Table S1: SAXS data collection, analysis and derived structural parameters

Construct	lg1lg2 ²⁵⁰⁻⁴⁴⁴ *	lg1lg2 ²⁵⁰⁻⁴⁹⁸	lg1lg2 ²²⁰⁻⁴⁵²	Trx-MYOT	lg1lg2 ^{220-452†}	lg1lg2 ²²⁰⁻⁴⁵² R405K	
Data collection p	parameters						
Radiation source	ESRF (Grenc	ESRF (Grenoble, France)		DESY (Hamburg, Germany)			
			Doris		Petra III		
Beamline	BM29 BioSAXS		EMBL X33		EMBL P12		
Detector Beam geometry	Pilatus 1M		Pilatus 1M-W	Pilatus 2M	Pilatus 6M		
[mm, FWHM]	0.10 × 0.20		n.d.	0.12×0.20	0.12 × 0.20		
Wavelength [nm]	0.099		0.126	0.124	0.124		
Sample–detector distance [m]	2.867		2.7	3.1	3.0		
Momentum of transfer s range [nm ⁻¹]	0.04–4.0		0.1–6.0	0.08–3.5	0.15–7.3		
Exposure time [s]	15		15	1 (SEC-SAXS)	0.145		
Temperature [°C]		20		20	20		
Buffer	20 mM HEPES, 150 mM NaCl, 5% glycerol, 1 mM DTT, pH 7.4		20 mM MES, 200 mM NaCl, 3% glycerol, pH 6.0 arginine, 5% glycerol, pH 7.5		20 mM HEPES, 150 mM NaCl, 5% glycerol, 1 mM DTT, pH 7.4		
Overall paramet	ers:						
Conc. range measured ^{\$}	1–14.12 mg/ml (0.05–0.64 mM)	1–42.8 mg/ml (0.04–1.53 mM)	1–52 mg/ml (0.04–1.96 mM)	n.a.	2.1–36.6 mg/ml (0.08–1.38 mM)	2.3–45.5 mg/ml (0.09–1.72 mM)	
R _g (Guinier) [Å]	28 (0.64 mM)	32 (0.54 mM)	31 (0.04 mM)	51	30 (0.08 mM)	33 (0.09 mM)	
		37 (1.53 mM)	37 (0.79 mM)		33 (0.19 mM)	34 (0.27 mM)	
			39 (1.96 mM)		33 (0.37 mM)	34 (0.47 mM)	
					34 (0.69 mM)	35 (0.82 mM)	
					36 (1.38 mM)	36 (1.72 mM)	
R_g from PDDF [Å]	29 (0.64 mM)	34 (0.54 mM)	32 (0.04 mM)	53	33 (0.08 mM)	34 (0.09 mM)	
		38 (1.53 mM)	39 (0.79 mM)		34 (0.19 mM)	36 (0.27 mM)	
			41 (1.96 mM)		35 (0.37 mM)	36 (0.47 mM)	
					37 (0.69 mM)	37 (0.82 mM)	
					37 (1.38 mM)	38 (1.72 mM)	
D _{max} [Å]	101 (0.64 mM)	140 (0.54 mM)	107 (0.04 mM)	200	115 (0.08 mM)	120 (0.09 mM)	
	,	152 (1.53 mM)	151 (0.79 mM)		125 (0.19 mM)	130 (0.27 mM)	
		,	152 (1.96 mM)		130 (0.37 mM)	140 (0.47 mM)	
			101 (200)		140 (0.69 mM)	140 (0.82 mM)	
					140 (1.38 mM)	140 (1.72 mM)	
M (PALLS) [bDa]	n a	n a	n a	70			
M_w (RALLS) [kDa] M_w (DATMOV)	n.a. 24.3 (0.64 mM)	n.a. 31.2 (0.54 mM)	n.a. 27.3 (0.04 mM)	63.7	n.a. 30.8 (0.08 mM)	n.a. 29.1 (0.09 mM)	
[kDa]	24.3 (0.04 IIIIVI)			03.7			
		44.7 (1.53 mM)	44.7 (0.79 mM)		30.7 (0.19 mM)	31.9 (0.27 mM)	
			58.1 (1.96 mM)		33.7 (0.37 mM)	35.6 (0.47 mM)	
					37.8 (0.69 mM)	40.6 (0.82 mM)	
					43.2 (1.38 mM)	45.7 (1.72 mM)	

(continued)

(continued)

Construct	lg1lg2 ²⁵⁰⁻⁴⁴⁴ *	lg1lg2 ²⁵⁰⁻⁴⁹⁸	lg1lg2 ²²⁰⁻⁴⁵²	Trx-MYOT	lg1lg2 ^{220-452[†]}	lg1lg2 ²²⁰⁻⁴⁵² R405K	
M _w from Porod	21.4 (0.64 mM)	26.4 (0.54 mM)	27.5 (0.04 mM)	77.3	26.9 (0.08 mM)	24.5 (0.09 mM)	
volume [kDa]		37.9 (1.53 mM)	36.7 (0.79 mM)		25.9 (0.19 mM)	26.3 (0.27 mM)	
			48.2 (1.96 mM)		28.3 (0.37 mM)	29.6 (0.47 mM)	
					30.9 (0.69 mM)	33.6 (0.82 mM)	
					36.2 (1.38 mM)	38.2 (1.72 mM)	
M _w (monomer sequence) [kDa] ^{&}	21.9	28.0	26.5	69.7	26.5	26.5	
Software employe	ed						
Primary data red.	SaxsAnalysis pipeline system			SASFLOW	SaxsAnalysis pipeline system		
Data processing		PRIMUS			PRIMUS		
Calculation and comparison of scattering data		Crysol / Oligomer			n. a.		
Ab initio modelling		DAMMIF			n. a.		
Addition of missing residues		CORAL			n. a.		
Ensemble modelling		EOM			n. a.		
SASDB accession code	SASDF38	SASDF48	SASDF28	SASDFZ7			

^{*,} the data for Ig1lg2²⁵⁰⁻⁴⁴⁴ were already measured and described previously (Puz et al., 2017)

^{\$,} for Ig1Ig2^{250.498} and Ig1Ig2^{220.452} structural parameters at various concentrations, relevant for the comparison, were calculated separately

 $^{^{\&}amp;}$, M_{w} (monomer sequence) denotes molecular weight calculated from the amino acid sequence of the monomeric species

^{†,} measured at the same experimental settings/conditions as $lg1lg2^{220-452\,R405K}$

Table S2: List of major cross-links found between myotilin and F-actin (using DMTMM)

(C) 185 192 498 (A) [g1]-[g2] (B) Ig1 Ig2 Myotilin constructs used Myotilin From From То То Myotilin fragment Score region **Protein** Residue Protein Residue identified myotilin K 474 actin E 102 C-ter. С 212.6 С myotilin K 462 actin D 27 C-ter. 199.5 K 411 D 27* lg2 A, B A) 157.5, B) 175.5 myotilin actin С myotilin K 469 actin E 102 C-ter. 169.4 B, C myotilin D 236 actin K 330 N-ter. B) 138.4, C) 76.2 myotilin D 236 K 328* В 134.9 actin N-ter. B, C B) 105.9, C) 111.2 myotilin K 246 actin E 336 N-ter. В 107.1 myotilin E 245 actin K 330 N-ter. C myotilin K 246 actin D 26 N-ter. 106.3 C myotilin K 452 actin D 27* C-ter. 103.9 В myotilin D 241 actin K 330* N-ter. 102.4 С myotilin K 469 actin D 26* C-ter. 102.0 K 452 С 100.9 myotilin actin D 26 C-ter. myotilin D 239 actin K 330* N-ter. В 97.0 В myotilin D 239 actin K 328 N-ter. 88.1 K 474 С 84.6 myotilin actin D 27 C-ter. С K 474 E 336* 82.7 myotilin actin C-ter. myotilin D 241 K 328* В 78.2 actin N-ter. С K 462 D 26* C-ter. 77.7 myotilin actin myotilin K 354 actin D 27* lg2 С 76.7 K 246 B, C B) 54.5, C) 73.9 myotilin actin D 27* N-ter. myotilin K 415 A, B A) 66.1, B) 57.6 actin D 27 lg2 myotilin K 303 actin D 27* lg1 Α 65.9 K 367 В myotilin actin D 365 lg2 63.6 myotilin K 367 actin E 366 lg2 В 60.2 С myotilin K 452 actin E 363 C-ter. 48.2 myotilin K 411 actin D 26 lg2 Α 47.8 K 474 D 26 C 35.4 myotilin actin C-ter.

^{*,} cross-links shown on Figure 3A; N-ter., region flanking lg1lg2 N-terminally; C-ter., region flanking lg1lg2 C-terminally; Score, computed as -10 log10 (E-value) representing best identification for a crosslink pair. The higher values of the score indicate more reliable identifications.

Table S3: List of constructs

Name	⁽¹⁾ Protein	Residues	Mutations	Vector	⁽²⁾ Tag	Expression in	Origin
Trx-MYOT	myotilin	1-498	-	pETM-20	N-Trx-His ₆ -TEV	E. coli	this study
Trx-MYOT-NEECK	myotilin	1-498	F96E, L97E, L101E	pETM-20	N-Trx-His ₆ -TEV	E. coli	this study
lg1lg2 ¹⁸⁵⁻⁴⁹⁸	myotilin	185-498	-	pETM-20	N-Trx-His ₆ -3C C-Strep	E. coli	this study
(3) g1 g2 ¹⁸⁵⁻⁴⁹⁸ *	myotilin	185-498	-	pDB-HisGST	N-His ₆ -GST-TEV	E. coli	this study
lg1lg2 ²²⁰⁻⁴⁵²	myotilin	220-452	-	pETM-14	N-His ₆ -3C	E. coli	this study
lg1lg2 ²²⁰⁻⁴⁵² R405K	myotilin	220-452	R405K	pETM-14	N-His ₆ -3C	E. coli	this study
(4)lg1lg2 ²⁵⁰⁻⁴⁹⁸	myotilin	250-498	-	pETM-14	N-His ₆ -3C	E. coli	this study
lg1lg2 ²⁵⁰⁻⁴⁴⁴	myotilin	250-444	-	pETM-14	N-His ₆ -3C	E. coli	Puz et al., 2017
lg1lg2 ^{K354A}	myotilin	250-444	K354A	pETM-14	N-His ₆ -3C	E. coli	this study
lg1lg2 ^{Q356A}	myotilin	250-444	Q356A	pETM-14	N-His ₆ -3C	E. coli	this study
lg1lg2 ^{K358A}	myotilin	250-444	K358A	pETM-14	N-His ₆ -3C	E. coli	this study
lg1lg2 ^{K359A}	myotilin	250-444	K359A	pETM-14	N-His ₆ -3C	E. coli	this study
lg1lg2 ^{K367A}	myotilin	250-444	K367A	pETM-14	N-His ₆ -3C	E. coli	this study
lg1lg2 ^{R405K}	myotilin	250-444	R405K	pETM-14	N-His ₆ -3C	E. coli	this study
lg1lg2 ^{K411A}	myotilin	250-444	K411A	pETM-14	N-His ₆ -3C	E. coli	this study
lg1lg2 ^{K354/359A}	myotilin	250-444	K354A, K359A	pETM-14	N-His ₆ -3C	E. coli	this study
lg1lg2 ^{K354/358/359A}	myotilin	250-444	K354A, K358A, K359A	pETM-14	N-His ₆ -3C	E. coli	this study
lg1 ²⁵⁰⁻³⁴⁴	myotilin	250-344	-	pET-3d(+)	N-His ₆ -TEV	E. coli	this study
lg2 ³⁴⁹⁻⁴⁵⁹	myotilin	349-459	-	pET-3d(+)	N-His ₆ -TEV	E. coli	this study
MYOT ^{WT}	myotilin	1-498	-	pEGFP-N1	N-EGFP	C2C12	this study
MYOT ^{K354A}	myotilin	1-498	K354A	pEGFP-N1	N-EGFP	C2C12	this study
MYOT ^{K359A}	myotilin	1-498	K359A	pEGFP-N1	N-EGFP	C2C12	this study
MYOT ^{K354/359A}	myotilin	1-498	K354A, K359A	pEGFP-N1	N-EGFP	C2C12	this study
MYOT ^{K354/358/359A}	myotilin	1-498	K354A, K358A, K359A	pEGFP-N1	N-EGFP	C2C12	this study
ACTN2-WT	α-actinin-2	1-894	-	pET-3d(+)	N-His ₆ -TEV	E. coli	Ribeiro et al. 2014
ACTN2-NEECK	α-actinin-2	1-894	R268E, I269E, L273E	pET-3d(+)	N-His ₆ -TEV	E. coli	Ribeiro et al.
ACTN2-EF14	α-actinin-2	746-894	-	pETM-14	N-His ₆ -3C	E. coli	this study
palladin Ig3	palladin	1022- 1126	-	pTBSG	N-His ₆ -TEV	E. coli	Yadav et al., 2016
Doc2b	Doc2b	125-412	-	pGEX4T1	N-GST-Thr	E. coli	Groffen et al., 2010
DVD-actin	actin-5C	1-376	D287A, V288A, D289A	pFastBacHT	N-His ₆	Sf9	Zahm et al., 2013
tropomyosin	tropomyosin					E. coli	von der Ecker et al., 2015

^{(1),} myotilin (human, Uniprot-ID Q9UBF9); α -actinin-2 (human, P35609), palladin (Mus musculus, Q9ET54), Doc2b (Rattus norvegicus, P70610), actin-5C (Drosophila melanogaster, P10987), tropomyosin (Tpm1.1st, Homo sapiens, NP_001018005.1)

^{(2),} in many cases removed during purification; N, N-terminal fusion; Trx, Thioredoxin-tag; His₆, 6xHis-tag, TEV; TEV protease cleavage site; 3C, HRV-3C protease cleavage site; C, C-terminal fusion; Strep, Strep-tag II; Thr, thrombin cleavage site, GST, Glutathione s-transferase-tag; EGFP, Enhanced green fluorescent protein-tag

^{(3),} $lg1lg2^{185-498*}$ was used to produce $lg1lg2^{185-454}$, and GST

^{(4),} $lg1lg2^{250-498}$ was used to produce $lg1lg2^{250-466}$