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Abstract. About 5-10% of the human genome remains inaccessible for functional analysis due to the
presence of repetitive sequences such as segmental duplications and tandem repeat arrays. To enable
high-quality resequencing of personal genomes, it is crucial to support end-to-end genome variant
discovery using repeat-aware read mapping methods. In this study, we highlight the fact that existing
long read mappers often yield incorrect alignments and variant calls within long, near-identical repeats,
as they remain vulnerable to allelic bias. In the presence of a non-reference allele within a repeat, a read
sampled from that region could be mapped to an incorrect repeat copy because the standard pairwise
sequence alignment scoring system penalizes true variants.

To address the above problem, we propose a novel, long read mapping method that addresses allelic
bias by making use of minimal confidently alignable substrings (MCASs). MCASs are formulated as
minimal length substrings of a read that have unique alignments to a reference locus with su�cient
mapping confidence (i.e., a mapping quality score above a user-specified threshold). This approach treats
each read mapping as a collection of confident sub-alignments, which is more tolerant of structural
variation and more sensitive to paralog-specific variants (PSVs) within repeats. We mathematically
define MCASs and discuss an exact algorithm as well as a practical heuristic to compute them. The
proposed method, referred to as Winnowmap2, is evaluated using simulated as well as real long read
benchmarks using the recently completed gapless assemblies of human chromosomes X and 8 as a
reference. We show that Winnowmap2 successfully addresses the issue of allelic bias, enabling more
accurate downstream variant calls in repetitive sequences. As an example, using simulated PacBio HiFi
reads and structural variants in chromosome 8, Winnowmap2 alignments achieved the lowest false-
negative and false-positive rates (1.89%, 1.89%) for calling structural variants within near-identical
repeats compared to minimap2 (39.62%, 5.88%) and NGMLR (56.60%, 36.11%) respectively.

Winnowmap2 code is accessible at https://github.com/marbl/Winnowmap
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1 Introduction

Advances in single-molecule sequencing technologies have inspired community e↵orts to produce
high-quality human genome assemblies with accurate resolution of repetitive DNA. The complete,
gapless, telomere-to-telomere (T2T) assembly of a human chromosome X is a recent breakthrough
that involved assembling a 3.1 Mbp long centromeric satellite DNA array [1]. Similarly, a T2T
assembly of human chromosome 8 spanned a 2.1 Mbp long centromere and the 0.6 Mbp long defensin
gene cluster for the first time [2]. Such developments are steering genomics into an exciting new
era where repeats that were previously thought intractable (e.g., segmental duplications, satellite,
and ribosomal DNAs) will no longer remain out of reach. Genomic variants, expected to be in
higher abundance within and near repetitive DNA, may be contributing to complex traits such as
lifespan and disease [3–5]. PacBio and Oxford Nanopore (ONT) sequencing, due to their orders
of magnitude longer read lengths than Illumina, can easily span many common duplications (e.g.,
LINEs) in the human genome. However, accurate long read mapping within > 100 kbp-sized repeats
remains challenging.

Prior algorithmic developments for long read mapping have been crucial to resolving many
repetitive sequences and complex variants. As such, several specialized methods have been published
to improve long-read match seeding and extension [6–17]. The extension stage typically involves the
optimization of a base-to-base alignment score which rewards matching bases while appropriately
penalizing gaps and mismatches. However, these alignment scores do not always favor the correct
loci in long near-identical repeats, because reads that include non-reference alleles will be penalized
and their true loci may score worse than other copies of the repeat. Occurrence of this allelic
bias (a.k.a. reference bias) and its e↵ect on estimates of variation and allele frequencies has been
extensively discussed in the literature [18–23]. An analogous problem also occurs during genome
assembly validation and polishing when reads are mapped back to a potentially erroneous draft
assembly [1, 24].

Compared to point mutations or short indels, structural variants (SVs) a↵ect more bases in
the genome due to their larger size, and therefore, are bigger contributors to allelic bias. Most
existing solutions to address this bias involve modifying the reference sequence, e.g., by adopting
a graph-based representation which incorporates known genomic variation [20, 25–27]. While this
remains a promising and complementary direction, here we seek to address allelic bias by developing
a new long read mapping method that is robust to the presence of novel variation. In our proposed
method, referred to as Winnowmap2, we introduce the concept of minimal confidently alignable
substrings (MCASs), which are minimal-length read substrings that align end-to-end to a reference
with mapping quality score above a user-specified threshold. Through MCASs, we can identify the
correct mapping target of a read by considering the substrings that do not overlap non-reference
alleles. In theory, the mapping quality of each substring quantifies the probability that it is correctly
placed [28]. This framework draws advantage from paralog-specific variants (PSVs) [29, 30], which
allow us to di↵erentiate repeat copies from each other and identify the MCAS. We provide a formal
definition of MCAS, an exact dynamic programming algorithm to compute them, as well as fast
heuristics to scale this method to large mammalian genomes.

Winnowmap2 was empirically validated using both simulated and real human genome sequenc-
ing benchmarks. In both cases, we judge Winnowmap2 along with the currently available long
read mappers by the downstream accuracy of SV calls produced by the SV caller Sni✏es [10]. The
simulation uses SURVIVOR’s SV benchmarking tool [31] which mutates a reference sequence (in
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our case, the first two completed human chromosomes 8 and X). Winnowmap2 alignments con-
sistently enabled the most accurate SV calls using both ONT and PacBio HiFi data at varying
coverage levels, when compared to other commonly used long read mappers. Using simulated HiFi
reads from chromosome 8 (146 Mbp) sampled at 40x coverage, Winnowmap2, minimap2 and ngmlr
achieved accuracy scores, i.e., false-negative and false-positive rates (FNR, FPR) of (0.09%, 0.18%),
(3.36%, 0.93%) and (3.64%, 2.93%) respectively. Winnowmap2’s improved handling of allelic bias
was particularly evident within 7 Mbp of the most repetitive regions of chromosome 8, achieving
(FNR, FPR) scores of (1.89%, 1.89%) in these regions compared to (39.62%, 5.88%) for minimap2
and (56.60%, 36.11%) for ngmlr, respectively. Winnowmap2 also achieved favorable accuracy on
the Genome in a Bottle (GIAB) benchmark set [32], which excludes long > 10 kbp-sized repeats of
the human genome.

2 Results

An overview of the Winnowmap2 algorithm. If an error-free read is simulated directly from a
reference, then its correct mapping to that reference computed using a reasonable pairwise sequence
alignment algorithm is naturally guaranteed to have the highest score. However, this guarantee
does not hold if the same read is mapped to an alternate reference. Consequently, using a pairwise
sequence alignment scoring system to judge the best mapping candidate is sub-optimal, and this
is particularly true while mapping reads to highly repetitive sequences. Regardless of the type of
scoring function used, e.g., with either a linear or an a�ne gap penalty, the function would also
penalize variant-induced di↵erences between the sequenced individual and the reference sequence.
In cases where one of the repeat copies in a reference sequence contains a di↵erent allele from
the sequenced individual, reads may achieve a better alignment score against an incorrect repeat
copy (Figure 1). An ideal scoring system should ignore non-reference bases when computing an
optimal alignment, but these are typically unknown a priori.

Like most read mappers, Winnowmap2 follows a seed-and-extend workflow. The seeding step
reuses Winnowmap’s weighted minimizer sampling [14], which yields an accuracy improvement over
the standard minimizer technique [33]. Winnowmap2’s extend stage introduces a novel heuristic
to tackle allelic bias. We split the extend stage into two steps. The first step involves identifying
minimal confidently alignable substrings (MCASs) from each read to a reference. Informally, an
MCAS at position i of a read refers to the minimum length read substring starting at the position
i that achieves a ‘unique’ end-to-end alignment to a reference locus (see Methods for a formal def-
inition). Here, uniqueness of an alignment is evaluated using a mapping quality (mapQ) score [28]
that reflects the score gap between the best and second-best alignment candidates for a substring.
Accordingly, an MCAS is valid if its alignment achieves a mapQ score above a user-specified thresh-
old. A read can have as many MCASs as its length. By using MCAS alignments, read bases on
either side of a variant can map uniquely to their correct reference loci as they can be scored
independently from non-reference bases (Figure 1).

Starting from any position of a read, minimal length of the MCAS is ensured by iteratively
increasing substring length and checking whether its maximum scoring alignment to a reference
satisfies the mapQ cuto↵. Suppose a read is sampled from a repetitive region, the frequency of
PSVs at its correct mapping loci helps determine the length of an MCAS. The higher the number
of PSVs, the smaller the length of the MCAS, because its mapQ cuto↵ will be satisfied at an earlier
iteration with fewer aligned bases. Similarly, better raw read accuracy also leads to shorter MCAS
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Fig. 1. a. Illustration of allelic bias in near-identical genomic repeats. Paralog-specific variants (PSVs), indicated
using colored ‘+’ markers, are the variants that are unique to a specific repeat copy in an ancestral human genome.
Mutations in the reference sequence are indicated using ‘x’ markers. Long reads can be mapped to an incorrect repeat
copy if the best mapping is decided by pairwise sequence alignment score. b. MCAS alignments map to correct loci on
the reference. An MCAS is a carefully selected substring of a read. By excluding non-reference alleles, this approach
reduces allelic bias. c. MCAS computation is shown using a simple toy example. Starting from several positions in a
read, we identify minimum-length substrings that can be uniquely mapped to a reference. Uniqueness of an alignment
is determined by using its mapping quality score.

lengths, since more PSVs will be matched by a more accurate sequence. Shorter MCAS lengths
help not only in terms of the runtime with fewer iterations spent but also in terms of accuracy, as
MCASs are less likely to overlap non-reference bases.

Computing all MCAS alignments from a read in an exact manner can be computationally
prohibitive (see Methods for complexity analysis). To bypass this issue, we rely on banded-alignment
and mapQ scoring heuristics from minimap2 [12] to compute each MCAS. For the sake of e�ciency,
we avoid evaluating MCAS alignments from each consecutive position in a read. Rather, we identify
MCAS alignments from a subset of positions that are equally spaced (e.g., 500 bp apart).

The final step in Winnowmap2 is to consolidate a read’s MCAS alignments into a final alignment
output. For various reasons (e.g. sequencing errors, approximation of mapQ computation, and
complex sequence variants) some MCASs may be incorrectly mapped. During the consolidation
step, we extract anchors that participate in each MCAS alignment, and re-execute the chaining
and alignment extension algorithm by using the complete set of anchors to output a final alignment.
A few anchors from false MCAS mappings are filtered out during the anchor chaining process. We
will empirically show that the proposed strategy improves mapping accuracy in repetitive DNA
while remaining highly scalable.

Advantage of Winnowmap2 illustrated using the �-defensin gene cluster.We visualize the
advantage of Winnowmap2 method by using the beta-defensin gene cluster on human chromosome
8 as an example. The 7 Mbp beta-defensin locus (chr8: 6,300,000-13,300,000) of the human genome
is known to be a hotspot of copy-number variation [34]. In the sequenced CHM13 human cell line,
this locus spans three large (> 500 kbp) segmental duplications [2]. To evaluate long read mapping
accuracy at this locus, we simulated ONT reads from chr8 at 40x sequencing coverage by using
NanoSim [35] (Methods). In addition, we artificially mutated chr8 by adding a 1 kbp deletion
variant at position 12,000,000. This locus was chosen for our illustration as it overlaps with one of
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the three duplications. If mapped correctly, the 1 kbp simulated deletion in the reference should
appear as a 1 kbp-long insertion in the overlapping read alignments.

a. WINNOWMAP2 b. NGMLR

c. MINIMAP2 d. GRAPHMAP

Illustrating allelic bias
Fig. 2. Visualization of alignment pileup near the mutated bases of chromosome 8 by using IGV tool [36]. The
sky-blue-colored track on top of each plot shows mapping-coverage using a uniform y-axis scale (0-50). The grey-
colored line segments show individual primary read alignments. IGV uses purple markers to indicate presence of
indels within read alignments. NGMLR, minimap2, graphmap show reduced coverage due to allelic bias whereas
Winnowmap2 shows expected coverage in this region. Consistent large insertions in the middle of each plot are
distinctly visible due to simulated SV.

Figure 2 shows an IGV visualization of primary alignments computed by Winnowmap2 and
three other long read mapping tools NGMLR, minimap2 and graphmap. Among the four methods,
Winnowmap2 achieved the expected mapping coverage in this region with most read alignments
showing the expected insertion call. The other tools mapped fewer reads successfully, resulting in
reduced coverage and poor read mapQ scores. When these alignments were used as input to Sni✏es,
only Winnowmap2 alignments resulted in the true SV call. NGMLR, minimap2 and graphmap
rely on pairwise sequence alignment scores across the full length of the read when choosing the
best mapping target. Due to the large deletion penalty levied at the mutated (but correct) locus,
the majority of reads were incorrectly mapped to the other two duplications. Among the three
methods, NGMLR showed the least bias, but most of its correct alignments were associated with
poor mapQ scores (< 10). A low mapQ score indicates a marginal alignment score di↵erence between
the best and the second-best mapping candidate, and therefore, the read alignment may not be
considered by the variant caller. This result illustrates the previously discussed limitation of using
pairwise alignment scores to rank candidate alignments in genomic repeats. The use of MCASs in
Winnowmap2 enabled correct read placements in this case. A few MCAS alignments computed by
Winnowmap2 in this region are visualized as a dot-plot in Supplementary Figure S1.

Evaluation using a simulated benchmark and T2T human chromosomes. We simulated
long reads, both HiFi (using PBSIM [37]) and ONT (using NanoSim [35]), at coverage levels of
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20x and 40x from T2T assemblies of chromosome 8 (146 Mbp) and chromosome X (154 Mbp)
respectively (Methods). To evaluate how well Winnowmap2 addressed allelic bias, we also simu-
lated 1100 structural variants, including both indels (1000) and inversions (100) of size  1 kbp,
in each reference chromosome sequence by using the SURVIVOR benchmarking tool [31]. Both
the SV simulation and evaluation of variant sets against the ground truth were done using SUR-
VIVOR (Methods).

We evaluated Winnowmap2, Winnowmap, minimap2 and NGMLR in this experiment to check
their false-negative and false-positive rates (FNR, FPR), as well as runtime and memory require-
ments. The long read mappers produced SAM-formatted alignments, which were then fed to Snif-
fles [10] to compute SVs. A false negative indicates that a true SV is not supported by read
alignments whereas a false positive indicates that a false SV is supported. As such, these statistics
are good indicators of the correctness of read alignments. We also performed a de novo repeat
annotation of each reference sequence (chr8 and chrX) by using Mashmap [38] to identify repetitive
sequence intervals of length � 10 kbp and identity � 95% (Supplementary Figure S2). The iden-
tified repetitive intervals constitute a notable portion of the two chromosomes; 4.8% in chr8 and
6.9% in chrX. This allowed us to separately evaluate the accuracy of read mappers in near-identical
repeats where Winnowmap2 is expected to perform better.
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Fig. 3. False negative and false positive rates achieved by SV calls of four mapping methods: Winnowmap2, Win-
nowmap, minimap2 and NGMLR. The top two plots show accuracy statistics over T2T chromosomes 8 and X whereas
the bottom two plots show the statistics within only the most repetitive intervals of these chromosomes. Winnowmap2
alignments enabled the most accurate Sni✏es SV calls with the least FNR and FPR scores. Note that y-axis scales
di↵er in these plots.

Figures 3a, 3b show the accuracy statistics of the four mapping tools. Winnowmap2 achieved
the best FNR and FPR for both the HiFi and ONT read sets. Winnowmap2 FNR and FPR scores
consistently stayed below 3% and 0.3% respectively. Most of these gains appear in repetitive se-
quences of the two chromosomes as evident from our accuracy evaluation within only the repetitive
regions (Figures 3c, 3d). Winnowmap2 succeeds in addressing allelic bias in these regions by pre-
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serving good accuracy in complex repeats where the other tools struggle. These gains were made
uniformly over all SV types- insertions, deletions and inversions that were simulated (Supplemen-
tary Table S1). When increasing coverage from 20x to 40x, FNR generally reduces for all methods
as better sensitivity is naturally expected with higher sequencing coverage.

The Winnowmap2 implementation is optimized to run fast while using less memory (Figure 4).
As several substring alignments need to be identified from a single read, it requires execution of
alignment routines several times rather than just once. In this experiment, minimap2 consistently
used the least time, but Winnowmap2 is competitive as its runtime was consistently lower than
NGMLR and roughly double minimap2’s runtime.
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Fig. 4. Wall-clock time and memory usage of four mapping methods. Winnowmap2 uses competitive resources when
compared to competing methods. Each method was executed using 28 threads on an Intel Xeon processor with 28
physical cores.

Evaluation using Genome in a Bottle benchmark. Evaluating mappers on real sequencing
data is challenging without a known truth. The Genome in a Bottle (GIAB) Tier1 v0.6 benchmark
set provides a high-quality characterization of SVs in the Ashkenazi cell line HG002 relative to
the GRCh37 human reference. This call set encompasses 2.51 Gbp of the genome and includes
5262 insertions and 4095 deletions [32]. It excludes SVs overlapping segmental duplications and
tandem repeats greater than 10 kbp. Nevertheless, this experiment was useful to validate that
Winnowmap2 also achieves good mapping accuracy on real data within the commonly studied
regions of the genome. Here we mapped three publicly available HG002 long read sequencing sets:
HiFi (14-15 kbp library, 35x), ONT (Guppy 3.6.0, 35x) and ONT (Guppy 3.6.0, 50x) to GRCh37,
and compared results with minimap2. Similar to our simulated benchmark, variants were called
using Sni✏es. Winnowmap2 achieved slightly better precision and similar recall scores compared to
minimap2 (Figure 5), with similar runtime and memory requirements. We also observed that both
Winnowmap2 and minimap2 achieved better SV accuracy using ONT data over HiFi with equal
35x coverage.

3 Discussion and Conclusions

Availability of long-range sequencing technologies makes it feasible to resolve large mega-base sized
near-identical duplications in the human genome, a feat that was impossible to achieve using short
reads alone [39–43]. These regions include recently diverged segmental duplications, ampliconic
gene arrays, rRNA genes, and centromeres, all of which play important functional roles in the
genome and all of which go largely unstudied by current variation analyses. As human reference
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Fig. 5. Comparison of Winnowmap2 and minimap2 by using GIAB SV benchmark set defined for HG002 human
sample. Current GIAB benchmark set (v0.6) excludes complex repeats of the human genome. Outside the repeats,
Winnowmap2 achieves similar FNR scores and slightly better FPR scores compared to minimap2.

gaps associated with these regions are progressively being resolved, this opens up the opportunity
to expand the resolution of resequencing approaches. In this work, we highlighted that allelic bias
becomes a major challenge for accurately mapping reads to repetitive reference sequences. This
challenge a↵ects the accuracy of existing mappers because classic pairwise sequence alignment
scoring schemes are not an ideal mechanism to identify the correct mapping target in a repetitive
sequence. In Winnowmap2, we have implemented a new idea based on minimal confidently align-
able substrings that can be mapped independently of non-reference bases, thus alleviating allelic
mapping bias.

We highlighted the advantages of Winnowmap2 by demonstrating its superior downstream
variant call accuracy compared to commonly used long read mappers. In particular, Winnowmap2
enabled notable gains in SV calling accuracy within the repetitive regions of human chromosomes.
Although here we focused on structural variants, it is natural to expect that Winnowmap2’s superior
mapping accuracy will also benefit SNP and short indel variant calling. Prior studies have suggested
high enrichment of SVs in repetitive regions that currently correspond to unresolved gaps in the
human genome reference [3, 44, 5]. This underscores the importance of understanding how these
regions di↵er between individuals.

Further algorithmic improvements will be needed to improve read alignment accuracy. In par-
ticular, it remains challenging to align bases precisely when multiple SVs are clustered in close
vicinity. Our simulation made use of SURVIVOR, which simulates SVs at uniformly random po-
sitions in a reference sequence and could be an over-simplification of real data. In addition, read
mappers and variant callers still remain limited in their ability to handle nested variation and other
forms of complex rearrangements [45].

4 Methods

Minimal confidently alignable substring (MCAS). MCASs distinguish Winnowmap2 from
previous read mapping methods. Prior to defining an MCAS, we formalize when we can confidently
say that an alignment of a substring is correct. In practice, this confidence is derived using the score
di↵erence between the best scoring alignment and other candidate alignments. The mapping qual-
ity (mapQ) score was originally defined to address this problem [28], but the existing mathematical
definition is restricted to short reads because alignments were assumed to be ungapped. However,
the majority of long read sequencing errors are indels and the longer reads are more likely to span
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structural variants. When allowing for indels, adjacent mapping loci in a reference can no longer
be considered independent, as in prior models. Accordingly, we propose the following formulation.

Given a query string S and a reference R, the top scoring end-to-end (a.k.a. semi-global) align-
ment candidates of string S to R can be directly computed in O(|S| · |R|) time. From a pairwise
alignment of S to R, we can identify the set of matched base positions between them. For instance,
this set would include a tuple (i, j) if character S[i] is matched to character R[j]. We say that
two alignment candidates do not overlap if and only if their corresponding sets are disjoint. We
associate our confidence with the best-scoring alignment of string S to reference R if and only if
its second-best non-overlapping alignment candidate has a score < ⌧ · opt, where opt refers to the
optimal alignment score and ⌧ 2 (0, 1) is a user-specified parameter.

Let Q be a long read sequence. A minimal confidently alignable substring MCAS(i) of read
Q refers to the shortest substring starting at position i that has a confident end-to-end alignment
to reference R. For a given read Q, we seek MCAS(i) 8 0  i < |Q|, and their corresponding
alignments. MCASs can have variable lengths and can overlap one another. Note that existence
of MCAS(i) depends on whether it is possible to satisfy the confidence criteria. In the worst case
where two repetitive regions lack any PSV (i.e., 100% identical duplicates), then a read sampled
from either repeat copy will not contain an MCAS. The rationale of introducing the MCAS idea
is to address allelic bias; whereas a non-reference SV allele will cause mis-alignment in the tradi-
tional approach, the MCASs are treated independently and those neighboring the SV will remain
una↵ected (Figure 6).

MCAS
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repeat-copy I repeat-copy IImutations repeat-copy I repeat-copy II
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ng

 re
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19 20

reference

9 6

referencea. b.

better score
better score

alignment

Fig. 6. Illustration of MCASs using a DP alignment scoring matrix. Similar to Figure 1, PSVs are shown using
colored ‘+’ markers. The left figure highlights the e↵ect of allelic-bias on read alignment scores. The score of a true
alignment spanning non-reference alleles can be lower compared to the score of an incorrect alignment. On the right
side, an MCAS of a read which does not span non-reference alleles can achieve correct and unique placement to a
reference.

Considering the issue of allelic bias, it is also desirable to enforce a maximum length parameter
for valid MCASs because long MCASs again become vulnerable to allelic bias. By default, we set
the maximum length parameter to 8 kbp for HiFi reads and 16 kbp for ONT reads based on our
experimental observations. As such, the maximum length of a valid MCAS is a constant. The lemma
below summarizes the asymptotic complexity to compute MCASs.

Lemma 1. Computing MCAS(i) 8 0  i < |Q| requires O(|Q||R|) time and O(|R|) space.

Proof. Assume any appropriate linear or a�ne gap scoring function is being used. Denote p
th

character in read Q as Q[p] and a substring ranging from positions p to q as Q[p, q] with both
ends inclusive. Consider the following algorithm to compute MCAS(i). Compute semi-global DP
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alignment ofQ[i, i+j] to referenceR while iterating the variable j from 0 to c. Here c is the maximum
length allowed for a valid MCAS. Computing a row of the alignment scoring table requires O(|R|)
time. As a new row is computed in an iteration, we need to check whether the best-scoring alignment
satisfies the confidence criteria, i.e., whether its score compared to the second-best non-overlapping
alignment exceeds by a user-specified threshold. To check this, we require the following additional
steps.

Select the cell in the current row associated with the highest score. Next, we need to locate the
maximum score achieved by a non-overlapping alignment. Assuming gap penalty is positive, then
there can be at most O(j) cells in the DP row that are associated with overlapping alignments.
As a result, if we consider cells in non-increasing order of alignment scores, we may need to check
at most O(j) other cells. O(j) cells with the highest scores can be selected from the complete row
in O(|R|) time using a partition-based selection algorithm. Assume that we also have scores of
previous rows in memory. Then we can trivially check for overlap between a pair of alignments in
O(j) time. Adding all the work, total asymptotic time spent per row is O(|R|+j

2). As total number
of rows that may need to be computed is bounded by the constant c, total time spent to compute
MCAS(i) remains O(|R|). Therefore, computing all MCASs requires O(|Q||R|) time. Asymptotic
space complexity of the above algorithm is O(|R|). ut

An O(|Q||R|) time complexity resembles the complexity of DP-based alignment algorithms.
As such, the exact algorithm does not o↵er desired scalability. In Winnowmap2, we make use of
fast heuristics and make careful accuracy-performance trade-o↵s to address this. First, we perform
the MCAS computation from a subset of equally spaced starting positions, e.g., after every 500th

base. Next, while computing an MCAS, we reduce the alignment search space by making use
of known minimizer seeding and clustering ideas [12, 14]. Starting from a small substring length,
our iterative method exponentially grows the substring (rather than growing linearly). In each
iteration, we check its mapping to reference R. This is done until the substring either satisfies
the alignment confidence criteria or cannot be extended further. While computing each mapping,
we rely on e�ciently engineered anchor chaining, banded-alignment, and mapQ computation code
from minimap2. In a way, the mapQ scoring heuristic in minimap2 approximates our definition for
confidence assessment.

Heuristic to compute mapping quality. In Winnowmap2 implementation, we use the same
heuristic as minimap2 to compute the mapping quality score of a read alignment. For completeness,
we also mention it here. Once the anchors between a read and a reference are identified, minimap2
runs a co-linear chaining algorithm to locate alignment candidates. The chaining procedure ensures
that alignment candidates use a disjoint set of anchors to prevent overlaps. To compute mapQ,
minimap2 compares the anchor chaining score of the best-scoring chain relative to the second-
best. Suppose their scores are denoted as f1 and f2 respectively. Also, let m be the count of anchors
chained along the best alignment. Minimap2 uses the following empirical formula to calculate mapQ
score of the best alignment candidate:

mapQ = 40 · (1� f2/f1) ·min{1,m/10} · log f1

The above score is readjusted by minimap2 to fall within the range of 0 to 60. By default, we use
mapQ cuto↵ of 5 in Winnowmap2 to mark an MCAS alignment as confident. This cuto↵ can be
modified by users. In practice, a higher cuto↵ typically leads to longer MCASs, as expected. A
lower cuto↵ increases the probability of an incorrect alignment to be considered as the best.
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Consolidating several MCASs into a single alignment output. Once we compute MCAS
alignments from a read, these need to be aggregated into a single alignment output. At this step,
we extract anchors that were joined to form each MCAS alignment. Subsequently, the union of
all anchor sets is passed to chaining and alignment routines to output the final set of best-scoring
alignments. Typically, there are only a few anchors to process at this step, which does not require
significant time.

Simulation and evaluation of structural variant calls. In our simulation benchmark, we
made use of T2T chromosome assemblies for chromosome 8 (v9) and chromosome X (v0.7) that
are available from https://github.com/nanopore-wgs-consortium/CHM13. SURVIVOR (v1.0.6)
was used to simulate 1,100 SVs of length ranging from 50 bp to 1000 bp in each chromosome se-
quence. We also simulated PacBio HiFi reads as well as ONT reads using PBSIM (commit:e014b1)
and NanoSim (v2.6.0) respectively. Command line parameters provided to these tools are listed
in Supplementary Table S2. NanoSim requires real data for training its error model. Training was
executed using a publicly available R10.3 Guppy 3.4.5 ONT sequencing data of the Escherichia
coli K12 genome (ENA:PRJEB36648). PBSIM command line parameters were adjusted to achieve
PacBio HiFi data characteristics with an indel error rate of about 1%. Supplementary Table S3 spec-
ifies the read length statistics. Long read mappers were tested using two sequencing coverage levels,
20x and 40x. In our mapping evaluation, we compared Winnowmap2 (v2.0), Winnowmap (v1.01),
minimap2 (v2.17), ngmlr (v0.2.7) and graphmap (v0.5.2). Each mapper was executed using their
recommended parameters and 28 CPU threads (Table S2). SV calling from BAM alignment file out-
puts was done using Sni✏es (v1.0.11). The SV call sets were evaluated using SURVIVOR against
its own simulated ground truth. We also evaluated SV calling accuracy within repetitive refer-
ence intervals. For this, de novo repeat annotation of reference sequences was computed by using
Mashmap (commit:ffeef4) to approximately identify all duplications of �10 kbp length and � 95%
identity. SV evaluation within the repeats was done by intersecting variant coordinates and repeat
intervals using bedtools (v2.29.2) [46].

Evaluation using GIAB SV calls. We evaluated Winnowmap2 and minimap2 using the GIAB
Tier1 (v0.6) SV call set [32] available for the HG002 human sample relative to the GRCh37 human
genome reference. In this experiment, we utilized HG002 ONT and PacBio HiFi sequencing data [47,
48] made available through the precision FDA site https://precision.fda.gov/challenges/10/.
Sni✏es SV call sets were evaluated using SVanalyzer (v0.36).
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