency (CF) and the frequency of minor allele (MAF) were given for chips (60K, 70K and 755 

650K SNPs chips), imputation levels (MD imputation and HD imputation) and average 756 

genotypes calculated from the genotypes of both parents (HD predicted). 757 

 758 

Additional file 3 759 

Format: additionalfile3.xlsx 760 

Title: QTL regions detected with the three groups of association studies 761 

Description: These QTL regions were found from the full population (Global-GWAS) and from 762 

each line separately (HRFI-GWAS and LRFI-GWAS) 763 

DFI: daily feed intake; ADG: average daily gain; FCR: feed conversion ratio; RFI: residual feed intake; carcBFT: 764 

backfat thickness measured on carcass; a*_GM: a* measured on the gluteus medius muscle; a*_GS: a* measured 765 

on the gluteus superficialis muscle; b*_GM: b* measured on the gluteus medius muscle; b*_GS: b* measured on 766 
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the gluteus superficialis muscle; L*_GM: L* measured on the gluteus medius muscle; L*_GS: L* measured on 767 

the gluteus superficialis muscle; pH24h_AD: pH 24h after slaughter measured on the adductor femoris muscle; 768 

pH24h_GS: pH 24h after slaughter measured on the gluteus superficialis muscle; pH24h_LM: pH 24h after 769 

slaughter measured on the longissimus dorsi muscle; pH24h_SM: pH 24h after slaughter measured on the 770 

semimembranosus muscle; WHC: water holding capacity of the gluteus superficialis muscle; MQI: meat quality 771 

index; LMCcalc: lean meat content of the carcass; DP: carcass dressing percentage; Belly_W: belly weight; 772 

BF_W: backfat weight; Ham_W:  ham weight; Loin_W: loin weight; Shoulder_W: shoulder weight 773 
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