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Abstract1

1. Home range dynamics and movement are central to a species’ ecology and strongly2

mediate both intra- and interspecific interactions. Numerous methods have been3

introduced to describe animal home ranges, but most lack predictive ability and4

cannot capture effects of dynamic environmental patterns, such as the impacts of5

air and water flow on movement.6

2. Here, we develop a practical, multi-stage approach for statistical inference into the7

behavioral mechanisms underlying how habitat and dynamic energy landscapes—in8

this case how airflow increases or decreases the energetic efficiency of flight—shape9

animal home ranges based around central places. We validated the new approach10

using simulations, then applied it to a sample of 12 adult golden eagles Aquila11

chrysaetos tracked with satellite telemetry.12

3. The application to golden eagles revealed effects of habitat variables that align with13

predicted behavioral ecology. Further, we found that males and females partition14

their home ranges dynamically based on uplift. Specifically, changes in wind and15

sun angle drove differential space use between sexes, especially later in the breeding16

season when energetic demands of growing nestlings require both parents to forage17

more widely.18

4. This method is easily implemented using widely available programming languages19

and is based on a hierarchical multistate Ornstein-Uhlenbeck space use process20

that incorporates habitat and energy landscapes. The underlying mathematical21

properties of the model allow straightforward computation of predicted utilization22

distributions, permitting estimation of home range size and visualization of space23

use patterns under varying conditions.24
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Introduction28

The “home range” has been a central concept in animal behavior for some time (Burt,29

1943; Dunn and Gipson, 1977). To measure and understand an animal’s home range—the30

area in which an animal carries out its regular foraging and reproductive activities (Burt,31

1943)—researchers have applied techniques ranging from simple and purely descriptive,32

such as methods like minimum convex polygons and kernel density estimators, to complex33

mechanistic models, such as advection-diffusion equations (Moorcroft and Lewis, 2006;34

Hooten et al., 2017). Along this spectrum of complexity are a set of analyses of interme-35

diate complexity known as resource selection functions (RSFs; Manly et al., 2002) and36

related step selection functions (SSFs; Fortin et al., 2005). The RSF and SSF frameworks37

separate the probability of an animal occurring at a location on the landscape into two38

parts: availability (or movement) and resource selection (Moorcroft and Barnett, 2008).39

Together, movement and resource weighting functions can describe an array of animal40

space use patterns (Potts et al., 2014b).41

One early conceptual model of animal space use dynamics was the “elastic disc hypoth-42

esis,” which describes animal space use as the degree to which boundaries of territories43

are compressible, shaped by the territorial aggression of neighboring conspecifics (Huxley,44

1934). This process is analogous to the way an elastic disc can be molded by extrinsic45

forces, and the analogy forms a general conceptual foundation describing the formation46

and dynamics of animal home ranges (Getty, 1981). For example, consider an animal47

that requires a certain amount of suitable habitat. Given no extrinsic forces, that an-48

imal might spend much of its time within a smaller core area, venturing out equally49

in all directions to acquire resources. This would give rise to a circular or disc-shaped50

home range, and would be especially true for an animal that has a “central place” such51
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as a nest or den that requires tending. In contrast, where an animal resides near the52

boundary of suitable habitat, its home range must stretch along that boundary, as the53

amount of suitable habitat required remains constant, and the shape of the home range54

will consequently conform to habitat constraints.55

In reality, habitat constraints can change through time. However, many of the more56

common approaches to quantifying animal home ranges describe animal space use as static57

in time, either because the descriptive method cannot accommodate time or home ranges58

are actually assumed to be static. Animal movement, however, is usually much more fluid,59

driven by suites of intrinsic and extrinsic forces (Nathan et al., 2008). Consequently, home60

ranges are fundamentally dynamic.61

Forces that drive these dynamics include the energy landscape, a conceptual frame-62

work that incorporates how an animal’s movement can be shaped by its energetic demands63

interacting with dynamic landscape features, especially moving fluids such as air or water64

(Shepard et al., 2013). These dynamics alter a landscape’s suitability and shape space65

use patterns in a number of ways (Morales and Ellner, 2002; Schooley and Wiens, 2004;66

Prokopenko et al., 2016). For animals that can take advantage of variable energy sub-67

sidies available from moving fluids, including soaring birds that use uplift and aquatic68

animals that ride water currents, dynamic space use patterns and emergent home range69

properties will be shaped by these features (Shepard et al., 2013). In such situations, the70

elastic disc will constantly vary, changing shape as the weather changes.71

The RSFs and SSFs noted earlier are widely used and generally robust quantitative72

assessments of animal space use and home range dynamics, and they have been continu-73

ously refined and improved since their respective introductions. Getty (1981) presented74

an early RSF adaptation inspired by the elastic disc hypothesis. Another early model75

has also been considered in understanding animal home ranges—the Ornstein-Uhlenbeck76

(OU) proccess (Dunn and Gipson, 1977)—and can relate to the elastic disc hypothesis.77

Here, we develop a practical hierarchical modelling approach for inferring the mecha-78

nisms of home range dynamics and how habitat and the energy landscape interact with79

behavior to shape animal home ranges. This method combines the OU and SSF mod-80
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elling frameworks and operates on landscapes with dynamic energy subsidies driven by81

atmospheric forcing. The approach is similar to but extends some previously introduced82

methods (i.e. Johnson et al., 2008; Christ et al., 2008), which have not seemed to gain83

traction among practitioners, likely due to computational limitations and difficulty in84

application. Our approach overcomes computational issues and eases application with-85

out sacrificing inference, which we validated with a simulation study. Finally, we applied86

it to analyze the home range behavior and space use of territorial golden eagles Aquila87

chrysaetos. Specifically, we fit models to estimate how male and female territorial ea-88

gles partitioned space during the breeding season based on different habitats or dynamic89

features of the landscape (i.e. thermal and orographic uplift).90

Methods91

Ornstein-Uhlenbeck home range model92

An OU process over two-dimensional space is continuous-time, mean-reverting, and can93

help researchers study home range behavior of animals that tend a central place (e.g., a94

nest; Dunn and Gipson, 1977; Blackwell, 1997; Breed et al., 2017). Assuming indepen-95

dence in the two spatial dimensions simplifies the model and aligns better with central96

place behavior, as movement is equally likely in all directions around the central point.97

Such an OU process can be presented as the following stochastic differential equation98

(SDE):99

dxt = −Ωdt(xt − µ) + σdWt, (1)

where xt is a coordinate vector of the location of the animal at time t, Ω = ωI2 with100

ω describing the strength of the animal’s tendency to move toward the central point µ,101

σ > 0, and Wt is Brownian motion. The solution of this SDE takes the form:102

xt = µ + e−Ωt(x0 − µ) + σ

∫ t

0

e−Ω(t−s)dWs. (2)
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While this solution conveniently gives the position of the animal at any time t, we typically103

observe animal movement by recording series of discrete locations by, for example, using104

radio or GPS telemetry. This invokes the position likelihood of the OU process:105

xt|xt−∆t ∼ N
(
µ + e−Ω∆t(xt−∆t − µ), Σ− e−Ω∆tΣe−Ω′∆t

)
, (3)

where Σ = σ2I2. This discretized formulation can be described as a biased random walk106

(BRW) with a bias toward µ. Notably, it reaches a long term steady state N (µ,Σ) due107

to the rapidly decaying effect of conditioning on xt as ∆t increases (Blackwell, 1997).108

Assuming independence in the two spatial dimensions helps wed the OU process to109

the elastic disc hypothesis (Huxley, 1934; Getty, 1981), similar to the circular normal110

distribution used by Getty (1981). A chosen contour of N (µ,Σ) can be a circular ap-111

proximation of an animal’s home range. Further, the highest probability density value of112

N (µ,Σ) is centered on µ, consistent with central place behavior. Note that using equa-113

tion (8) takes into account serial correlation, which is inherent to an animal’s movement,114

ensuring an unbiased estimate of Σ. Additionally, the continuous-time nature of the pro-115

cess makes it applicable under any temporal resolution of data and any irregularities in116

that data.117

The shape of the home range may be modified by various extrinsic factors (Getty,118

1981), which can be built into the OU process with an RSF in the weighted distribution119

framework (Johnson et al., 2008). The general form of this framework describes the120

probability density fu of an animal’s location over some landscape z containing a suite121

of habitat types and resources as the product of a density explaining what is available to122

the animal fa and a weighting function ψ:123

fu(z) = K−1ψ(z)fa(z), (4)

where K is a normalizing constant. When fa takes the form of an OU process (equation124

8) and ψ(z(xt)) = exp[z(xt)
′β], where the function z(xt) returns a vector of habitat125

values and/or resources associated with a location xt that lies in z and β weights those126
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resources based on the animal’s preferences, the conditional probability density of the127

location of the animal can be written as128

fu(z|xt−∆t) = K−1exp[z(xt)
′β− (xt − µt)

′Σ−1
t (xt − µt)/2], (5)

where µt = µ + e−Ω∆t(xt−∆t − µ) and Σt = Σ − e−Ω∆tΣe−Ω
′∆t (Johnson et al., 2008).129

Note that the habitat covariates (z(xt)) are spatiotemporally explicit so that the effects130

of dynamic habitat and landscape variables may be accounted for in estimation of pa-131

rameters and predicting utilization distributions.132

Multi-stage estimation Evaluating K is usually problematic but often avoided in es-133

timating β, as with more conventional RSF models, by implementing an use-availability134

design that compares resources at ‘available’ locations to ‘used’ locations with logistic135

regression (Lele and Keim, 2006; Hooten et al., 2017). We note that equation (5) re-136

sembles a more conventional RSF model with an offset term—the anisotropic distance137

between xt and xt−∆t (Johnson et al., 2008). We consequently posited that if the OU138

process parameters were estimated first, then were used to construct the necessary co-139

variate (i.e. (xt − µt)
′Σ−1

t (xt − µt)/2), β could then be estimated in a second step with140

regression, which is similar to constructing covariates for estimating β with Poisson re-141

gression (Johnson et al., 2013) and conditional logistic regression (Forester et al., 2009).142

Although a sacrifice in statistical elegance, this saves considerable model complexity and143

estimation challenge, especially when hierarchical inference of β across several individu-144

als is a primary goal. As we show, the inference achieved with this procedure does not145

meaningfully differ from the more elegant, but far more difficult approach, described by146

Johnson et al. (2008), and makes available hierarchical estimation that is not possible147

with their method.148

Our proposed estimation procedure is as follows. First, estimate the movement param-149

eters in equation 8. Second, use those fitted parameters to make predictions about each150

xt, effectively generating so-called available locations. Assuming estimation of equation151

8 is done in a Bayesian framework, this second step involves sampling from the marginal152
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posterior predictive distributions (Hooten et al., 2014, 2017; Eisaguirre et al., 2020). Next,153

the quantities (xt − µt)
′Σ−1

t (xt − µt)/2 are computed using point estimates of param-154

eters. Finally, the selection coefficients β are estimated using logistic regression, as in155

conventional use-availability resource selection analysis designs, which, in the Bayesian156

framework, is an empirical Bayes procedure.157

If multilevel inference across several individual animals is desired, it is typically158

straightforward to incorporate such complexity in the regression model for estimating159

β. Higher level inference of the movement parameters may pose a challenge, however, in160

which case recursive Bayesian inference could be used (Lunn et al., 2013; Hooten et al.,161

2016; Hooten and Hefley, 2019); we detail this in the Model Extensions section below.162

Of course, such could be used for estimating β as well, if the regression model structure163

poses estimation challenges.164

Dynamic utilization distributions An advantage of the OU model within this frame-165

work is that it explicitly weights locations closer to the central point µ more heavily. If it166

did not, space use in that area would be attributed solely to habitat or resources there, as167

opposed to availability, which could bias β̂. Another advantage of this OU model is that168

it can be used to compute home range estimates from a set of hypothesized mechanisms,169

such as different, possibly interacting, and/or dynamic habitat variables. Given that ψ170

is assumed stationary and as ∆t gets large fa approaches N (µ,Σ),171

lim
∆t→∞

fu(z|xt−∆t) = K−1exp[z(xt)
′β]exp[−(xt − µ)′Σ−1(xt − µ)/2], (6)

which is simply the normalized product of a multivariate normal kernel and the habitat172

weighting function. We are thus left with habitat-independent central place (circular)173

home range estimator N (µ,Σ) and a weighting function ψ(z) = exp[z(xt)
′β] that shapes174

the home range (equation 6). The product of these provides the stationary estimate of fu,175

a contour of which is the mathematical description of the conceptual elastic disc (Huxley,176

1934) molded by the habitat (Fig. 1). Further, when the resources over the landscape177

z vary through time and are dynamic, evaluating the steady state of fu must be done178
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with resource values z(xt∗) fixed at some hypothetical or characteristic time t = t∗. We179

can thus choose t∗ to make predictions about how space use changes based on dynamic180

resources. This is in contrast to many RSF and SSF studies in the literature, which181

are typically restricted to evaluating ψ(z(xt∗)), rather than the utilization distribution182

fu(z(xt∗)).183

Simulation study184

Methods To ensure that estimation of the OU process and resource selection parameter185

estimates were unbiased and informative when estimated with the multi-stage procedure,186

we conducted a simulation study generally following the approaches of Forester et al.187

(2009) and Johnson et al. (2008). The simulation began with the creation of three188

artificial landscapes containing a continuous resource variable. Using R and the package189

RandomFields (R Core Team, 2018; Schlather et al., 2019), landscapes were generated on190

a 2000× 2000 grid using a Gaussian random field (GRF) with an exponential covariance191

function. The scale parameter was set at 10, 50, or 100, prescribing each landscape a192

different level of spatial autocorrelation. We simulated 100 tracks, each 100 movements193

in length, for each landscape and each of six parameter combinations (β = 0, 1, or 2194

and ω = 1 or 2) for a total of 18 landscape/parameter scenarios. σ2 was fixed at 1002
195

and µ at (1000, 1000). Additionally, to ensure identifibility of β in the case of multiple196

covariates, we did one simulation with the scale parameter set to 100, ω = 2, β1 = 1,197

and β2 = 1, where β2 is the coefficient for a binary covariate covering half of the spatial198

domain. For each simulated track, we fit the OU model, assuming the central point µ199

known, generated available points, computed the necessary covariate from the estimated200

OU parameters, and then attempted to estimate β with an use-availability design using201

logistic regression.202

Estimation was performed in a Bayesian framework using Stan and R (Stan Devel-203

opment Team, 2016, 2018; R Core Team, 2018), sampling five available points for each204

used point from the marginal posterior predictive distributions of each xt (Hooten et al.,205

2014, 2017; Eisaguirre et al., 2020). We used three chains of 15,000 Hamiltonian Monte206
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Carlo (HMC) iterations, including 5,000 for warm-up, and retained 1,000 samples for207

inference in fitting the OU movement model. We used four chains of 5,000 iterations,208

including 3,000 for warmup, and retained 2,000 samples for inference in estimating the209

selection parameter β. Weakly informative (truncated) normal priors were placed on210

the OU parameters, centered away from the true values, and a weakly informative nor-211

mal prior on β, centered on zero. See Appendix 2 for code containing details about the212

priors. The covariate that accounts for the OU movement process in estimating β (i.e.213

−(xt − µt)
′Σ−1

t (xt − µt)/2) was computed for each used and available point using the214

posterior means of ω and σ2. β was then estimated with an use-availability design and215

Bayesian logistic regression. For each parameter combination, we summarized the rela-216

tive biases of the posterior means and the proportion of tracks for which the 95% credible217

interval overlapped the true value for β, ω, and σ2.218

Simulation Results The proportions of 95% credible interval coverage were > 0.80 for219

nearly all cases in estimates of β (three were > 0.70) and generally high for σ2 and ω as220

well (Figs. S1 & S2). The simulation to assure identifiability found high credible interval221

coverage (> 0.80) as well. Thus, simulations generally found the two-step approach222

provided estimates of resource selection parameters β with no or minimal bias (Fig.223

2). Other use-availability designs have also been found to yield unbiased estimates of224

resource selection parameters (Lele and Keim, 2006; Forester et al., 2009; Avgar et al.,225

2016). Estimating the movement parameters ω and σ2 yielded slightly more bias, but226

Johnson et al. (2008) had similar levels of bias when maximizing the joint likelihood for227

equation (5) rather than the simpler two-step procedure we describe.228

Model extensions229

Multiple home range cores An OU home range model can be extended to allow230

for multiple core areas, and each core can be allowed to have a unique set of movement231

patterns within an animal’s broader home range (Johnson et al., 2008; Breed et al., 2017).232

One way to accomplish this is estimating transitions among K cores as a Markov process,233
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with a K ×K transition matrix Γ describing the probability of the animal moving from234

one core to another (or remaining in the currently occupied core) during the time interval235

t to t + 1 (Breed et al., 2017). Note that to ensure the Markov assumptions hold, fixed236

and regular time intervals are required, which is common in most (but not all) types237

of telemetry data. If data are not regular, one can simply use an indexing approach to238

still incorporate multiple cores (sensu Johnson et al., 2008). We can also estimate the239

relationships between transition probabilities and habitat conditions or other covariates240

in a manner similar to multinomial logistic regression. Breed et al. (2017) estimated241

parameters associated with staying in a core area (i.e. the elements along the diagonal of242

Γ); however, here we extend that to transitions among all cores. As these covariates can243

be temporally dynamic, we may denote our transition matrix as Γt = (γij,t). Employing244

the multinomial logit link, we can write the conditional probability that the animal is in245

the jth core at time t+ 1 given that it came from the ith core:246

P (kt+1 = j|kt = i) = γij,t =
exp(γ∗ij,t)∑K
k=1 exp(γ∗ik,t)

(7)

where γ∗ij,t = s′ij,tαij. sij,t is the vector of covariates associated with the core kt =247

i at time t, and the vector αij weights those covariates by their effect on γij,t. We248

could thus calculate Γt for a set of core- and time-specific covariates. This is similar249

to modeling behavioral state transitions with a conventional hidden Markov Model for250

animal movement data (sensu Michelot et al., 2016), but the ‘states’ here are home range251

cores, each having a respective set of movement parameters (Breed et al., 2017).252

Unsupervised estimation of the state transitions, which in Stan required marginalizing253

the latent discrete process, proved computationally impractical. We thus followed Breed254

et al. (2017) and implemented a k-means clustering algorithm to identify the number of255

home range core areas, the location of each core center µk, and the core transitions a256

priori (Hartigan and Wong, 1979). We then proceeded with supervised estimation of α257

and assuming each µk known. We note that Johnson et al. (2008) also assumed a known258

core transition process. While we lose inference of uncertainty around core assignments259

and each µk, this problem has generally not been resolved in the literature and online260
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estimation remains a major hurdle.261

Finally, the multicore OU position likelihood is given by262

xt|xt−∆t ∼ N
(
µk + e−Ωk∆t(xt−∆t − µk), Σ− e−Ωk∆tΣke

−Ω′k∆t
)
, (8)

where Ωk = ωkI2 and Σk = σ2
kI2 for the kth home range core.263

Hierarchical inference across individuals Full Bayesian inference about population264

level parameters can be obtained with the “Lunn method.” The Lunn method is a form of265

recursive Bayesian estimation and uses the marginal posteriors from a series of indepen-266

dent individual-level models fit with Markov chain Monte-Carlo (MCMC; or HMC) as267

the proposal distributions in a second stage MCMC algorithm (Lunn et al., 2013; Hooten268

et al., 2016; Hooten and Hefley, 2019). Here, to obtain population-level estimates of the269

population-level OU and core switching parameters, we can specify:270

αmm,n ∼ N (αpop,Σα)

ωn ∼ N+(ωpop, σ
2
ω) (9)

σ2
n ∼ N+(σ2

pop, σ
2
σ),

where αmm,n is the vector of coefficients correlating the core-switching covariates with271

staying in the nth individual’s most used core m, and Σα is a diagonal matrix of the272

among-individual variances for each covariate. It is convenient to restrict inference about273

αpop to the most-used core because individuals can have different numbers of core areas.274

Normal priors on each element of αpop, truncated normal priors on ωpop and σpop, and275

inverse gamma priors on all among-individual (random effect) variances are conjugate276

priors and permit Gibbs updates for all population-level parameters. The individual-277

level parameters still require Metropolis-Hastings (MH) updates within the second stage278

algorithm, but these are straightforward because the MH ratios do not depend on the279

data (i.e. the data models cancel in the ratio; Lunn et al., 2013; Hooten et al., 2016;280
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Hooten and Hefley, 2019).281

Application282

Model system. Golden eagles are a long-lived, territorial raptor that reach sexual283

maturity entering their third breeding season (Kochert et al., 2002; Watson, 2010). They284

most commonly nest on cliffs, or less commonly large trees, and are generally central place285

foragers (Kochert et al., 2002; Watson, 2010). Eagles with established territories where a286

nest is a central place surrounded by uniformly average landscape should be expected to287

range and use space in a circular pattern around the nest. Because real landscapes are not288

uniform, an eagle’s realized space use would then be shaped by the habitat surrounding289

that central point. Primary prey of golden eagles nesting in Alaska are snowshoe hare290

Lepus americanus, ptarmigan Lagopus spp., and Arctic ground squirrel Urocitellus parryii291

(McIntyre and Adams, 1999; McIntyre and Schmidt, 2012; Herzog et al., 2019).292

When a pair of eagles initiate a nesting attempt, the male does the majority of the293

provisioning, while the female tends the nest and does most of the incubating and brood-294

ing of eggs/nestlings. When nestlings mature to the point that they can thermoregulate295

(∼ 3 wk post-hatch; or when a nest fails), the adult female no longer needs to tend them296

as regularly, so she is free to move about the territory and aid in provisioning (Watson,297

2010). We expect that this event should be commensurate with an abrupt change in space298

use, because nest-tending requirements suddenly become less restrictive. This might al-299

low space use to change so that the male and female of the breeding pair partition space300

to minimize overlap in foraging areas and/or territory defense efforts. It is also possible301

that this might occur dynamically throughout the season and/or day, regardless of nest302

tending duties.303

Another key characteristic of golden eagles that would be expected to strongly in-304

fluence how they use space is their flight mechanics—they are a soaring bird capable305

of capturing dynamic air currents to decrease or completely offset the energetic costs of306

flight (Katzner et al., 2012; Watson, 2010). Consequently, their space use patterns, and307

possibly partitioning of space among individuals, will be shaped dynamically by weather308
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variables (Eisaguirre et al., 2020). Two common forms of such flight subsidies are thermal309

uplift, caused by the sun heating the surface of the earth and causing air to rise, and310

orographic uplift, caused by wind blowing up slope.311

Because habitat and weather features are non-uniform around nest sites/central places,312

eagles (and other animals) can establish multiple core areas within their larger home313

range. Thus real home ranges are not a single circular distribution in a homogeneous314

landscape, but multiple cores shaped by the non-uniform distribution of food and energy315

subsidies.316

Telemetry data We captured golden eagles with a remote-fired net launcher placed317

over carrion bait near Gunsight Mountain, Alaska (61.67◦N 147.35◦W). Captures occurred318

during spring migration, mid-March to mid-April 2016. Adult eagles were equipped319

with 45-g back pack solar-powered Argos/GPS platform transmitter terminals (PTTs;320

Microwave Telemetry, Inc., Columbia, MD, USA). PTTs were programmed to record a321

GPS location every other hour, yielding 12 fixes per day. Eagles were sexed molecularly322

and aged by plumage. See Eisaguirre et al. (2018) or Eisaguirre et al. (2019) for additional323

details.324

Selection covariates We used the Alaska Center for Conservation Science Alaska Veg-325

etation and Wetland Composite (AKVWC; 30-m resolution) data for characterizing habi-326

tat type. We collapsed the numerous habitat types in the dataset into eight for this anal-327

ysis. These were shrub, open (e.g., meadows and open tundra), bare, forest, wet (e.g.,328

marsh), water, ice (i.e. perennial snow and ice), and human. See Appendix 1 for details.329

Elevation data were gathered using the Mapzen Terrain Service with the elevatr330

package (Hollister and Shah, 2018). We specified the ‘zoom’ variable such that the331

resolution closely matched that of the habitat data. We included elevation and slope332

(slope ∈ [0, π/2] radians) as predictors in the model.333

We used a state-wide data set of snow-off date (date of which an area became snow334

free) to derive a dynamic binary indicator variable of whether or not grid cells were free335

of snow (Macander et al., 2015). While one might expect some confounding between the336
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(perennial) snow and ice habitat variable and this snow indicator, it would be limited337

due to few glaciated and perennial snow-covered areas frequented by the eagles sampled.338

The remaining variables included in the model were related to orographic and thermal339

uplift and were derived from the National elevation data and Center for Environmental340

Predictions (NCEP) North American Regional Reanalysis (NARR) data. Angle of inci-341

dence (aoi) was included for the effect of orographic uplift on eagle space use. It is the342

deviation of the relative wind from the aspect of a slope and was computed such that343

aoi ∈ [0, π] (Murgatroyd et al., 2018); π/2 corresponds to a wind orthogonal to a slope’s344

aspect, and π to a wind perfectly parallel to a slope’s aspect thus blowing directly up345

slope. Wind direction was computed trigonometrically from the meridional and zonal346

wind components estimated by the NCEP NARR 10 m above the surface.347

The effect of thermal uplift was included with a hill shade variable. Hill shade was348

computed following Murgatroyd et al. (2018), such that hs ∈ [0, 1], where hs = 1 is349

direct sun (most thermal uplift) and hs = 0 no sun (no thermal uplift). We gathered350

the required location-, date-, and time-specific azimuth and zenith of the sun using the351

package maptools (Bivand and Lewin-Koh, 2016).352

Core switching covariates. We also included wind variables as covariates in the core353

transition process. We expected that certain wind directions and/or magnitudes might354

make certain home range cores more or less favorable. So, the cosine and sine of wind355

direction were included in addition to wind magnitude as covariates in equation (7). As356

above, these were computed trigonometrically from the NCEP NARR data specific to357

each home range core. Among-core distance was also included as a covariate to account358

for more frequent transitions to closer cores.359

Estimation and inference To illustrate our approach, we used only data from eagles360

that were clearly defending territories in 2016. This included six males and six females,361

all aged to their fifth year or older. None of these eagles were members of the same362

breeding pair. Aerial surveys flown in June 2016 revealed that four of the eagles had363

young (at the time of the survey), and, with the exception of one nest site that was not364
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surveyed, the others showed signs of reproductive attempts.365

Individual-level marginal posteriors of the core switching and OU process parameters366

were obtained using Stan (Stan Development Team, 2018). We used three chains of 5,000367

iterations, including 2,000 for warmup, retaining every third sample for a total of 3,000368

samples. These were then used as proposed values for the MH updates in the second stage369

for estimating parameters in equation (9). The population-level selection coefficients β370

were estimated with the empirical Bayes procedure with a Bayesian hierarchical logistic371

regression model in Stan (default normal priors; Stan Development Team, 2016), using372

marginal posterior predictive samples as available points, as in the simulations above.373

Convergence to the posterior was checked with trace plots and Gelman diagnostics (Stan374

Development Team, 2018). Stan and R code for fitting the individual-level OU process375

and sampling from the conditional posterior predictive distributions, as well as R code376

for the second stage MCMC algorithm, are provided in Appendix 2.377

As our primary interest was in differences between male and female eagles in early378

and late breeding season, we wanted parameter estimates specific to each sex and to early379

and late breeding season. To keep computing time more reasonable, we fit the model380

separately and in parallel (on multiple CPU cores) for these periods as well as for each381

sex. Aerial observations of the nests of the tagged eagles indicated that 20 June was on382

average the approximate date when nestlings should have been of age to thermoregulate,383

so we used this date to partition the data between early and late breeding season.384

Utilization distributions were computed according to equation (6). The probability385

density predicted for each home range core was weighted by the number of eagle locations386

in that core prior to computing the 95% volume contour of the space use distributions,387

which we used to estimate home range boundaries (Hooten et al., 2017).388
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Results389

Movement parameters390

Because individuals had differing numbers of home range cores, we present here only the391

OU movement parameters from the individuals’ most heavily used core. We found a392

slight increase in centralizing tendency for males (Fig. 3) and an increase in the number393

of home range cores for both sexes from early to late breeding season (Fig. S3). We394

found a weak effect of stronger wind correlating with females staying in their most-used395

(nesting) core and wind direction affecting males’ propensity to stay within that core396

during early breeding season (Fig. 3).397

Habitat selection398

We present the effects of the most relevant habitat types in figure 4, which comprised399

> 99% of the space used (see figure S5 in Appendix 1 for all habitat types). Both male400

and female eagles weakly selected against forested areas during early breeding season,401

and females selected against shrub and open habitats early, relative to bare areas (Fig.402

4). Overall, males and females used similar terrain, though there was some evidence that403

females used slightly steeper slopes (Fig. S4).404

Energy landscape405

In early breeding season, before nestling thermoregulation or nest failure, males and406

females appeared to select energy landscape features similarly (Fig. 5–7). During late407

breeding season, male and female eagles appeared to partition the landscape dynamically408

based on components of the energy landscape (Fig. 5–7). Males tended to use areas with409

more orographic uplift (i.e. higher angle of incidence; Fig. 5), while females used more410

thermal uplift (i.e. greater hill shade; Fig. 5). This pattern resulted from males and411

females selecting dynamic energy subsidy features over the landscape differently (Fig. 6).412

Further, females showed essentially no selection for or against angle of incidence during413

late breeding season (Fig. 5 & 6). The posterior probability that females selected more414
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strongly for hill shade than males was 0.94, and the posterior probability that males415

selected more strongly for higher angle of incidence than females was 0.82 (Fig. 6).416

These probabilities were computed relative to the posterior mean for the opposite sex417

with Monte Carlo integration.418

Discussion419

Here, we demonstrated a method that overcomes analytical and computational challenges420

in fitting a hierarchical mechanistic home range model to data but also, as we showed421

through a simulation study, provides unbiased inference about biologically interpretable422

parameters. The OU space use model allows inference about movement behavior, resource423

selection, and, ultimately, space use patterns, and it is applicable to any central place424

animal. Further, we demonstrated that this approach can be extended to account for425

additional complexity in the structure of animal home ranges—in the form of multiple426

core areas—and possible covariates affecting transitions within that structure. Applying427

the model to real data offered novel insight into the movement and space use of an428

organism that is sensitive to its central place, landscape resources, and energy subsidies429

available in a fluid atmosphere.430

Application to the energy home range431

Applying the OU space use model to territorial golden eagle movement revealed some432

notable patterns. First, male and female eagles had relatively similar space use patterns433

during early breeding season, followed by a shift at the approximate time of a particular434

phenological event. When nestlings are able to thermoregulate, the female of a pair can435

take on additional duties (i.e. provisioning and territorial defense). Our results show this436

coincides with a change in space use, emergent from changes in both resource selection437

and movement behavior.438

Male and female eagles partitioned their use of orographic and thermal uplift during439

late breeding season (Fig. 5 & 7). Two possible explanations for this are that it (1)440
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serves as a means for each sex to avoid overlap in foraging and/or territory defense efforts441

and/or (2) is an emergent pattern resulting from size dimorphism. Reverse sexual size442

dimorphism is prevalent in raptors, and it is coupled with dimorphism in wing loading (i.e.443

wing area per body mass): Females of many raptors, including golden eagle, exhibit higher444

wing loading than males (Lish et al., 2016). Lighter wing loading could allow male eagles445

to capitalize on even slight bits of uplift generated orographically with more energetic446

efficiency than females. Thermal uplift is also generally a more efficient flight subsidy447

than orographic uplift (Duerr et al., 2012), so, given their higher wing loading, it is likely448

energetically advantageous for females to use primarily thermal soaring. Similar patterns449

have been recently shown in sexually size dimorphic wandering albatrosses Diomedea450

exulans, where males—the sex with higher wing loading—favor flight in more energetically451

favorable wind conditions than females (Clay et al., 2020).452

Our results also suggest that soaring birds could dynamically segregate space verti-453

cally, as well as partition activity budgets. Orographic uplift is typically available at only454

relatively low heights above Earth’s surface, whereas thermals can travel much higher455

into the atmospheric boundary layer. The altitude of eagles using these different types456

of uplift follows suit (Katzner et al., 2015). Given selection for differing types of uplift,457

we would thus expect male and female eagles might also partition their home ranges458

vertically. Maintaining good visibility with the surface is required for successful forag-459

ing, so partitioning thermal and orographic uplift could also indicate different behavioral460

budgets. Further, thermal and orographic uplift vary over space following changes in461

wind and sun angle. Consequently, males and females may partition three dimensional462

space and activities temporally through the day, as females await better thermal soaring463

conditions before beginning extensive movements around the home range. In contrast,464

wind can generate orographic uplift at any time during the day.465

While our findings relating to the energy landscape were most notable, we also found466

some differences in habitat and terrain use, which are consistent with sex-specific roles467

during the breeding season. Females used and selected steeper slopes than males, con-468

sistent with nesting behavior and perching near the nest (Collopy and Edwards, 1989;469
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Kochert et al., 2002; Watson, 2010). Not surprisingly, females used less steep slopes dur-470

ing late breeding season, compared to early, consistent with behavior in the later nestling471

stages of breeding (Collopy and Edwards, 1989; Watson, 2010). Also, males, who do472

most of the provisioning even late into the breeding season (Collopy and Edwards, 1989;473

Watson, 2010), selected more strongly for shrub and open habitats (Fig. 4), which would474

likely be used for hunting. During late breeding season, females’ selection for shrub475

habitats approached that of bare areas, likely following an increased role in provisioning.476

Modeling central place space use477

Our modelling approach is conceptually framed around the elastic disc hypothesis, an478

analogy underlying central place theory, and it shares and integrates aspects of a number479

of other methods. It is analytically similar to the general frameworks presented by John-480

son et al. (2008) and Christ et al. (2008); however, it overcomes estimation difficulties by481

implementing the model analogously to common RSF and SSF approaches (Manly et al.,482

2002; Forester et al., 2009; Avgar et al., 2016; Hooten et al., 2017). Computationally,483

it is far simpler to implement but produces similar parameter estimates and biological484

inference. Additionally we extended the model to the cases where covariates may drive485

the use of multiple home range core areas and population-level inference across multi-486

ple individuals (i.e. partial pooling) is needed. Further, we demonstrated how recursive487

Bayesian estimation can be particularly useful in estimating complex, computationally488

demanding hierarchical movement models (Lunn et al., 2013; Hooten et al., 2016; Hooten489

and Hefley, 2019; Hooten et al., 2019).490

The OU space use model, as we and others have shown, yields unbiased inference491

about resource selection parameters (Johnson et al., 2008). This is despite inherent492

identifiability issues in studying the movement of central place animals. That is, it is493

difficult to identify whether an animal uses its central place disproportionately to other494

space because (1) it must tend the central place, (2) there is favorable habitat there,495

or (3) some combination of both. Unfortunately, this can bias some of the movement496

parameter estimates (Fig. S1 & S2 Johnson et al., 2008); however, evidence suggests497
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this occurs in only select cases (i.e. when spatial autocorrelation and selection are very498

high; Fig. S1 & S2; Johnson et al., 2008). Bias in σ̂ is potentially problematic because499

it additionally biases estimation of home range size. However, we found that this occurs500

when β and spatial autocorrelation are particularly high (Fig. S2)—higher than what501

we estimated in our application to real data (Fig. 4 & 6).502

A tempting way of accounting for central places within conventional RSF and SSF503

approaches is to simply include ‘distance to central place’ in ψ(z). However, this assumes504

the central place is some feature of the landscape z, which is problematic for two reasons.505

First, it is inconsistent with central place behavior. The central place fundamentally506

modifies the animal’s behavior and space use; the animal does not actively select the507

central place as a resource while moving within its home range. Second, the selection508

coefficient β weighting this distance covariate would be biased high, as the central place509

is inappropriately discounted in fa(z), leaving β as the only parameter to make up for510

the disproportionate space use at the central point. In contrast, the OU space use model511

incorporates the central place such that it is an element on the landscape that modifies512

fa(z)—the animal’s movement and behavior.513

The OU process can be presented as an advection-diffusion equation, as in equation514

(1); however, its properties are somewhat unique (Blackwell, 1997). Various other forms of515

advection-diffusion equations can also be used to mechanistically model home ranges and516

territories with central place dynamics (Moorcroft and Lewis, 2006), and these have been517

formally reconciled with resource selection analyses (Moorcroft and Barnett, 2008). Due518

to equation (6), however, when the OU process is integrated into the weighted distribution519

framework, steady state space use (or utilization) distributions are straightforward to520

compute. If we were to use an advection-diffusion process other than an OU process521

(e.g., different biased random walk or correlated random walk), computationally-intensive522

numerical investigation of the so-called master equation or simulations would be required523

(Moorcroft and Lewis, 2006; Barnett and Moorcroft, 2008; Potts et al., 2012, 2014a,b,c;524

Potts and Lewis, 2014; Signer et al., 2019). With our approach, it is therefore much more525

straightforward to visualize the effects of dynamic resources on space use over hypothetical526
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and/or real landscapes (Fig. 7).527

Conclusions528

Here we show that estimating a hierarchical mechanistic space use model is relatively529

flexible and can be eased by breaking into stages without sacrificing inference. While530

our approach is not without shortcomings—primarily discounting uncertainty in some531

components—we believe it is a step towards practical implementation of more complex532

movement and resource selection models that can improve our understanding of animal533

movement ecology. Our application provides evidence of dynamic sex-specific partitioning534

of the energy landscape within home ranges, as well as movement and habitat selection535

patterns consistent with eagle biology. While the model works most naturally with central536

place animals, the ability to incorporate multiple home range cores and the range of537

movement and space use patterns that can be captured with the OU parameters make it538

broadly applicable.539
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Figure 2: Summary of the relative bias in the selection coefficient β when estimated

with an Ornstein-Uhlenbeck home range model with movement parameters estimated

offline. The ‘scale’ parameter adjusts the level of spatial autocorrelation over the artificial

landscape movements were simulated on, and ω is a movement parameter. Points are the

average of posterior means computed across 100 simulations ± two standard deviations.
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Figure 3: Posterier means and 90% credible intervals of the popoulation-level movement

parameters in an Ornstein-Uhlenbeck movement model fit to six male and six female

golden eagles with territories in southcentral Alaska. σ is the movement variance; ω the

autocorrelation parameter measuring the centralizing tendency; and α the coefficients in

the Markovian home range core switching process correlating the covariates to staying

in the most used home range core. The models were fit separately for early and late

breeding season.
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Figure 4: Marginal posterior densities of the population-level habitat selection param-

eters showing partitioning of certain habitat types by male and female golden eagles.

These were estimated with an Ornstein-Uhlenbeck space use model for territorial golden

eagles summering in southcentral Alaska. Densities were constructed with 2000 posterior

samples. The reference category used for estimation was ‘bare’.
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Figure 5: Probability of a golden eagle using a spatial location within its breeding season

home range in southcentral Alaska as a function of habitat variables estimated with an

Ornstein-Uhlenbeck (OU) space use model. This is the average effect conditioned on the

space available to each eagle characterized by an OU biased random walk. The model

was fit separately for early and late breeding season and for each sex. Predictions were

smoothed over the availability points with a generalized additive model (df = 4) and

ribbons are 95% confidence intervals. Units are radians for angle of incidence and slope,

and meters for elevation. Higher hill shade corresponds to more direct sun and greater

thermal uplift potential. We present a version of this figure with common y-axis scales

in Appendix 1.
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Figure 6: Marginal posterior densities of population-level hill shade and angle of inci-

dence selection parameters showing partitioning of the energy landscape (thermal and

orographic uplift) by male and female golden eagles during late breeding season. These

were estimated with an Ornstein-Uhlenbeck space use model for territorial golden ea-

gles summering in southcentral Alaska. Densities were constructed with 2000 posterior

samples.
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Figure 7: Hill shade maps and utilization distributions fu(zt∗) predicted from the

Ornstein-Uhlenbeck space use model for territorial golden eagles summering in south-

central Alaska. Predictions were made over a characteristic landscape zt∗ during morning

and afternoon to illustrate differential space use patterns according to thermal uplift.

White corresponds to highest probability of use and black lowest.
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Appendix 1: supplementary tables and figures712

Figure S1: Relative bias in centralizing tendency when estimated with Ornstein-

Uhlenbeck home range model with movement parameters estimated offline. Asterisk

indicates 95% credible set captured the true value in > 70% of the simulations.
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Figure S2: Relative bias in movement variance when estimated with Ornstein-Uhlenbeck

home range model with movement parameters estimated offline. Asterisk indicates 95%

credible set captured the true value in > 70% of the simulations.
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Table S1: Habitat types used in analysis.
AKVWC class habitat type
Bareground bare
Freshwater or Saltwater water
Bareground (Beach or Tide Flat) (Southern Alaska), Herba-
ceous (Marsh) (Interior Alaska, Cook Inlet Basin), Herba-
ceous (Marsh) (Northern and Western Alaska), Herbaceous
(Tidal) (Southern Alaska), Herbaceous (Wet-Marsh) (South-
ern Alaska), Herbaceous (Aquatic), Low Shrub (Tidal)
(Southern Alaska), Herbaceous (Wet-Marsh) (Tidal)

wet

Herbaceous (Mesic) (Interior Alaska, Cook Inlet Basin),
Herbaceous (Mesic) (Northern and Western Alaska), Herba-
ceous (Mesic) (Southern Alaska), Herbaceous (Peatland)
(Southern Alaska), Herbaceous (Wet) (Interior Alaska, Cook
Inlet Basin), Herbaceous (Wet) (Northern and Western
Alaska), Lichen, Moss, Moss (Southern Alaska), Sparse Vege-
tation (Interior Alaska, Cook Inlet Basin), Sparse Vegetation
(Northern and Western Alaska), Tussock Tundra (Low shrub
or Herbaceous), Fire Scar

open

Low Shrub, Low Shrub (Peatland) (Southern Alaska), Dwarf
Shrub, Dwarf Shrub (Southern Alaska), Dwarf Shrub-Lichen,
Dwarf Shrub, or Herbaceous (Mesic) (Southern Alaska), Low
Shrub or Tall Shrub (Open-Closed), Low Shrub/Lichen, Low-
Tall Shrub (Southern Alaska), Tall Shrub (Open-Closed)

shrub

Deciduous Forest (Open-Closed), Deciduous Forest (Open-
Closed) (Seasonally Flooded) (Southern Alaska), De-
ciduous Forest (Woodland-Closed) (Southern Alaska),
Hemlock (Woodland-Closed), Hemlock-Sitka Spruce
(Woodland-Closed), Needleleaf Forest (Open-Closed)
(Seasonally Flooded) (Southern Alaska), Needleleaf Forest
(Woodland-Open) (Peatland) (Southern Alaska), Sitka
Spruce (Woodland-Closed), White Spruce or Black Spruce
(Open-Closed), White Spruce or Black Spruce (Woodland),
White Spruce or Black Spruce-Deciduous (Open-Closed),
White Spruce or Black Spruce/Lichen (Woodland-Open)

forest

Urban, Agriculture, Road human
Ice-Snow ice
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Figure S3: Number of home range cores estimated with a k-means clustering algorithm

for six male and six female golden eagles with territories in southcentral Alaska. The

algortithm was run separately for early and late breeding season.
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Figure S4: Marginal posterior densities of the population-level habitat selection param-

eters showing partitioning of certain habitat types by male and female golden eagles.

These were estimated with an Ornstein-Uhlenbeck space use model for territorial golden

eagles summering in southcentral Alaska. Densities were constructed with 2000 posterior

samples. The snow variable was a dynamic indicator of whether or not a location was

snow-free. The reference category used for estimation was ‘bare’.

41

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 29, 2020. ; https://doi.org/10.1101/2020.10.28.359430doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.28.359430


Figure S5: Full version of figure 4 from main text.

42

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 29, 2020. ; https://doi.org/10.1101/2020.10.28.359430doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.28.359430


Figure S6: Home range sizes predicted from the Ornstein-Uhlenbeck space use model

for territorial golden eagles summering in southcentral Alaska. Home range size was

estimated as the 95% volume contour of the predicted space use distribution.
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Figure S7: Version of figure 5 from the main text with common y-axis scales.
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Figure S8: Example of predicted home range with two core areas. Home range boundary

is the 95% volume contour of the predicted utilization distribution from the OU space

use model. Base map is elevation. All units are meters.
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Appendix 2: code713

Stan model714

data {715

716

int<lower=0> N; // length of track717

vector[N] dt; // time intervals718

vector[2] x[N]; // observed locations719

int<lower=1> K; // number of states720

vector[2] mu[K]; // central points721

int mumu[N]; // ’known’ state sequence722

vector[K] wm[N]; // wind magnitude for each core723

vector[K] wc[N]; // cosine wind direction at each core724

vector[K] ws[N]; // sine wind direction at each core725

matrix[K,K] d_mu; // inter core distance matrix726

}727

728

729

parameters {730

731

real<lower=0> omega[K]; // attraction strength732

real<lower=0> sigma[K]; // diffusion parameter733

matrix[K,K] b; // intercepts734

matrix[K,K] b_wm; // coefficient for wind magnitude735

matrix[K,K] b_d; // coefficient for inter-core distance736

matrix[K,K] b_wc; // coefficient for cos(wind direction)737

matrix[K,K] b_ws; // coefficient for sin(wind direction)738

}739

740

46

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 29, 2020. ; https://doi.org/10.1101/2020.10.28.359430doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.28.359430


741

742

model {743

744

matrix[2,2] Sigma; // var-cov matrix745

matrix[2,2] Omega; // central attraction matrix746

747

for (n in 2:N) {748

749

// state is categorical draw750

mumu[n] ~ categorical_logit( b[,mumu[n-1]] + b_d[,mumu[n-1]].*d_mu[,mumu[n-1]]751

+ b_wm[,mumu[n-1]].*wm[n-1] + b_wc[,mumu[n-1]].*wc[n-1]752

+ b_ws[,mumu[n-1]].*ws[n-1]);753

754

// define movement param matrices755

Sigma[1,1] = sigma[mumu[n]];756

Sigma[1,2] = 0;757

Sigma[2,1] = 0;758

Sigma[2,2] = sigma[mumu[n]];759

760

Omega[1,1] = -omega[mumu[n]];761

Omega[1,2] = 0;762

Omega[2,1] = 0;763

Omega[2,2] = -omega[mumu[n]];764

765

// movement equation766

x[n] ~ multi_normal(mu[mumu[n]] + matrix_exp(Omega*dt[n])767

* ( x[n-1] - mu[mumu[n]] ),768

Sigma - matrix_exp(Omega*dt[n]) * Sigma * matrix_exp(Omega’*dt[n]) );769
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770

}771

772

773

// some priors774

sigma ~ normal(6000000, 1000000);775

omega ~ normal(0, 1);776

to_vector(b_wm) ~ normal(0, 10);777

to_vector(b_ws) ~ normal(0, 10);778

to_vector(b_wc) ~ normal(0, 10);779

to_vector(b_d) ~ normal(0, 10);780

to_vector(b) ~ normal(0, 10);781

782

}783

784

785

generated quantities{786

787

788

matrix[2,2] Sigma;789

matrix[2,2] Omega;790

vector[2] x_av[N];791

792

793

for(i in 2:N){794

795

Sigma[1,1] = sigma[mumu[i]];796

Sigma[1,2] = 0;797

Sigma[2,1] = 0;798
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Sigma[2,2] = sigma[mumu[i]];799

800

Omega[1,1] = -omega[mumu[i]];801

Omega[1,2] = 0;802

Omega[2,1] = 0;803

Omega[2,2] = -omega[mumu[i]];804

805

806

x_av[1] = x[1]; // start somewhere807

808

// this draws available points from posterior predictive809

x_av[i] = multi_normal_rng(mu[mumu[i]] + matrix_exp(Omega*dt[i])810

* ( x[i-1] - mu[mumu[i]] ),811

Sigma - matrix_exp(Omega*dt[i]) * Sigma * matrix_exp(Omega’*dt[i]) );812

813

}814

815

816

817

818

}819

R code820

821

########################################822

### This chunk is done per individual###823

########################################824

825

### samples from posterior of multistate OU model826
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stan.fit = stan("stan_model.stan",827

data = list(x,dt,N,K,mu,mumu,wm,ws,wc,d_mu),828

pars=c(’omega’, ’sigma’,’b’,’b_d’,’b_wm’,’b_wc’,’b_ws’,’x_av’),829

chains = 3,830

iter = 3000,831

warmup = 2000,832

cores = 3,833

control = list(max_treedepth = 13),834

seed = 3) ### retains 3000 samples for inference835

836

837

### draws available points from posterior predictive838

n_av = 5 # 5 available points per used poinst839

840

x.av=matrix(rep(0,n_av), nrow = 1)841

y.av=matrix(rep(0,n_av), nrow = 1)842

843

for(k in 1:N){844

x.av = rbind(x.av,sample(unlist(rstan::extract(stan.fit,845

pars = paste0(’x_av[’,k,’,1]’)),846

use.names=F), n_av))847

y.av = rbind(y.av,sample(unlist(rstan::extract(stan.fit,848

pars = paste0(’x_av[’,k,’,2]’)),849

use.names=F), n_av))850

}851

852

x.av = x.av[-1,]853

y.av = y.av[-1,]854

855
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856

857

858

###################################################859

### This chunk estimates RSF across individuals ###860

###################################################861

862

# use = bernouli used/available863

# snow = binary indicator864

# hab = categogrical habitat types865

# elev_s = centered and standardized elevation866

# slope_s = centered and standardized slope867

# aoi_s = centered and standardized angle of incidence868

# hs_s = centered and standardized hill shade869

# mumu = home range core870

# id = individual id871

# rsf_dat = data frame holding above variables872

873

rsf_bfit = stan_glmer(use ~ id # fixed effect of id to account f874

# or variation in availability among individuals875

+ snow + (0+snow||id/mumu)876

+ hab + (0+hab||id/mumu)877

+ elev_s + (0+elev_s||id/mumu)878

+ slope_s + (0+slope_s||id/mumu)879

+ aoi_s + (0+aoi_s||id/mumu)880

+ hs_s + (0+hs_s||id/mumu)881

+ offset(aniso),882

family=binomial(link=’logit’),883

data = rsf_dat,884
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cores = 4,885

iter = 2500,886

warmup = 1500,887

thin = 2,888

algorithm = ’sampling’,889

init_r = 0.5, ## this helps chains initialize890

adapt_delta = 0.95)891

892

893

894

################################################895

### This function runs the second stage MCMC ###896

################################################897

898

# bj.mat.all -- list of matrices of posterior samples of b’s899

# from stan models (alpha in main text)900

# sxj.mat -- matrix of posterior samples from stan model of901

# sigmax (movement variance)902

# omj.mat -- matrix of posterior samples from stan model of903

# omega (centralizing)904

# n.iter -- number of mcmc iterations; same as stan models if thinned905

# J -- number of individuals906

907

mcmc.fun = function(bj.mat.all,908

sxj.mat,909

omj.mat,910

n.iter,911

J){912

913
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##914

## Containers915

##916

917

mu.save=matrix(,nrow=length(bj.mat.all),ncol = n.iter)918

bj.save=array(,dim=c(nrow(bj.mat.all[[1]]),length(bj.mat.all),n.iter))919

sxj.save=matrix(,nrow(bj.mat.all[[1]]),n.iter)920

omj.save=matrix(,nrow(bj.mat.all[[1]]),n.iter)921

om.save=0922

sx.save=0923

so2.save=0924

sx2.save=0925

s2.save=matrix(,nrow=length(bj.mat.all),ncol = n.iter)926

927

928

##929

## priors and starting values930

##931

932

## priors933

# IG(0.001,1000) on s2934

q=.001935

r=1000936

# N(0,1) on alphas937

mu.0=0938

s2.0=1939

# N+(6000000,10000000^2) on sigmax (same as individ model)940

sss.0=6000000941

sss2.0=1000000^2942
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# N+(0,1) on omega (same as individ model)943

mo.0=0944

sso2.0=1945

946

## starting values947

mu=0948

s2=1949

bj=matrix(,nrow = nrow(bj.mat.all[[1]]), ncol=length(bj.mat.all))950

for(i in 1:length(bj.mat.all)){951

bj[,i]=apply(bj.mat.all[[i]],1,mean)952

mu[i]=mean(bj.mat.all[[i]])953

}954

omj=apply(omj.mat,1,mean)955

om=mean(omj.mat)956

so2=1957

sxj=apply(sxj.mat,1,mean)958

sx=mean(sxj.mat)959

sx2=1960

961

962

963

###964

### MCMC loop965

###966

967

for(k in 1:n.iter){968

969

970

##971
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## Sample s2 (Gibbs updates)972

##973

974

for(i in 1:length(mu)){975

q.tmp=J/2+q976

r.tmp=1/(sum((bj[,i]-mu[i])^2)/2+1/r)977

s2[i]=1/rgamma(1,q.tmp,,r.tmp)978

}979

980

981

##982

## Sample so2 (Gibbs updates)983

##984

985

q.tmp=J/2+q986

r.tmp=1/(sum((omj-om)^2)/2+1/r)987

so2=1/rgamma(1,q.tmp,,r.tmp)988

989

990

##991

## Sample sx2 (Gibbs updates)992

##993

994

q.tmp=J/2+q995

r.tmp=1/(sum((sxj-sx)^2)/2+1/r)996

sx2=1/rgamma(1,q.tmp,,r.tmp)997

998

999

##1000
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## Sample betas (Gibbs updates)1001

##1002

1003

for(i in 1:length(mu)){1004

tmp.var=1/(J/s2[i]+1/s2.0)1005

tmp.mn=tmp.var*(sum(bj[,i])/s2[i]+mu.0/s2.0)1006

mu[i]=rnorm(1,tmp.mn,sqrt(tmp.var))1007

}1008

1009

1010

##1011

## Sample om (Gibbs updates)1012

##1013

1014

tmp.var=1/(J/so2+1/sso2.0)1015

tmp.mn=tmp.var*(sum(omj)/so2+mo.0/sso2.0)1016

om=rtruncnorm(1,a=0,,tmp.mn,sqrt(tmp.var))1017

1018

1019

##1020

## Sample sx (Gibbs updates)1021

##1022

1023

tmp.var=1/(J/sx2+1/sss2.0)1024

tmp.mn=tmp.var*(sum(sxj)/sx2+sss.0/sss2.0)1025

sx=rtruncnorm(1,a=0,,tmp.mn,sqrt(tmp.var))1026

1027

1028

##1029
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## Sample individ-level betas (Metropolis steps)1030

##1031

1032

for(i in 1:length(mu)){1033

bj.star=bj.mat.all[[i]][,k]1034

mh.1=dnorm(bj.star,mu[i],sqrt(s2[i]),log=TRUE)+1035

dnorm(bj[,i],0,sqrt(100),log=TRUE) # individ prior N+(0,10^2)1036

mh.2=dnorm(bj[,i],mu[i],sqrt(s2[i]),log=TRUE)+1037

dnorm(bj.star,0,sqrt(100),log=TRUE)1038

keep.idx=exp(mh.1-mh.2)>runif(J)1039

bj[,i][keep.idx]=bj.star[keep.idx]1040

}1041

1042

1043

##1044

## Sample individ-level sv’s (Metropolis steps)1045

##1046

1047

omj.star=omj.mat[,k]1048

for(i in 1:J){1049

mh.1[i]=log(dtruncnorm(omj.star[i],a=0,,om,sqrt(so2)))+1050

log(dtruncnorm(omj[i],a=0,,mo,sqrt(sso)))1051

mh.2[i]=log(dtruncnorm(omj[i],a=0,,om,sqrt(so2)))+1052

log(dtruncnorm(omj.star[i],a=0,,mo,sqrt(sso)))1053

}1054

keep.idx=exp(mh.1-mh.2)>runif(J)1055

omj[keep.idx]=omj.star[keep.idx]1056

1057

1058
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##1059

## Sample individ-level sx’s (Metropolis steps)1060

##1061

1062

sxj.star=sxj.mat[,k]1063

for(i in 1:J){1064

mh.1[i]=log(dtruncnorm(sxj.star[i],a=0,,sx,sqrt(sx2)))+1065

log(dtruncnorm(sxj[i],a=0,,sss.0,sqrt(sss2.0)))1066

mh.2[i]=log(dtruncnorm(sxj[i],a=0,,sx,sqrt(sx2)))+1067

log(dtruncnorm(sxj.star[i],a=0,,sss.0,sqrt(sss2.0)))1068

}1069

keep.idx=exp(mh.1-mh.2)>runif(J)1070

sxj[keep.idx]=sxj.star[keep.idx]1071

1072

1073

##1074

## Save samples1075

##1076

1077

mu.save[,k]=mu1078

s2.save[,k]=s21079

bj.save[,,k]=bj1080

sxj.save[,k]=sxj1081

omj.save[,k]=omj1082

so2.save[k]=so21083

sx2.save[k]=sx21084

om.save[k]=om1085

sx.save[k]=sx1086

}1087
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list(mu=mu.save,s2=s2.save,bj=bj.save,1088

sxj=sxj.save,omj=omj.save,1089

sx=sx.save,om=om.save,1090

so2=so2.save,sx2=sx2.save)1091

}1092

1093
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