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1 Abstract

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-
Cas systems have revolutionized gene editing, with applications in therapeutics,
diagnostics, agriculture, and developing disease models. However, CRISPR-
Cas suffers from off-target effects — unintended genetic modifications in the
genome that arise from its use. In this work, we present crispr2vec: a deep
metric learning approach for embedding CRISPR single guide RNA (sgRNA)
sequences and predicting off-target cuts. Given a fixed target sequence, we
show that our learned embedding yields a faithful representation of potential
off-targets. We present a new triplet sampling strategy specifically for CRISPR
sequences that improves the quality of our embedding. We show the resulting
embedding generalizes across different off-target cut detection assays. Finally,
we demonstrate the superiority of our deep metric learning method in its ability
to predict off-target cuts compared to previous literature in cross fold validation
across different datasets for both seen and unseen sgRNAs.

†Denotes equal contribution.
∗Corresponding author.
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2 Introduction

Since their description as a genome editing technology, Clustered Regularly
Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated (Cas)
systems [24, 16] have enabled more efficient and effective genome engineering
than was previously possible [34, 11, 41, 22]. The CRISPR-Cas system’s abil-
ity to target specific sequences in DNA and RNA in organisms has led to its
widespread use, with applications of CRISPR-Cas enzymes now including diag-
nostics [5, 25], therapeutics [50, 43, 38], agriculture [20], cell models [14, 7], and
more.

Fundamentally, this technology relies on RNA-guided enzymes that recog-
nize and cut DNA or RNA molecules whose sequence matches the sequence of
a ∼20-nucleotide segment within a guide RNA. CRISPR-Cas9, the first such
system harnessed for genome editing, cuts DNA at positions defined by the
guide sequence in single-guide RNAs (sgRNAs) that were engineered to cre-
ate a simple two-component system for use in cells. Cas9 introduces a blunt
double-stranded cut in DNA within the sequence complementary to the guide
RNA and adjacent to a short protospacer-adjacent motif (PAM) sequence. For
the commonly used Cas protein SpCas9, the PAM sequence is NGG (see Figure
1a for more details). There are now a range of CRISPR systems making use of
different Cas proteins, all of which use guide RNAs [30].

Despite its widespread utility for genome editing applications, CRISPR-Cas9
presents challenges in its sensitivity and specificity. The Cas9 protein does not
always cut all DNA sequences in a cell that are complementary to the sgRNA
guide sequence. Additionally, the Cas9 protein sometimes cuts positions in the
genome that are not fully complementary to the sgRNA sequence [10]; we refer
to these cuts as off-target effects. These off-target effects that can result from
the use of CRISPR-Cas9 can lead to unintended gene alterations. Thus, being
able to predict and control whether a given sgRNA will produce off-target effects
is paramount to any clinical use of CRISPR-Cas9.

There are many in-vitro assays to profile off-target DNA cuts. The most
popular ones include GUIDE-seq [48, 29, 6], which is based on integration of
oligonucleotides into double strand breaks detected by sequencing; Digenome-
seq [21, 27], based on in-vitro nuclease-digested whole-genome sequencing; high-
throughput genome-wide translocation sequencing or HTGTS [18]; BLESS-seq
[40, 45], based on direct in situ break labeling; integration-deficient lentiviral
vectors or IDLV [49]; and CIRCLE-seq [47], which provides a highly sensitive in-
vitro biochemical assay that does not require a reference genome sequence and
can be used to identify off-target mutations associated with cell type-specific
single nucleotide polymorphisms.

Given the combinatorial number of possible CRISPR sequences and off-
target effects, the space of sequences is too large to search. Being able to
predict if an sgRNA will cut other areas of the genome allows a biologist to
quickly eliminate sgRNA sequences and increases confidence around the clin-
ical use of CRISPR. This presents major challenges, since there is not much
data and the relevant features are unclear. Our work thus focuses on in-silico
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profiling, leveraging datasets from several of the aforementioned in-vitro assays.

3 Prior State of the Art

A number of solutions have been presented for the off-target prediction prob-
lem, including Hsu-Zhang [23], Cas-OFFinder [4], CHOPCHOP [35], CFD [15],
CRISPOR [21], CRISTA [1], Elevation [32], DeepCrispr [19], and DeepSpCas9
[28]. Each vary in their chosen searching and scoring algorithms.

• Hsu-Zhang scores [23] predict cleavage of off-target sequences based on
experimental cleavage affinities of mismatches at each position along the
sgRNA and the DNA sequences.

• Cas-OFFinder [4] scalably identifies potential off-target sites by searching
the genome for similar sequences, allowing some number of mismatches in
sequence alignments.

• CHOPCHOP scores [35] offer predictions of off-target binding of sgRNAs
using efficient sequence alignment algorithms.

• CFD scores [15], or “cutting frequency determination” scores, estimate
the likelihood of off-target activity by considering experimentally observed
percentage activity between mismatches on sgRNA sequences and DNA
target sequences.

• For each target sequence, CRISPOR [21] calculates a specificity score
and two efficiency scores. The specificity score captures the likelihood
of off-target cleavage elsewhere in the genome resulting from the target
sequence’s associated sgRNA sequences; they use the Hsu-Zhang score
[23]. The efficiency score captures the likelihood of the target sequence
being cleaved by its associated sgRNA sequences; they use CFD [15] and
CRISPRscan [36].

• CRISTA [1] estimates the propensity for genomic sites to be cleaved by
sgRNA using a gradient-boosted random forest model. In contrast to ear-
lier works, CRISTA [1] considers additional attributes (beyond sequence
alignment) such as spatial structure and rigidity of the site.

• Elevation [32] predicts the “goodness” of sgRNA sequences. The approach
uses a gradient-boosted random forest model to identify target sequences’
off-target pairs and then combines the scores of all off-targets within a
Hamming distance to generate a specificity score.

The last few years have witnessed the rising impact of deep learning, due to
increased computational power, larger dataset sizes, and the ability to model ar-
bitrary functions. In particular, deep learning approaches have proven superior
to previous machine learning methods in fields such as computer vision [31], nat-
ural language processing [12], music generation [13], and speech recognition [37].
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Deep learning has also recently outperformed statistical and classical machine
learning approaches in computational biology, such as predicting the sequence
specificities of nucleic acid binding proteins [3, 51], improving variant calling in
next generation sequencing [39], understanding effects of non-coding sequences
[53, 52], predicting gene expression from histone modification [44], and learning
functional activity of DNA sequences [26]. We refer the reader to [54, 17] for a
more comprehensive overview of deep learning in genomics. Deep learning has
also been applied to better understand the mechanisms of CRISPR.

• Similar to Elevation [32], DeepCrispr [19] captures the “goodness” of an
sgRNA sequence and its effectiveness at knocking out genes. DeepCrispr
[19] fully automates the identification of sequence features and epigenetic
features, using first an auto-encoder to learn sequence embeddings and
then feeding the embeddings into a 9-layer convolutional neural network.

• DeepSpCas9 [28] predicts SpCas9 protein activity; it claims to be more
generalizable than DeepCrispr [19]. DeepSpCas9 [28] compiled a large
lentiviral library, observed sgRNA-directed SpCas9 cleavage of the cell
library, and used that data to train a deep learning-based regression model
to predict SpCas9 activity.

4 Methods

In our analysis of previous literature, we noticed several shortcomings. Our
methods overcome these and depart from the prior state of the art as follows:

• A number of the previous methods require hand-crafted feature engineer-
ing. We learn a distance between sequences parameterized by a deep
neural network, which enables crispr2vec to learn a more robust repre-
sentation of the sequences themselves without the need for hand-crafted
features.

• A key methodological issue with prior approaches is that they frame off-
target detection as a simple classification problem, without consideration
of the target itself. In contrast, crispr2vec considers the target sequence
itself and determines inherent cutting dynamics relative to the target.

• Instead of unifying datasets from different off-target detection assays, we
treat these approaches independently and show that our model is flexible
enough to generalize across them. This is due to crispr2vec learning a
distance from the intended CRISPR target rather than a sequence classi-
fication.

4.1 Datasets

For this paper, we first restricted ourselves to GUIDE-seq [48, 29, 6] data for
target sequences and off-target cut sequences. We only considered unique target-
off-target sequence pairs - that is, the only features we considered come from
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the sequences themselves; not, for example, their location in the genome. We
then used Cas-OFFinder [4] to find sequences in the genome that are within
a Hamming distance of 6 from the target sequence under consideration. We
filtered out target-off-target sequence pairs from Cas-OFFinder that overlapped
with pairs in the GUIDE-seq data set to get a final list of non-cut off-target
sequences. This left us with 395 unique off-target cut sequences (Figure 1b)
and 206,206 unique off-target non-cut sequences (Figure 1c) across 14 target
sequences. In addition, for the purposes of training and testing, we filtered out
target sequences that were associated with too few unique off-target cuts.

Later, we pulled cleavage data from the union of GUIDE-seq and CIRCLE-
seq [47] data in order to examine the ability of our method to generalize to
other off-target cut detection assays. We chose the CIRCLE-seq assay in par-
ticular due to the large number of off-targets detected (which makes it more
amenable to our deep learning approach), as well as its greater sensitivity than
GUIDE-seq (since off-targets found in GUIDE-seq are effectively a subset of
those in CIRCLE-seq). Again, we only considered unique target-off-target se-
quence pairs. Our non-cut target-off-target sequence pairs came from filtered
Cas-OFFinder data that did not overlap with pairs in the GUIDE-seq and
CIRCLE-seq data. This left us with 5,684 unique off-target cut sequences (Fig-
ure S1a) and 217,855 unique off-target non-cut sequences (Figure S1b) across
18 target sequences. In addition, for the purposes of training and testing, we
filtered out target sequences that were associated with too few unique off-target
cuts.

Each DNA sequence was one-hot encoded into an array of integers that could
be input into our model. (See Figure 2a for an example encoding).

For each target sequence, we generated 4 one-hot encodings; one for each
A/T/G/C sequence variation. For each off-target sequence, we generated a
single one-hot encoding.

4.2 Model

Recent literature for CRISPR off-target predictions focuses on directly classi-
fying off-target sequences for a particular sgRNA. The contrasts with another
approach called metric learning, which is the task of learning a distance func-
tion between objects in data. We hypothesized that metric learning is a more
natural way to frame the problem for the following reasons:

• Off-target sites that are cut are presumably “close” to the desired on-
target cut site with an appropriate distance metric.

• The classification regime does not naturally take into consideration the
desired on-target sequence.

• Metric learning easily admits the use of deep learning to learn a distance
between CRISPR sequences.

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2020. ; https://doi.org/10.1101/2020.10.28.359885doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.28.359885
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a) CRISPR cutting mechanism.

(b) Number of unique cut sequences per
target sequence in GUIDE-seq.

(c) Number of unique non-cut sequences
per target sequence in GUIDE-seq.

Figure 1: CRISPR cut sites.

• Metric learning models are famous few-shot learners, i.e. they still achieve
state of the art performance where each category is represented by only a
few examples.

We use triplet loss, a metric learning approach that enables use of a neural
network to generate an embedding that produces distances between sequences
(Figure 2b). This was first introduced in the context of face recognition [42].
Deep metric learning approaches have shown wide applicability, ranging from
face re-identification [9, 8] to computational biology [2] and perform strongly in
recognition and one-shot learning tasks. At each step in the training process,
triplets of data are passed into the model. In our case, the triplets are the
intended cut site (termed the “anchor”), off-target cut site identified by GUIDE-
seq and CIRCLE-seq (“positive example”), and off-target non-cut site identified
by Cas-OFFinder [4] (“negative example”). The goal of the training step is to
minimize the learned distances between the intended cut sites and the off-target
cut sites, while maximizing the learned distances between the intended cut sites
and the off-target non-cut sites. (See Supplementary methods section 1.2 for
more information).

Given the loss function for which we are optimizing, choosing which triplets
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(a) One hot encoding of nucleotide tar-
gets.

(b) Architecture of the triplet loss
model used to embed sequences: a two-
layer ReLU neural network. Sequence
data is one hot encoded, then passed
into successive layers with rectified lin-
ear unit activations.

(c) As the triplet network trains, a distance function is learned such that positive
examples get pushed closer to the anchor and negative examples get pushed
away from it. Figure from [42].

Figure 2: Summary of our data processing platform.

to pass into the network can be the difference between a highly expressive model
and a degenerate one. Much of the existing literature on this topic focuses
on methods for semi-hard triplet mining, both in offline (precomputed) and
online (estimated with each batch) settings. We use a novel triplet sampling
method that we term smart mining, which samples sequences in accordance
to their biological feasibility in the CRISPR off-target prediction problem. (See
Supplementary methods section 1.2.1 for more information).

We performed cross validation to assess the performance of our model rel-
ative to state of the art baselines. (See Supplementary methods sections 1.2.2
and 1.2.3) for more information).

5 Results

See Table S1 for a summary of all crispr2vec results (including AUC-ROC values,
precision values, recall values, and F1 scores).

5.1 Testing on Seen sgRNAs

We started by considering only GUIDE-seq for positive examples. With a mar-
gin hyperparameter α of 1.0, the loss function quickly converged (Figure 4a).
For each fold, we examined the calculated distances between anchors to posi-
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(a) Seen sgRNA baseline comparisons.

(b) Unseen sgRNA baseline comparisons.

Figure 3: Comparison of AUC-ROC values for crispr2vec trained on GUIDE-seq
data versus baseline models.

tive examples and anchors to negative examples in the held-out test set (Figure
4b). This was a useful indicator for how well the model had learned embed-
dings and, by extension, distances between sequences. We performed an area
under the receiver operating characteristic curve (AUC-ROC) analysis on the
cross validation experiment. AUC-ROC is a performance metric that captures
how much the model is able to distinguish between classes. The higher the
AUC-ROC value, the better the model is at classifying cut sequences as cut
sequences and non-cut sequences as non-cut sequences (note that random per-
formance corresponds to an AUC-ROC of 0.50). The average AUC-ROC value
was 0.96, with a standard deviation of 0.012 (Figure 3a, Table S1). We com-
pared crispr2vec to the aforementioned baseline models and classical machine
learning methods. We do not compare to methods such as deepCRISPR [19],
DeepSpCas9 [28], and Elevation [32]. We note that while these methods would
theoretically serve as good benchmarks for our method, they both use different
data sources (for instance, integration of epigenetics) and the trained models
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these papers provide online are trained on guide-RNAs contained in the test set
for our method in each scenario.

5.1.1 Smart Mining

Next, we added smart mining (refer to Supplementary section 1.2.1) to see if
it enhanced the model’s ability to classify sequences. With a margin hyperpa-
rameter α of 1.0, the loss function quickly converged (Figure 4c). For each fold,
we examined the calculated distances between anchors to positive examples and
anchors to negative examples in the held-out test set. We noticed that the
spread of anchor-to-negative-example distances was much larger for the smart
mining model (Figure 4d) than for the base triplet loss model (Figure 4b). In
addition, the difference between the mean of the anchor-to-positive-example dis-
tances and the mean of the anchor-to-negative-example distances for the smart
mining model (Figure 4d) was much larger than that of the base triplet loss
model (Figure 4b). The average AUC-ROC value was 0.99, with a standard de-
viation of 0.0041 (Table S1). When testing on seen target sequences, the triplet
loss model that employed smart mining had a higher AUC-ROC than did the
base triplet loss model (Figure 3a).

We employed the t-distributed stochastic neighbor embedding (t-SNE) [33]
algorithm to visualize the embeddings learned by crispr2vec. We visualized the
embeddings of training and testing data for target sequences (Figure 4e, 4f).

When comparing with baseline models, we found that crispr2vec with smart
mining had the highest AUC (Figure 3a).

5.2 Testing on Unseen sgRNAs

We wanted to validate crispr2vec on unseen guide sequences, as this scenario
most closely resembled clinical application. As mentioned in Supplementary
section 1.2.2, not all target sequences are appropriate candidates to leave out.
In the case of GUIDE-seq data, one sequence fit our description: GGTGAGT-
GAGTGTGTGCGTGNGG.

We trained logistic regression, SVM, and DNN models on the remaining
data and calculated performance metrics for the left-out sequence’s data. We
chose to compare only to classical machine learning baseline models because the
previous state of the art models were trained on our testing sequences. Thus,
comparing to these models would not be appropriate.

We noticed that the difference between the mean of the anchor-to-positive-
example distances and the mean of the anchor-to-negative-example distances
for the base mining model (Figure S4b) looked very similar, if not better than,
that of the smart mining model (Figure S4d).

The average AUC-ROC value was 0.91, with a standard deviation of 0.025,
for the base triplet loss model; the average AUC-ROC value was 0.88, with a
standard deviation of 0.031, for the smart mining model (Table S1). When
testing on unseen sgRNAs, the base triplet loss model had a slightly higher
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AUC-ROC than did the triplet loss model that employed smart mining (Figure
3b).

When comparing with baseline models, we found that crispr2vec without
smart mining had the 2nd highest AUC (Figure 3b).

5.3 Cross assay generalization: CIRCLE-seq

We wanted to examine how well the embeddings learned by crispr2vec trained
on one off-target detection assay translated to another. We split GUIDE-seq and
CIRCLE-seq data into their respective symmetric differences. We trained one
triplet loss model on GUIDE-seq off-target sequences that are not contained
in CIRCLE-seq data. We trained another triplet loss model on CIRCLE-seq
off-target sequences that are not contained in GUIDE-seq data. We tested the
models on the off-target sequences contained in both GUIDE-seq and CIRCLE-
seq. We visualized learned embeddings of training and testing set data for target
sequences across the different models (Figure S5 depicts visualizations for one
particular sequence).

For each model, we calculated the distances between pairs of cut sequences
in the testing set. We correlated the distances learned by the model trained on
GUIDE-seq to the distances learned by the model trained on CIRCLE-seq data.
The Spearman coefficient between the learned distances was 0.60, the Pearson
coefficient was 0.55, and the Kendall tau was 0.42 (Figure 5a). The distribution
of distances learned by both models resemble each other (Figure 5b).

6 Discussion

crispr2vec outperforms both prior art and traditional machine learning methods,
with high AUC-ROC, in the seen sgRNA context. Smart mining improves the
model further, increasing the AUC from 0.96 to 0.99 (Figure 3a). Smart mining
appeared to drive the positive examples closer to the anchor and the negative
examples further away from the anchor (Figure 4d). The reported results for
prior art can be considered an upper bound for their performance, as these
models were trained on the testing data.

In the unseen sgRNA context, crispr2vec outperforms all traditional machine
learning methods. Smart mining did not improve performance as it did in the
seen guide RNA case. We postulate that this is because of patterns unique to the
left-out target sequence’s data that are not captured by the training data. Smart
mining accentuates the patterns unique to the left-out target sequence’s data
that is not captured by the training data. This a statistical artifact resulting
from the fact that the total distribution of mismatches in GUIDE-seq data is
quite different than the distribution of mismatches in GUIDE-seq data for just
the unseen sequence (Figure S2c). A big limitation here is the limited amount
of training data available.

The unseen sgRNA scenario warrants further explanation. crispr2vec out-
performed all baseline models except Hamming distance (Figure 3b). While
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Hamming distance is an interesting theoretical baseline, it’s not particularly
useful in practice. Hamming distance classifies too many true non-cuts as cuts;
its specificity is too high.

In all cases, crispr2vec outperformed the traditional neural network baseline.
The DNN was a multi-layer dense neural network with the same architecture
as crispr2vec; but it takes as input a single off-target sequence and outputs a
classification as cut/not-cut. This reinforced our choice of a metric learning
approach, since incorporating the intended target into our training enhanced
the performance of the neural network.

Our model was, indeed, flexible enough to capture the inherent cutting dy-
namics of the sequences. The distribution of distances learned by crispr2vec
on GUIDE-seq data closely resembled the distribution of distances learned by
crispr2vec on CIRCLE-seq data (Figure 5b). The Spearman correlation for the
distances learned by crispr2vec was comfortably above 0.5 (Figure 5a). We are
learning comparable sequence distances and embeddings between the two as-
says. Thus, the distances learned by our model may be able to be agnostic to
the assay from which the data originates.

Further, any linear transform from a pair of one-hot encoded vectors can
be thought of as a weighted inhomogenous Hamming distance between two
sequences. In this case, since we use ReLUs instead of linear transforms, we
have essentially learned a weighted inhomogenous Hamming distance between
sequences. To the best of our knowledge, such a model has not been used
elsewhere.

Overall, crispr2vec achieved an average AUC-ROC value of 0.99 when testing
on seen target sequences and 0.91 when testing on unseen target sequences. The
latter results, in particular, exceed the reported state-of-the-art in CRISPR off-
target modeling. The learned embeddings generalize across other detection
assays and may be useful for other tasks, such as the prediction of CRISPR
sgRNA sensitivity to a target site.

7 Conclusion

We presented crispr2vec, which CRISPR-like sequences. We employed a metric
learning approach, for which we introduced a offline, smart triplet sampling
strategy. We demonstrated superiority over previous state-of-the-art methods
in predicting CRISPR off-target effects. Finally, we showed the potential for
our learned embeddings to generalize across off-target detection assays.

This work lends itself naturally to a number of future investigations. We
posit that the integration of additional features, such as location and epigenet-
ics, would augment the embeddings learned by crispr2vec. We plan to expand
our model to incorporate convolutions and sequence-based modeling to improve
performance and generalization further. The datasets could be expanded to
more assays, more model organisms, and other CRISPR-Cas systems to fur-
ther explore whether a trained triplet loss model is generalizable. Additionally,
applying new machine learning interpretability tools to our model may further
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illuminate the underlying biology of the cutting dynamics of CRISPR-Cas sys-
tems captured by crispr2vec. In addition, we could use the learned embeddings
to predict CRISPR sensitivity for guide-target affinities.

Time and again, interdisciplinary areas have moved forward with the in-
corporation of work in other applied fields. We hope that this work encourages
more such creativity, especially as the rise of CRISPR-based therapeutics makes
the need for predicting cleavage patterns more immediate and urgent.
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(a) Calculated loss over iterations of
training phase. crispr2vec trained on
GUIDE-seq data.

(b) Histogram of predicted distances
between anchors to positive exam-
ples and anchors to negative examples.
crispr2vec trained on GUIDE-seq data.

(c) Calculated loss over iterations of
training phase. crispr2vec trained on
GUIDE-seq data with smart mining.

(d) Histogram of predicted distances
between anchors to positive exam-
ples and anchors to negative examples.
crispr2vec trained on GUIDE-seq data
with smart mining.

(e) t-SNE visualization of training
and testing data for a particular seen
sgRNA. crispr2vec trained on GUIDE-
seq data with smart mining.

(f) t-SNE visualization of training and
testing data for a particular seen
sgRNA. crispr2vec trained on GUIDE-
seq and CIRCLE-seq data with smart
mining.

Figure 4: 5-fold cross validation of crispr2vec with and without smart mining.
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(a) Standard deviations for each coeffi-
cient are provided in parentheses.

(b) Histogram of learned distances.

Figure 5: Distances between the embeddings of target sequences and off-target
cuts learned by a base triplet loss model trained on GUIDE-seq data compared
to those learned by a base triplet loss model trained on CIRCLE-seq data.
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