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Abstract 

Temporal data is ubiquitous in ecology and ecologists often face the challenge of accurately 

differentiating these data into predefined classes, such as biological entities or ecological states. The 

usual approach transforms the temporal data into static predictors of the classes. However, recent 

deep learning techniques can perform the classification using raw time series, eliminating subjective 

and resource-consuming data transformation steps, and potentially improving classification results. 

We present a general approach for time series classification that considers multiple deep learning 

algorithms and illustrate it with three case studies: i) insect species identification from wingbeat 

spectrograms; ii) species distribution modelling from climate time series and iii) the classification of 

phenological phases from continuous meteorological data. The deep learning approach delivered 

ecologically sensible and accurate classifications, proving its potential for wide applicability across 

subfields of ecology. We recommend deep learning as an alternative to techniques requiring the 

transformation of time series data. 
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Introduction 

The recent increase in affordability, capacity, 

and autonomy of sensor-based technologies 

(Peters et al. 2014; Bush et al. 2017), as well 

as an increasing number of contributions from 

citizen scientists and the establishment of 

international research networks (Hurlbert & 

Liang, 2012; Bush et al. 2017) is allowing an 

unprecedented access to time series of interest 

for ecological research (Reichstein et al. 

2019). A common aim of ecologists using 

these data concerns assigning them into 

predefined classes, such as ecological states or 

biological entities. Typical examples include 

the recognition of bird species from sound 

recordings (e.g. Priyadarshani et al. 2020), the 

distinction between phases in the annual life 

cycle of plants (i.e., ‘phenophases’) from 

spectral time series (Melaas et al. 2013), or the 

recognition of behavioural states from animal 

movement data (Shamoun-Baranes et al. 

2016). Many other examples exist, with scopes 

of application that range from the molecular 

level (Jaakkola et al. 2000) to the global scale 

(e.g. Schneider et al. 2010). 

 

The assignment of time series into one of two 

or more predefined classes (hereafter referred 

to as ‘time series classification’; Keogh & 

Kasetty 2003) can be performed using a 

variety of different approaches, ranging from 

manual, expert-based, classification 

(Priyadarshani et al. 2020) to fully automated 

procedures (see Bagnall et al. 2017 for 

examples). In ecology, time series 

classification is generally approached by 

processing the time series data into a new set 

of ‘static’ variables − using hand-designed 

transformations, or techniques such as Fourier 

or wavelet transforms − and then using these 

variables as predictors in ‘classical’ 

classification algorithms, such as logistic or 

multinomial regressions or random forests 

(e.g. Reside et al.  2010; Shamoun-Baranes et 

al. 2016; Dyderski et al. 2017; Capinha 2019; 

Priyadarshani et al. 2020). In machine learning 

terminology, this approach is known as 

‘feature-based’, where the ‘features’ are the 

variables that are extracted from the time 

series.  
 

Despite the wide adoption of feature-based 

approaches, important limitations still 

undermine their predictive performance and 

scalability. A key constraint concerns the need 

for domain-specific knowledge about the 

phenomenon that is being classified to obtain 

‘optimal’ sets of features. While this may not 

seem limiting, considering the ever-growing 

body of knowledge in the ecological literature, 

in reality few, if any, ecological phenomena 

are fully understood (Currie 2019). This 

inherently limits and casts doubt about the 

optimality of human-mediated selections of 

‘relevant’ predictors. This limitation can be 

illustrated for species distribution modelling, a 

popular field among ecological modellers. 

These models often rely on readily available 

sets of predictors that summarize long-term 

climate averages and variability, (e.g. the 

‘BIOCLIM’ variables; Booth et al. 2014), 

despite recognition that species distributions 

can also respond to short-term meteorological 

variation (e.g. Reside et al. 2010). 

Accordingly, these common predictors cannot 

guarantee a comprehensive representation of 

the role of climate in determining the 

distribution of species. Additionally, scaling 

modelling frameworks can result in reliance on 

pre-processed predictors because performing 

species-specific feature extraction could be 

prohibitively costly, in terms of human and 

time resources, when modelling the 

distribution of hundreds of species. 
 

Here we discuss and demonstrate the use of 

supervised deep learning models for time 

series classification. Deep learning models are 

a set of recent, complex architectures of 

artificial neural networks (LeCun et al. 2015; 

Christin et al. 2019), which have enabled 

significant advances of performance in highly 

complex tasks, particularly image recognition 

(LeCun et al. 2015) − including in ecology 

(e.g. Brodrick et al. 2019; Christin et al. 2019). 

Recently, the usefulness of these models for 

classification of temporal data has also been 

highlighted (Wang et al. 2017; Fawaz et al. 

2019), but the wide potential of this application 

in ecology remains virtually ignored. A key 

difference between deep learning models and 

feature-based approaches is that deep learning 

models work directly with the raw time series. 
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The identification of relevant features in the 

time series is performed by the model itself and 

is guided by the contribution that these have in 

distinguishing the classes. Accordingly, a 

promise of these models is that they may 

capture relevant information (e.g. thresholds, 

lag effects; carryover effects; Ryo et al. 2019) 

that would be missed if relying on subjective 

sets of static features, improving predictive 

performances. Additionally, because there is 

no need of human intervention in feature 

extraction, deep learning models allow a full, 

end-to-end, automation of computational 

workflows. 
 

We explain deep neural networks and describe 

some of the modelling architectures more 

relevant in the context of classifying time 

series. Next, we describe a general approach to 

the application of deep learning models for 

time series classification, and illustrate it using 

three case studies from distinct subfields of 

ecology: species identification, species 

distribution modelling and phenological 

prediction. We provide computer code that 

could be easily adapted for a wide range of 

temporal classification tasks in ecology. 

 

Materials and Methods 

Deep neural networks for time series 

classification 

Artificial neural networks (ANN) are 

algorithms inspired by how biological nervous 

systems process information. These models are 

often conceptualised in terms of nodes (or 

‘neurons’) and weighted links. A basic ANN 

architecture includes a first layer of nodes, 

representing the input data, a second (‘hidden’) 

layer with nodes performing data aggregation 

followed by nonlinear transformation, and a 

final (‘output’) layer where the predicted 

values are computed. The nodes in each layer 

are connected to the nodes in the next layer 

through weighted links. Function fitting in 

ANNs proceeds by iteratively adjusting the 

weights of links between the layers. An 

important notion is the ‘epoch’, which refers to 

when the entire training dataset is passed 

forward and backward across the network one 

time. During each epoch, the weights are 

updated to improve the network’s predictions, 

given the information fed to the input layer. 

For more details on ANNs see, among others, 

LeCun et al. (2015) and references therein. 

 

‘Deep’ neural networks refer broadly to ANN 

architectures that are capable of training large 

numbers of hidden layers and neurons (LeCun 

et al. 2015). This capacity determines the level 

of abstraction that the models can attain in 

representing the input data. Models with more 

hidden layers can capture more complex 

patterns and achieve a deeper hierarchy of 

features. In other words, shallow models tend 

to capture ‘basic’ patterns (e.g. a ‘spike’ in a 

specific time step), while deeper models are 

able to ‘learn’ more complex abstractions (e.g. 

spikes combined with a reduced long-term 

variability). 

 

Unlike commonly believed, deep learning 

models do not always require large amounts of 

data for training. For instance, some of these 

models can provide competitive classification 

results with as low as 50 samples (Fawaz et al. 

2019). 

 

Many deep learning architectures can be used 

for time series classification (Wang et al. 2017; 

Fawaz et al. 2019). These architectures differ 

in the number of layers, and the mathematical 

functions the layers perform, as well as in the 

way information flows between them. Below 

we provide a description of four architectures 

used for time series classification. These 

architectures were chosen because they are 

widely adopted for time series classification 

and because they are available in mcfly (the 

software we use here for model 

implementation; van Kuppevelt et al. 2020). 

 

Convolutional Neural Networks 

Convolutional neural networks (CNN) are an 

influential class of deep neural networks. 

These networks have been mainly applied for 

pattern recognition in image data (e.g. 

Brodrick et al. 2019; Christin et al. 2019), but 

effective examples of their application for time 

series classification have been recently 

published (e.g. Zhao et al. 2017). A key 

component of CNNs are the so-called 

convolutional layers (LeCun et al. 2015). 

These layers extract local features from the 

raw time series by applying ‘filters’. Each filter 
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determines if a given pattern (e.g. ‘a spike’) 

occurs in the data and in what regions. These 

layers are often followed by rectified linear 

unit (ReLU) (or a similarly shaped function) 

and ‘pooling’ layers. The ReLU layers 

transform the summed weighted input from 

nodes in the convolutional layer into outputs 

that range from 0 to + ∞, while pooling layers 

reduce the dimensionality of outputs from the 

ReLU layer. CNNs often layer multiple 

instances of convolution, ReLU and pooling 

layers in a sequence, to build a hierarchy of 

increasingly abstract features. This sequence 

of layers is usually followed by a fully 

connected (or ‘dense’) layer, where each node 

is connected to all nodes in adjacent layers, and 

where classification outputs are calculated. 

 

Recurrent Neural Networks 

Recurrent neural networks (RNNs) are 

specifically designed for sequence-type input 

data, such as time series (LeCun et al. 2015; 

Fawaz et al. 2019). These models are defined 

by inclusion of feedback loops, where the 

output of a layer is added to the next input and 

fed back into the same layer. This allows 

RNNs to characterize sequential patterns in the 

input data, but their ability to capture long term 

dependencies is limited due to the RNN’s 

tendency to prioritize signals in the short term 

while failing to learn long term signals (i.e., the 

‘vanishing gradient problem’; Bengio et al. 

1994). To overcome this problem several 

adaptations to the simple RNN architecture 

have been proposed, the most popular of which 

being the use of gating units, such as ‘Long 

Short Term Memory’ (LSTM) and ‘Gated 

Recurrent Units’ (GRU) (Chung et al. 2014). 

Gating is a technique that helps the networks 

decide to either forget the current input or to 

remember it for future time steps, hence 

effectively improving the modelling of long-

term dependencies (Chung et al. 2014).  

 

Residual Networks 

Residual networks (ResNet) are recently 

proposed in the context of image recognition 

(He et al. 2016). Basically, these networks 

introduce a new type of component, the 

‘Residual Block’, to CNN-type models. The 

aim of these blocks is to allow the training of 

deeper models (i.e., having more hidden 

layers). In theory, deeper models should 

improve classification performances, as they 

allow higher levels of data abstraction. 

However, in practice the performances may 

not improve, among other things, due to the 

vanishing gradient problem (see above). The 

use of residual blocks aims to address this by 

forwarding the output of layers directly into 

layers that are several levels deeper (e.g. 2–3 

layers ahead). Recently, this architecture has 

been applied for time series classification 

(Wang et al. 2017), often performing very well 

(Fawaz et al. 2019). 

 

Inception Time Networks 

Inception time networks are a very recent type 

of architecture, proposed specifically for time 

series classification (Fawaz et al. 2019). This 

network is an ensemble of CNN models having 

ResNet-type components and modules called 

‘inceptions’. Inception modules ‘rework’ how 

convolution layers act in the networks, so that 

instead of being stacked sequentially, they are 

ordered to work on the same level in parallel. 

This approach allows the application of 

multiple filters with highly varying temporal 

lengths working on the same input time series. 

In comparison to sequential convolutional 

layers (as in ‘simple’ CNN) this lowers 

processing costs and reduces the risk of fitting 

noise in the data (i.e., overfitting) (Fawaz et al. 

2019).  

 

The mcfly Python library 

Deep learning models can be implemented 

using several programming languages and 

specialised libraries (see Christin et al. 2019 

for a review). Here, we use mcfly, a Python 

package for time series classification using 

deep learning (van Kuppevelt et al. 2020). 

 

Mcfly utilizes TensorFlow 

(www.tensorflow.org) an extensively adopted 

machine learning library, it can make use of 

(but does not require) dedicated hardware 

(such as Graphical Processing Units: ‘GPUs’), 

works with both univariate and multivariate 

time series and includes procedures for 

inspecting and visualizing the parameters of 

trained models. In its current version (v.3.0) 

mcfly allows implementing CNN, Deep 

convolutional LSTM (‘DeepConvLSTM’; an 
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Figure 1. Schematic of data partitions and modelling workflow used by the ‘mcfly’ Python package 

for time series classification. 

 

 

architecture composed of convolutional and 

LSTM recurrent layers), ResNet and 

InceptionTime architectures. Specific details 

about the components and structure of each 

architecture are given in van Kuppevelt et al. 

(2020).  
 

Mcfly delivers a standardized workflow that 

‘generates’ distinct, ready-to-train models and 

tests which is best suited for the classification 

task. This proceeds by generating a set of 

candidate models with architectures and 

hyperparameters (e.g. number of layers; 

learning rate) selected at random from a 

prespecified range of values (see Fig. 1). Each 

candidate model is trained using a small subset 

of the data (data partition At; Fig. 1) during a 

small number of epochs. After training, the 

performance of the candidate models is 

compared using a left-out validation data set 

(Av; Fig. 1). The selected candidate model 

(usually the best performing among 

candidates) is then trained on the full training 

data (Bt; Fig. 1). In this step it is required to 

identify an optimal number of training epochs, 

to avoid under- or overfitting of the model. A 

model trained too few epochs will not capture 

all relevant patterns in the data, reducing 

predictive performance. A model trained for an 

excessive number of epochs might overfit, 

reducing its generality and ability to classify 

new data. There is no definitive way to identify 

an optimal number of training epochs, but one 

practical approach is through monitoring the 

model’s validation performance (i.e., using 

holdout data partition Bv; Fig. 1). The 

‘optimal’ number of training epochs is the one 

that provides the best validation performance. 

Finally, the performance of the model having 

an ‘optimal’ number of training epochs is 

evaluated using a ‘final’ test data set (T; Fig. 

1), providing the best estimate of the predictive 

performance of the model. 

 

For the three case studies below, we used the 

same model generation and selection strategy. 

We had mcfly generate 20 candidate models, 

five for each architecture type. These models 

were trained during 4 epochs (using At). The 

candidate model achieving highest 

performance in predicting the classes of the 

validation data (Av) was then trained on the 

full training data set (Bt). For each epoch we 

measured training performance, as provided by 

mcfly (which uses the accuracy metric i.e., ‘the 

proportion of cases correctly classified’). The 

classification performance on the validation 

data (Bv) was measured using the area under 

the receiver operating characteristic curve 

(AUC), a metric that is not affected by 

differences in the prevalence of classes and is 

widely used in ecology (e.g. Dyderski et al. 

2017).  

 

To identify an ‘optimal’ number of training 

epochs, we examined the progression of 

validation performance (Bv). Models can be 

trained for an infinite number of epochs, so 

here we stopped training if no increase in 

validation performance was observed after 25 
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epochs (other thresholds could be considered, 

according to time resources available). Finally, 

the model trained with the number of epochs 

showing highest AUC in predicting Bv was 

used to classify the test data (data set T), with 

performance measured using AUC. 

 

We recorded processing time of all models 

from the onset of training of candidate models 

to the last training epoch evaluated for the 

selected model. This was done on two distinct 

systems: a ‘desktop PC’ with an Intel i7 4-Core 

(3.40GHz) processor and 8GB RAM and a 

‘high-end workstation’ with an AMD Ryzen 9 

12-Core (3.80 GHz) processor, 64 GB RAM 

and an NVidia RTX 2060 GPU. Because CPU- 

and GPU-based TensorFlow generate distinct 

random hyperparameters, modelling results 

will differ between the two computer systems. 

We report results and processing times for the 

desktop PC system. For the workstation we 

report processing time only. We emphasize 

that the timings recorded in the two systems 

are not directly comparable as they correspond 

to distinct modelling routes. 

 

It is important to bear in mind that the 

modelling strategy described aims at general 

applicability and further tailoring for specific 

classification tasks could be beneficial. For 

instance, with a priori knowledge that a 

specific architecture, say CNN, is best suited 

for the classification task at hand (see 

discussion section), the selection could be 

adjusted to generate only CNN-type candidate 

models. Further information about fine-tuning 

of mcfly model generation and selection can be 

found in van Kuppevelt et al. (2020). 
 

Case study 1: Species identification 

In this case study we predict the identity of 

three insect species: the olive fruit fly 

(Bactrocera oleae), the western honey bee 

(Apis mellifera), and the black fig fly 

(Lonchaea aristella) using wingbeat 

spectrograms (frequency series of amplitude 

values; Potamitis et al. 2015). B. oleae is an 

olive fruit fly pest, which if left unmanaged can 

lead to large economic costs worldwide 

(Potamitis et al. 2015). The wingbeat spectrum 

characteristics of these three species allow us 

to exemplify an ‘easy’ classification case and 

a ‘difficult’ classification case: while in A. 

mellifera harmonics partially overlap with 

those of B. oleae, these species show important 

differences in frequencies and thus constitute 

the ‘easy’ classification case; in contrast, L. 

aristella has a wingbeat spectrum that 

completely overlaps with that of B. oleae, 

representing the ‘difficult’ classification case. 

 

We thus have three classes, each 

corresponding to a species ‘positive’ identity. 

The data are balanced (i.e. the number of 

samples per class is similar) and consist of 230 

samples for B. oleae, 205 for A. mellifera, and 

252 for L. aristella. 

 

Species were identified (classified) according 

to their wingbeat spectrograms, which consist 

of frequency series of amplitudes (the 

predictor variable) obtained from Potamitis et 

al. (2015). A sample was composed of a total 

of 256 steps (frequencies), each step 

corresponding to an amplitude value for a 

frequency. This case study illustrates the use of 

these models using only one predictor variable 

(i.e., a single time series). 

 

The records of species identity data and 

predictor variable (amplitude per frequency) 

were split into: data for training candidate 

models (~50%; At), data for validating 

candidate models (~20%; Av), data for training 

the selected model (~70%; Bt; resulting from 

merging the two previous data sets), validation 

data for determining the number of epochs for 

training the selected model (~15%; Bv) and 

test data for final assessment of classification 

performance (~15%; T in Fig. 1). 
 

Case study 2: Species distribution model 

In this case study we predict the potential 

distribution of Galemys pyrenaicus (Iberian 

desman) using time series of environmental 

data. Galemys pyrenaicus is a vulnerable semi-

aquatic species, endemic to the Iberian 

Peninsula and the Pyrenean Mountains. We 

collected distribution records from the 

Portuguese and Spanish atlases of mammals 

(Palomo et al. 2007; Bencatel et al. 2017). The 

data consists of 6141 UTM grid cells of 10×10 

km, of which 659 record the species presence 
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(class ‘Presence’) and 5482 its absence (class 

‘Absence’). 
 

The environmental conditions in each cell 

were characterized using four variables: 1) 

maximum temperature; 2) minimum 

temperature, 3) accumulated precipitation, and 

4) altitude. The first three variables consist of 

time series of monthly values collected from 

CHELSA (Karger et al. 2017) spanning 1989 

to 2013, totalling 300 time steps. The fourth 

variable was from Fick & Hijmans (2017) and 

corresponds to temporally invariant values of 

altitude (demonstrating inclusion of 

temporally static predictors), coded as a time 

series.  

 

Species distribution data and predictors were 

split similarly as above with different 

proportions: a) At  ~ 35%, b) Av ~ 35%, c) Bt 

~70%; resulting from merging At and Av, d) 

Bv ~ 15%, and e) test data set T ~15%. The low 

percentage of data used for training the 

candidate models in comparison to case study 

1 aims to reduce computer processing time, 

given larger data volume.     

 

The training and internal validation of deep 

learning models are sensitive to class 

imbalance (i.e., when one or several classes 

have a much higher number of samples). 

Strong class imbalance can bias models 

towards the prediction of majority classes 

(Menardi & Torelli, 2014) and reduces the 

reliability of performance metrics such as 

accuracy sensu stricto (i.e., the proportion of 

correct predictions to the total number of 

samples), which is used for the automated 

selection of candidate models in mcfly (van 

Kuppevelt  et al. 2020). Accordingly, we 

balanced our data by randomly duplicating 

presence records and deleting absence records 

until a balance of ~50:50 is obtained, which 

was executed using the ROSE package 

(Lunardon et al. 2014) for R (R Core Team, 

2020). This was done for the data sets that 

mcfly uses for internal assessment of accuracy 

s.s. (At, Av and Bt, Fig. 1). Data partitioning 

was performed prior to balancing, to avoid 

inclusion of replicated cases of the same data 

across multiple partitions. The remaining data 

sets (i.e., Bv and T) were not balanced.  

 

Case study 3: Phenological prediction 

In this case study we predict the timing of 

fruiting of the Macrolepiota procera (Parasol 

mushroom) across Europe. This species 

produces fruiting bodies valued for human 

consumption (Capinha 2019) and predicting 

their emergence could be useful for managing 

human pressure on the species and its habitats. 

Data is from Capinha (2019), a study 

employing a feature-based approach to achieve 

an equivalent aim. The data have two classes. 

One class (‘fruiting’) corresponds to locations 

and dates of observation of fruiting bodies of 

the species (from 2009 to 2015). The second 

class corresponds to ‘temporal pseudo-

absences’, which are records in the same 

locations of the observation records, but with 

dates selected at random along the temporal 

range of the study (Capinha 2019). The aim of 

the classification is to distinguish the 

meteorological conditions associated with the 

observation of fruiting bodies of the species 

from the range of meteorological conditions 

that are available to it. 

 

We characterized each record using four time 

series: 1) mean daily temperature for the 

preceding 365 days, 2) daily total precipitation 

for the preceding 365 days, 3) latitude and 4) 

longitude. Time series of temperature and 

precipitation were extracted from the daily 

AGRI4CAST maps 

(http://agri4cast.jrc.ec.europa.eu/), at a cell 

resolution of 25x25 km. Geographical 

coordinates were coded as temporally 

invariant time series.  

 

Records from 2009 to 2014 were randomly 

partitioned into: At: 15%, Av: 70%,  Bv: 15%, 

and Bt: 85% (merging At and Av). Data for the 

year 2015 was used to evaluate the predictive 

performance of the final model (T), allowing 

comparison with the performance results 

achieved in Capinha (2019). 

 

To increase the representation of the 

meteorological conditions occurring in the 

location of each observation record, the data 

consists of 15 pseudo-absence records per each 

observation record (Capinha, 2019). Similarly 

to the previous case study, we corrected for 
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class imbalance by balancing the number of 

samples in each class using a random deletion 

and duplication approach (Lunardon et al. 

2014). This balancing was performed for data 

sets At, Av and Bt. 

 

Results 

Species identification 

The candidate model with greatest ability to 

distinguish between the spectrograms of the 

three insect wingbeats had an InceptionTime 

architecture (accuracy = 0.85; model number 

15; Fig. 2b). On the training data set this model 

showed a progressively increasing training 

accuracy with number of epochs (Fig. 2c). 

However, its evaluation against left-out data 

(Bv data set; Fig. 1) showed that best 

performances were found mainly between 

training epoch ~30 and ~50 (‘validation AUC’; 

Fig. 2c), followed by little change. The highest 

validation performance was obtained after 47 

training epochs. On the test data (T; Fig. 1), 

this model achieved an average AUC of 0.96, 

resulting from an AUC of 1 in classifying 

between B. oleae and A. mellifera, an AUC of 

0.88 in classifying between B. oleae and L. 

aristella and an AUC of 1 in classifying 

between A. mellifera and L. aristella. 

Computer processing time, from the onset of 

candidate model training to the 72nd training 

epoch of the selected model, took 26 minutes 

on a desktop PC. On the high-end workstation, 

a distinct modelling event took 3 minutes. 

 

Species distribution model 

The best performing candidate model for this 

case study had a CNN-type architecture 

(model number 4; Fig. 3b), reaching 0.82 of 

validation accuracy. Using the full training 

data set, this model showed a decreasing trend 

in validation values after the ~60th epoch (Bv; 

‘validation AUC’; Fig. 3c), with highest 

performing classification at the 56th training 

epoch. The model trained with this number of 

epochs achieved an AUC of 0.95 on the final 

test data (T). Most of northern Iberian 

Peninsula was predicted as suitable to Galemys 

pyrenaicus, particularly the high mountainous 

areas (Fig. 3e). Computer processing time took 

2 hours and 49 minutes on a desktop PC. A 

distinct modelling event on the high-end 

workstation took 19 minutes. 

 

Phenological prediction 

For this case study, the selected candidate 

model had an InceptionTime-type of 

architecture (model number 2; Fig. 4a), 

achieving 0.81 validation accuracy. The 

classification performance of this model 

(measured with external data; Bv) increased 

only up to the 5th epoch (Fig. 4b). The model 

trained for 5 epochs achieved an AUC of 0.91 

on the final test data. The predicted 

probabilities of fruiting for an example site 

(Fig. 4c) show the ability of the model to 

capturing seasonal variation, with higher 

probabilities generally being predicted for the 

Autumn season, but with important inter-

annual differences. Computer processing time 

took 10 hours and 23 minutes on a desktop PC. 

On a high-end workstation a distinct modelling 

event took 18 minutes. 

 

 

 

Figure 2. Data and results of deep learning models classifying insect species from wingbeat 

spectrograms. (a) Example wingbeat spectrograms for each species. (b) Validation accuracy for 

candidate deep learning models. (c) Training and validation curves of the selected model along time 

(highest validation performance is marked with a diamond symbol). 
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Figure 3. Data and results of deep learning models classifying environmental suitability for the 

Iberian desman. (a) Presence and absence data of the species. (b) Example of time series used as 

predictors. (c) Validation accuracy for candidate deep learning models. (d) Training and validation 

curves of the selected model along time. The diamond symbol marks the highest validation 

performance. (e) Environmental suitability predicted by the selected model. 

 

 

 

 
 

Figure 4.  Data and results of deep learning models classifying the fruiting phenology of the parasol 

mushroom based on meteorological variation. (a) Validation accuracy for candidate deep learning 

models. (b) Training and validation curves of the selected model along time (the diamond symbol 

marks the highest validation performance). (c) Patterns of fruiting seasonality predicted by the 

selected model for an example location. 
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Discussion 

Deep artificial neural networks are a flexible 

modelling technique with notable success in a 

range of scientific fields (LeCun et al. 2015). 

In ecology, the adoption of these models is still 

in its infancy and has been mainly directed 

towards image recognition (Brodrick et al. 

2019; Christin et al. 2019). We here introduce 

the use of deep learning models for the 

classification of temporal data and 

demonstrate how these models can be 

implemented and evaluated for distinct tasks 

across subfields of ecology. 

 

Our case studies demonstrate the versatility 

and potential of deep learning for time series 

classification. In the first case study, an 

InceptionTime model performed well in 

distinguishing insect species based on 

spectrograms of their wingbeats. Given the use 

of different data partition strategies and 

performance metrics, the performance 

measured for this model is not fully 

comparable to those obtained by Potamitis et 

al. (2015) – who classified the same data using 

distance and feature based approaches. 

However, our study more accurately identified 

the honeybee, suggesting its superior 

classification ability. In the case of Galemys 

pyrenaicus, the predictions from a CNN model 

also achieved a very high performance, and the 

predicted spatial patterns are congruent with 

the known distribution of the species and with 

existing predictions from feature-based 

approaches (Barbosa et al. 2011). Finally, an 

InceptionTime model projected ecologically 

plausible patterns of fruiting seasonality for 

Macrolepiota procera, with performance 

equalling that obtained by Capinha (2019) 

(i.e., an AUC of 0.91 on predictions of fruiting 

in 2015). Unlike the raw time series used by 

deep learning models, Capinha (2019) used a 

large set (n=40) of hand-crafted features reliant 

on domain-expertise (e.g. growing degree 

days). 

 

Despite the valuable results described above, 

the advantages of deep learning models for 

time series classification in ecology can only 

be fully appreciated with wider testing. The 

benchmarking of classification performances 

against traditional modelling approaches and 

the identification of factors associated with 

performance differences (e.g. degree of a 

priori ecological knowledge; complexity of 

the phenomena; volume of training data, etc.) 

will be of paramount importance. Research 

efforts should also attempt to identify the deep 

learning architectures and hyperparameters 

that are best suited for specific ecological 

phenomena and data types. Thus far, 

classification performances from distinct deep 

learning typologies were compared using time 

series data coming from multiple domains (e.g. 

Fawaz et al. 2019), and the relevance of these 

results to ecology remains uncertain. 

 

A distinctive feature of deep learning 

approaches is that they allow classifying 

phenomena directly from raw time series data. 

For ecologists, this ability should be seen not 

merely as a methodological particularity, but 

as a conceptual and operational advancement 

from traditional modelling approaches. On one 

hand, the use of time series data as predictors 

positively forces ecologists to consider the 

temporal component of the analysed 

phenomena (Wolkovich et al. 2014; Ryo et al. 

2019) and, on the other, it relieves them from 

subjective decisions about the transformation 

of the temporal data. This reorientation in 

thinking was, perhaps, best illustrated by using 

temporally continuous data − instead of the 

usual time-averaged variables − for predicting 

the potential distribution of a species. This 

‘fully’ temporally explicit approach can be 

exploited for virtually any ecological or 

biological entity or state, as long as the putative 

drivers have a temporal representation. 

Further, the usage of time series data by deep 

learning models matches the increasing 

number of high frequency streams of digital 

data coming from distinct sources (e.g. satellite 

sensors, meteorological stations). The direct 

integration of these data into the models 

eliminates the need for resource consuming 

feature extraction procedures and is thus well-

suited for operational modelling frameworks. 
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As for any modelling approach, deep learning 

models have limitations. Two are especially 

prominent: the interpretability of models and 

computational demand. Limitations to the 

interpretation of deep learning models have 

been well described in the literature (e.g. 

Reichstein et al. 2019), however, they are 

caused mainly by a lack of available tools. 

Very recently important efforts towards the 

interpretability of deep learning models have 

been made (e.g. Siddiqui et al. 2019) and given 

the fast pace of deep learning research, we 

expect that soon deep learning models will be 

no harder to interpret than many traditional 

machine learning models. The challenges 

arising from computational demand are harder 

to solve. Here we showed that ‘typical’ 

classification tasks can take several hours to 

run on a standard desktop computer. 

Additionally, the computational expensiveness 

of deep learning is expected to grow in the 

future (Thompson et al. 2020). To face this 

challenge, ecologists will likely have to move 

in the same direction as their fellow computer 

scientists and embrace faster hardware (e.g. 

GPUs, ‘tensor processing units’ and large-

resourced cloud computing services) and 

scalable model implementations (e.g. 

distributed computing). 
 

In conclusion, we consider that the use of deep 

learning for classifying temporal data in 

ecology could bring considerable 

improvements over conventional approaches. 

Software tools now exist that allow 

overcoming the implementation barrier for 

non-experts and state-of-the-art classification 

results seem a reasonable expectation for 

several tasks. However, only with extensive 

testing can the value of this approach be fully 

recognized. Those willing to venture through 

this modelling route could use the data and 

code we provide as a starting point. 
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