
MetaGraph: Indexing and Analysing Nucleotide Archives at

Petabase-scale

Mikhail Karasikov, 1,2,3,4,‡ Harun Mustafa, 1,2,3,4,‡ Daniel Danciu, 1,2 Marc
Zimmermann, 1,2 Christopher Barber, 1,2 Gunnar Rätsch, 1,2,3,4,∗ and André Kahles 1,2,3,4,∗

1Biomedical Informatics Group, Department of Computer Science, ETH Zurich, Zurich,
Switzerland

2Biomedical Informatics Research, University Hospital Zurich, Zurich, Switzerland
3Swiss Institute of Bioinformatics, Zurich, Switzerland

4Department of Biology, ETH Zurich, Zurich, Switzerland

(‡Equal contribution. ∗To whom correspondence should be addressed.)

{raetsch,andre.kahles}@inf.ethz.ch

Abstract

The amount of biological sequencing data available in public repositories is growing expo-
nentially, forming an invaluable biomedical research resource. Yet, making all this sequencing
data searchable and easily accessible to life science and data science researchers is an un-
solved problem. We present MetaGraph, a versatile framework for the scalable analysis of
extensive sequence repositories. MetaGraph efficiently indexes vast collections of sequences
to enable fast search and comprehensive analysis. A wide range of underlying data structures
offer different practically relevant trade-offs between the space taken by the index and its
query performance. MetaGraph provides a flexible methodological framework allowing for
index construction to be scaled from consumer laptops to distribution onto a cloud compute
cluster for processing terabases to petabases of input data. Achieving compression ratios of
up to 1,000-fold over the already compressed raw input data, MetaGraph can represent the
content of large sequencing archives in the working memory of a single compute server. We
demonstrate our framework’s scalability by indexing over 1.4 million whole genome sequenc-
ing (WGS) records from NCBI’s Sequence Read Archive, representing a total input of more
than three petabases.

Besides demonstrating the utility of MetaGraph indexes on key applications, such as
experiment discovery, sequence alignment, error correction, and differential assembly, we
make a wide range of indexes available as a community resource, including those over 450,000
microbial WGS records, more than 110,000 fungi WGS records, and more than 20,000 whole
metagenome sequencing records. A subset of these indexes is made available online for
interactive queries. All indexes created from public data comprising in total more than 1
million records are available for download or usage in the cloud.

As an example of our indexes’ integrative analysis capabilities, we introduce the concept
of differential assembly, which allows for the extraction of sequences present in a foreground
set of samples but absent in a given background set. We apply this technique to differentially
assemble contigs to identify pathogenic agents transfected via human kidney transplants. In a
second example, we indexed more than 20,000 human RNA-Seq records from the TCGA and
GTEx cohorts and use them to extract transcriptome features that are hard to characterize
using a classical linear reference. We discovered over 200 trans-splicing events in GTEx and
found broad evidence for tissue-specific non-A-to-I RNA-editing in GTEx and TCGA.

1

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint

{raetsch,andre.kahles}@inf.ethz.ch
https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/

1 Introduction

For more than a decade, continuing innovation in the area of high-throughput sequencing has
propelled research in the biomedical domain and led to an exponential growth in worldwide
sequencing capacity [58]. As a consequence, sequencing costs for entire human genomes have
dropped well below the critical mark of 1,000 USD per sample, bringing the new critical line of
100 USD into near reach. This also results in an exponential growth of sequencing data available
in public and controlled-access repositories. The number of sequenced nucleotides contained
in the European Nucleotide Archive (ENA) currently doubles every 27 months, resulting in a
current size of close to 1.6·1016 nucleotide bases (16 petabases) [9] of raw read data. Transmitting
the entirety of such a data set across a wire for any kind of access is clearly uneconomical and
renders it currently virtually inaccessible to the broader research community for comprehensive
analyses. However, even for defined subsets of samples that are collected within larger-scale
studies by international consortia, such as The Cancer Genome Atlas (TCGA) [61], the Genotype
Tissue Expression (GTEx) [42] project, or the MetaSUB project [19], the entire data of a single
study can comprise hundreds of terabytes, making access complicated.

The classical pattern for accessing sequencing data on public repositories is to identify rele-
vant samples using descriptive metadata and to extract a copy or a slice of the data for further
processing. More recently, repositories started mirroring their contents into cloud storage, ad-
dressing the download problem, but at the same time often creating additional costs for off-the-
premise compute. Today’s existing infrastructure is largely adapted to this pattern of access,
only indexing the metadata (e.g., sample and study ID, organism name, taxonomic information,
related publications, etc.) of all samples to make it accessible and easily searchable. However,
any query involving the raw sequencing data itself requires a copy of the data, complicating its
analysis and reducing its accessibility for many researchers. We argue that this significantly lim-
its the potential that sequence repositories bear for life science research. To address this issue,
we propose a scalable approach to index such large repositories of sequencing data, transforming
them into a highly compressed and more accessible representation for downstream analysis. A
main focus of this work is thereby on scalability, allowing the processing of sequence collections
on a petabase scale.

Driven by the open-data movement and the advances in high-throughput sequencing tech-
nology, it is our expectation that the number of studies aggregating large sample cohorts will
further increase in the near future. In fact, we envision that making such data shareable and
searchable will become a problem of high practical relevance.

As indexing large sequence collections also poses interesting algorithmic questions, different
technical solutions addressing these questions have already been proposed in the recent past.
Naturally, a first focus lies on making the genetic variation in large cohorts, especially in human,
accessible for biomedical research and medicine. Only very recently frameworks for variation
graphs, such as VG [23], and methods for compressing haplotypes [21] or paths in graphs more
generally [46], have improved variation-aware alignment and variant calling in general [34, 29].
While successful for the analysis of single-species cohorts, these methods struggle to represent the
large variability present in distantly related organisms or arising from metagenomic applications.

Hence, a second focus of the algorithmic work has been put on the sequence or experiment
discovery problem: querying a sequence of interest (e.g., a transcript or an entire genome) against
all samples available in sequence repositories. For collections of assembled genomes, the BLAST
approach [7] has been in heavy use since 30 years, but lacks the scalability to allow for high
throughput searches on highly diverse sequence collections or to allow for the search in raw,
unassembled reads.

The methods currently available for solving the experiment discovery problem can be grouped
into three main categories: i) Methods based on sketching techniques, which summarize the
input data using one or multiple hashing operations and then use these summaries (sketches) to
estimate distances between query and target. Examples are MASH [51, 50] and KrakenUniq [15].

2

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/

ii) Methods employing Bloom filter based data structures to allow for approximate membership
queries. Examples are (Split)-Sequence Bloom Tree [57, 27], Bloom Filter Trie [30], BIGSI [14],
and COBS [12]. iii) Methods for the exact representation of annotated de Bruijn graphs, also
called colored de Bruijn graph, storing additional metadata as labels of its nodes or edges [32].
Examples are Mantis [53, 5], VARI [45], and others [3, 39]. These methods approach experiment
discovery by matching k-mers from query sequences against those stored in an index. Alongside
these, there has also been growing interest in the use of de Bruijn graph-based indexes for
alignment tasks as a way to accelerate alignment to repeat-prone reference genomes [41] or to
unassembled read sets [40, 28]. More recent work has focused on improving the scalability of
these approaches, either through strategies using more rigorous early cut-off criteria [33], or via
the introduction of heuristics [55]. A major challenge faced by all existing methods is to unite
the ability to efficiently operate on petabase scale input data with the capacity for fast and
versatile query operations.

In addition to the more recent use in addressing the experiment discovery problem, de Bruijn
graphs are also known as a classic framework for read set representation in sequence assembly
in both single-sample [11, 47, 24, 25, 39] and multi-sample [32, 60] settings. Of these, the
HipMER [24] and MetaHipMER [25] single-sample assemblers scale to massive data sets stored
in distributed hash tables. None of these methods, however, tackles the problem of assembly
from an integrative analysis perspective. Examples of such queries can include a core genome
assembly, where sequences common to all samples in a cohort are desired [44, 43], or a differential
assembly, where sequences shared by a foreground cohort and absent from a background cohort
are sought. We introduce the latter concept as an application made tractable at scale by the
framework proposed in this work.

To bridge this evident gap in the landscape of sequence analysis tools for large data col-
lections, we present MetaGraph, a versatile framework for indexing and analysis of biological
sequence libraries at petabase scale. While the approach is not restricted to any specific input
alphabet, for the remainder of this work, we will focus on nucleotide sequences originating from
DNA or RNA sequencing samples. MetaGraph enables building indexes of large collections of
sequences, employing an annotated de Bruijn graph for sequence search and assembly.

The MetaGraph framework provides a wide range of compressed data structures for trans-
forming very large sequencing archives into k-mer dictionaries, associating each k-mer with labels
representing metadata associated with its originating sequences.

The data structures underlying MetaGraph are designed to balance the trade-off between
the space taken by the index and the time needed for query operations. A main design goal of
our framework is to allow both performing experiments on single desktop computers and scaling
up to distributed compute clusters. This is achieved through a modular approach, efficient
parallelization and the computation in external memory. We describe these aspects in the first
part of the Results section along with our assessment of scalability.

We then outline results using MetaGraph to index data from a diverse collection of public
sources, ranging from large RNA-Seq cohorts like TCGA [61] and GTEx [42], over vast archives of
whole genome sequencing (WGS) records comprising over 1 million samples of microbial, fungal,
plant, and metazoa organisms currently available in the Sequence Read Archive (SRA) [37], to
large sets of highly diverse whole metagenome sequencing samples, like the MetaSUB [19] set or
all available human gut metagenome samples. The total amount of sequences indexed in these
graphs exceeds by far the crucial figure of one petabase and at last makes this data fully and
efficiently searchable by sequence.

Finally, we use these and some smaller data sets not only to demonstrate the scalability
and performance of MetaGraph but also to demonstrate how the graph indexes can be used for
biological discovery.

3

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/

2 Results

2.1 A powerful framework for efficient sequence representation

The MetaGraph index consists of two main components: i) a de Bruijn graph and ii) its an-
notating metadata (Figure 1, middle right). The graph is represented by a k-mer dictionary
mapping all k-mers observed in the input sequences to unique positive integer identifiers assigned
to them. These k-mers serve as elementary tokens in all operations on the MetaGraph index.

The metadata on the graph is a binary relation between k-mers and their labels representing
any categorical features, such as source sample IDs or quantized expression levels. This relation
is represented as a sparse binary matrix called the annotation matrix, with one row for each
k-mer and one column for each label. The (i, j)th element of this matrix has value 1 if and
only if the ith k-mer is associated with the jth label. This matrix can be of an enormous size,
containing up to one trillion rows and several hundred thousand columns in the experiments we
present. Yet, due to its sparsity, it can be efficiently compressed.

In
pu

t s
am

pl
es

R
aw

 g
ra

ph
s

C
le

an
ed

 g
ra

ph
s

Cleaning (bubble popping / tip pruning)

Metagraph (representation)

CA C
GA A
TA C
AC A
AC G
AC T
GC A
GC G
CG A
CG C
CG T
GT A

1
2
3
.
.
.

.

.

.
n-1
n

0 0 0 1 1 0
0 0 0 0 0 1
1 1 1 1 0 0
0 0 0 1 1 0
1 1 1 1 1 1
0 0 1 0 0 0
0 0 0 1 1 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 1 1 1
1 1 1 1 0 0
1 1 1 1 0 0

C
om

pr
es

se
d

in
de

x

C
om

pr
es

se
d

 a
nn

ot
ai

on

Graph construction

Sequence Search

Other Queries
Differential Assembly

Client(s)
API

Distributed Index

...

Applications

Metagraph (concept)

ACG

CGT

GTA

CGC

GCA

TAC

ACA ACT GAA

CAC

GCG

CGA

. . .

. . .

1

>smp_1
CGATAGT
GTCGAGT
AGCTAGT

ACG

CGT

GTA

TAC

CGC

ACG

CGT

GTA

TAC

CGC

>smp_2
CATGTCA
GTACATC
GTTTAGT

ACG

CGA

GAA

CGT

GTA

TAC

ACG

CGA

GAA

CGT

GTA

TAC

GAT

ACG

CGT

GTA

TAC

ACT

CGA

GAT

ACG

CGT

GTA

TAC

ACT

CGA

2 m-1

>smp_m-1
ACGATCA
CGATCGA
TCGAAGC

ACG

CGT

GTA

CGC

GCA

TAC

ACA

CAC

ACG

CGT

GTA

CGC

GCA

TAC

ACA

CAC

m

>smp_m
CGATCGT
CCGTAGT
AAAGATC

AAC

ACA

ACG

CGA

GAA

CGC

GCA

CAC

ACG

CGC

GCG

CGA

GAA

AAC

ACA

ACG

CGA

GAA

CGC

GCA

CAC

ACG

CGC

GCG

CGA

GAA

Construction overview

Figure 1: The MetaGraph framework – Schematic overview of graph construction and represen-
tation. Left: Individual sequencing samples are assembled into raw graphs which are then cleaned to
remove noisy and erroneous paths. Right: Individual graphs are combined into the MetaGraph in-
dex (top), consisting of the compressed sequence index and a compressed annotation matrix (middle).
MetaGraph is then used as the basis for downstream applications, such as sequence search, differential
assembly, and other queries (bottom).

A notable feature of our framework is that its theoretical concepts, as well as their ac-

4

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/

tual implementation, support the indexing of sequences over arbitrary finite alphabets. Thus,
MetaGraph can be used for indexing biological sequences of all kinds, such as raw DNA/RNA
sequencing reads, assembled genomes, but also protein sequences. The framework is modular in
nature, enabling the use of a variety of interchangeable representations for storing the sequence
index and the annotation matrix. These representations may be chosen to optimise the space
usage for different kinds of inputs and the execution time of desired queries. MetaGraph is open
source and its code, links to pre-compiled binaries and application examples are available at
https://github.com/ratschlab/metagraph.

Scalable multi-sample index construction The workflow for constructing the MetaGraph
index consists of three main stages: data pre-processing, graph construction, and annotation.

Typically, the first stage (data pre-processing) involves the construction of separate de Bruijn
graphs from the raw data associated with each of the future annotation labels (e.g., the input
samples in Figure 1, bottom left). In general, the annotation labels can be defined to represent
any feature of the input sequences, such as sample ID and organism, expression quantile, or
chromosome number. We apply a subsequent cleaning step to each of the graphs to remove
possible sequencing errors (Figure 1, top left). This step is not performed on graphs constructed
from data considered to be error-free, such as assembled genomes. The resulting graphs are then
stored as a minimal set of linear paths, called contigs, covering all nodes in the graph. This set of
contigs acts as a non-redundant representation of the k-mers from the original input sequences
associated to that annotation label.

In the second stage of construction, all contigs obtained in the first stage are merged into a
single joint de Bruijn graph (Figure 1, top right).

In the third construction stage, graph annotation, all contigs are mapped onto the joint graph
to mark the relations of each k-mer to the annotation labels. Conceptually, each label forms a
column of the annotation matrix represented as a compressed sparse binary vector (Figure 1,
middle right). Finally, the annotation matrix is converted into a representation best suited for
the target application (see Online Methods 4.6 for further details).

Fast and scalable queries on large indexes As sequence search is a key task for most
biomedical analyses, we devised several efficient search algorithms to identify sequence matches
in the graph and retrieve associated labels. In the first approach, input sequences are broken
down into k-mers that are matched to nodes of the graph. The resulting set of paths then directly
induce corresponding annotations (Figure 2, top left). For increased sensitivity, we also devised
an algorithm for sequence-to-graph alignment, which identifies the closest matching path in the
whole graph or in subgraphs induced by the annotation columns (Figure 2, bottom left; see
Online Methods 4.9.2 for details on the method and Section 2.3 for results on accuracy). One
important application of our search methods is experiment discovery, where each annotation
label represents a sequencing library (SRA experiment) and the index is scanned to find all
experiments with reads similar to the queried sequence.

If the query is a single sequence, both k-mer matching and alignment can be applied di-
rectly on the full annotated graph. For querying larger sets of raw reads or long sequences, we
have designed an efficient batch query algorithm (schematically shown in Figure 2, right) that
exploits the presence of k-mers shared between individual queries by forming an intermediate
query graph, a small subgraph represented in an uncompressed format which is fast to query
(see Online Methods 4.9.4 for further details). This additional step often leads to a 10 to 100
fold speedup, depending on the structure of the query data (Supplemental Figure S-1).

2.2 Constructing petabase-scale indexes as a community resource

Building on the powerful MetaGraph framework, we set out to process a significant part of all
publicly available sequencing data. Consequently, we constructed indexes on real-world data sets

5

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint

https://github.com/ratschlab/metagraph
https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/

Sequence search
Batched sequence query

>query 1
ACGGTGACAAAGAGAG
TGCAACGAATGATGT
>query 2
TATCGCGGTGATGAAC
GCTTTCCAAT
...
>query n
CGGGCGATGGCGCAGA
CGTTGCGTCAGCT

ACG

CGC CGA

......

......

...

... ...

.........

AAT

Ba
tc

h
gr

ap
h

C
on

tig
s

M
et

ag
ra

ph
 in

de
x

Q
ue

ry
 g

ra
ph

Q
ue

ry

ACG G T A C A T T A G G

TCG T G C T T T G A

AAA T T G A A T

AGT A G C

GCG T G

...

CA C
GA A
TA C
AC A
AC G
AC T
...
GC G
CG A
CG C
CG T
GT A

1
2
3
.
.
.

.

.

.
n-1
n

0 0 0 1 1 0
0 0 0 0 0 1
1 1 1 1 0 0
0 0 0 1 1 0
1 1 1 1 1 1
0 0 1 0 0 0
.
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 1 1 1
1 1 1 1 0 0
1 1 1 1 0 0

GA A
AC G
...
GC G
CG A
CG C

1
2
3
.
.
.

0 0 0 0 0 1
1 1 1 1 1 1
.
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 1 1 1

Step 1: Build
batch graph

Step 2: Extract
primary contigs

Step 3: Query
full Metagraph

Step 4: Build
query graph

Step 5: Search
in query graph

ACG

CGT

GTA

CGC

GCA

TAC

ACA ACT GAA

CAC

GCG

CGA

k-mer matching

4/5 (80%) match
2/5 (40%) match
1/5 (20%) match

>query 1
ACGCGAT

>query 1
ACGCGAT

>query 1
ACGCGAT

ACG
 CGC
 GCG
 CGA
 GAT

ACG
CGC
GCG
CGA
GAT

alignment to graph

edit distance 1
edit distance 3

alignment 2alignment 1

ACG

CGT

GTA

CGC

GCA

TAC

ACA ACT GAA

CAC

GCG

CGA ACGCGAT
||||||-
ACGCGAA

ACGCGAT
||||---
ACGCACA

ACGGTGACAAA...
AC-GAGACAGA...

CGGGCGATGGC...
CG-GCAAT-GC...

query 1
 ...
query n

query 1
...
query n

k-
m

er
m

at
ch

in
g

al
ig

nm
en

t
to

 g
ra

ph

0 2 5 0 0 2
 ...
3 4 0 1 0 0

Figure 2: Graph querying approaches – Left: Schematic representation of the two main approaches
for sequence search. Top left: Counting exact k-mer matches between query and graph. Bottom left:
Alignment finds all closest paths within a given edit distance. Right: Batched sequence search retrieves
a decompressed subgraph (query graph) from the full compressed annotated graph for subsequent query.
All query sequences are combined into an intermediate batch graph that is then traversed to extract
contigs to be queried against the full index. Hits and their corresponding annotations are aggregated to
construct the final query graph, which is then searched against with the original query sequences.

of varying size and complexity, including both DNA and RNA sequencing samples. The resulting
indexes form a valuable community resource, as they succinctly summarise large raw-sequence
data sets, while supporting a variety of sequence queries against them. The key statistics of all
data sets presented in this work and MetaGraph indexes constructed from them are listed in
Table 1 and visualized in Figure 3a. Applying only moderate cleaning on the input sequences
(see Online Methods for exact parameters), a MetaGraph index typically requires orders-of-
magnitude less storage than the original gzip-compressed inputs.

MetaGraph indexes a diverse range of input data The range of input data was chosen
to represent properties commonly occurring in biomedical research. On the one end stand large
cohorts containing sequences sampled from a sequence pool of limited diversity. A represen-
tative of this class are the RNA-Seq experiments from the GTEx cohort [42] and the TCGA
cohort [61] representing the human transcriptome. With compressed input sizes of 40 and
65 Tbp, respectively, the GTEx and TCGA cohorts can be indexed and further compressed into
annotated graphs of only 132 GB and 63 GB, respectively. In the middle of the complexity
spectrum reside whole genome sequencing experiments and collections of reference genomes,
where similarity between samples is a function of evolutionary distance and the diversity within
the data set is generally much higher than in the human transcriptome cohorts. Representatives
of this class are RefSeq [48] and the UHGG gene genome catalog as well as the SRA-Microbe,
SRA-Fungi, SRA-Plant, and SRA-Metazoa data sets. While RefSeq contains all sequences of
assembled genomes available in version 97 of the RefSeq database, comprising 170 Gbp of input,

6

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/

Table 1: Summary of constructed indexes for big data sets. (Numbers marked with ∗ represent estimates,
as the computations are currently still ongoing. Entries labeled as “TBA” will be added as soon as they
become available.) †: For the GTEx++ index, parts of the inputs are given as lists of mutations and
reference sequences, which are negligible in the input size computation.

Data set # bp Input (gz) k # k-mers Labels Graph Anno. Ratio

GTEx [42] 70 · 1012 40 TB 41 1.1 · 109 9,759 0.9 GB 55 GB 716x
GTEx++ [42, 36] 70 · 1012† 40 TB† 41 26 · 109 9,786 15 GB 117 GB 303x
TCGA [61] 81 · 1012 65 TB 31 2.1 · 109 11,095 1,6 GB 63 GB 1000x
RefSeq (bact) [49] 1.7 · 1012 469 GB 31 626 · 109 48,539 339 GB 410 GB 0.62x
UHGG catalog [4] 11 · 109 3,3 GB 31 9.6 · 109 4,644 5,3 GB 19 GB 0.13x
MetaSUB [19] 7 · 1012 5.5 TB 19 71.7 · 109 4,220 49 GB 266 GB 17x
SRA MetaGut 63 · 1012 36 TB 31 49.9 · 109 20,639 30 GB 514 GB 66x
SRA Microbe [14] 221 · 1012 170 TB 31 39.5 · 109 446,506 30 GB 261 GB 584x
SRA Fungi 163 · 1012 81 TB 31 277 · 109 121,907 82 GB 501 GB 139x
SRA Plants 1.1 · 1015 576 TB 31 0.9 · 1012 531,736 602 GB TBA TBA
SRA Metazoa 1.5 · 1015 925 TB 31 1.5 · 1012∗ 797,883 963 GB∗ TBA TBA

the UHGG genome catalog is a recently published catalog of human gut reference genomes [4].
The different SRA datasets comprise over 90% of currently available SRA samples for the re-
spective groups. Only for the SRA-Microbe dataset, we rely on a previous definition: The data
set contains a diverse range of samples consisting of a total of 446, 506 virus, Prokaryote, and
small Eukaryote genomes, and was first presented as part of the evaluation of BIGSI [14] (see
Online Methods 4.13.2).

As RefSeq covers a much higher diversity of input sequences than, e.g., SRA-Microbe, its
index size is correspondingly much larger. The fully searchable and annotated MetaGraph
representation of the SRA-Microbe data set is only 291 GB (compared to 1.6 TB for the BIGSI
index), while RefSeq has a total size of 1,040 GB (when annotated by species taxonomic IDs).
Lastly, on the other end of the spectrum stand cohorts containing whole metagenome shotgun
sequencing experiments. For this class we have selected the MetaSUB cohort [19], containing
more than 4,200 environmental metagenome sequencing samples comprising 7.3 Tbp, and the
SRA-MetaGut cohort, containing all human gut metagenome sequencing samples available on
SRA (20, 639 as of 2018-05-25), comprising approximately 60 Tbp. The input data in these
cohorts are samples from very diverse populations of organisms and contain a large diversity of
rare sequences. As a result, the index sizes are relatively large when compared to other data
sets, for MetaSUB 315 GB and for SRA-MetaGut 544 GB.

Especially the large-input cohorts, such as the SRA-cohorts, required scaling into a commer-
cial compute cloud for the first stage of MetaGraph assembly. This step is made particularly
easy by the modular nature of the presented framework.

The SRA-Microbe, SRA-Fungi, SRA-Plants, SRA-Metazoa databases are built on 446,506,
531,736, 121,907, and 797,883 whole genome sequencing samples, respectively, available on SRA.
All data sets listed in Table 1 combined accumulate to a total of 3.2 petabases of input.

The complete lists of sample identifiers used in our experiments are provided in Supplemental
Data Section 5.

MetaGraph is exceptionally scalable The generation of indexes on petabases of input data
is made possible by MetaGraph’s first-in-class scalability and its efficient implementation. To
systematically evaluate our approach and to show why other existing methods would struggle
solving tasks of a similar size, we assess both the index representation size and the query per-
formance of MetaGraph and benchmark them against other state-of-the-art indexing schemes:
Mantis [5], BIGSI [14], and COBS [12], using subsets of increasing size up to 25,000 samples
drawn from the SRA-Microbe set.

While Mantis and MetaGraph provide lossless representations of the set of all input k-mers,

7

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/

BIGSI and COBS both employ probabilistic data structures that can lead to false-positive
matches when the index is queried. Hence, we denote the latter two approaches as lossy com-
pressors. We used BIGSI with the same parameters as in the original work [14] (3 hash functions
with Bloom filters of size 25 · 106) and COBS with 4 hash functions and target false-positive
rate equal to 0.05.

0 5000 10000 15000 20000 25000
SRA experiments in index

100

101

102

103

Q
ue

ry
tim

e,
se

c
nucleotide fasta protein homolog model

BIGSI
Mantis
COBS
MetaGraph
MetaGraph align

0 5000 10000 15000 20000 25000
SRA experiments in index

100

101

102

103

Q
ue

ry
tim

e,
se

c

DRR067889

BIGSI
Mantis
COBS
MetaGraph
MetaGraph align

0 5000 10000 15000 20000 25000
SRA experiments in index

0

25

50

75

100

125

150

175

In
de

x
si

ze
,G

B

Bacterial data (BIGSI dataset)

BIGSI
Mantis
COBS
MetaGraph
MetaGraph (small)

e

ba

dc

BIGSI
COBS

Mantis

Metagraph

GraphAlig
ner

Metagraph

 0

.0
4

 0

.0
9

 0
.3

1

 0

.3
1

 0

.7
9
 0

.9
4

Match count Alignment
score

Sp
ea

rm
an

 c
or

re
la

tio
n

 0

.9
6

 0

.9
6

 0

.9
7

 0

.9
7

 1

.0
0

 0

.9
9

Match count Alignment
score

Pa
cB

io
 C

LR
 (L

 =
 3

00
0)

0.00

0.25

0.50

0.75

1.00

Ill
um

in
a

(L
 =

 1
50

)

BIGSI
COBS

Mantis

Metagraph

GraphAlig
ner

Metagraph

Figure 3: Scalability and performance – a) Overview of all MetaGraph indexes presented in this
work, showing total number of input bases on the x-axis and index size in total number of unique k-mers
on the y-axis. Marker size represents the size of the index. The solid portion of each marker represents
the fraction of total size taken by the graph and the translucent portion represents the fraction taken by
the annotation (Table 1). b) Size of evaluated index data structures for representing a set of microbial
WGS experiments of increasing size, shown for both lossy indexing methods BIGSI and COBS and
lossless Mantis and MetaGraph. Construction of the Mantis index for the 13,500 sample subset was
only 43.6% complete after reaching our 240 h run time limit. c) Times for querying gut microbiome
sequencing data. Color scheme as in a. d) Same as in b, querying AMR gene DNA sequences from the
CARD database [1]. e) Accuracy of sequence search approaches for different sequencing technologies (left:
Illumina, right: PacBio CLR). The graph is constructed from an Escherichia coli reference genome and
the query reads are simulated from 12 different E. coli genomes. Accuracy is measured as the Spearman
correlation between search scores (k-mer match count or alignment score) and ground truth sequence
alignment scores. Error bars represent 95% CI’s across 100 bootstrap samples from 3480 and 874 query
reads of Illumina- and PacBio-type, respectively, corresponding to a coverage of 1×.

8

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/

While all representations grow approximately linearly with the input size, the slope and
growth behavior are drastically different (Figure 3b). For Mantis, the full index grows ir-
regularly with an increasing number of experiments, but is always significantly larger than
MetaGraph (see also Supplemental Figure S-6 for further details). Notably, MetaGraph also
uses significantly less memory than BIGSI and COBS, despite their use of a lossy compression
approach.

Note that the memory footprint of an index is not only relevant for its construction, but also
for any query, as the index needs to be loaded into memory for performing query operations
on it. Thus, it becomes especially relevant for petabase scale indexes, where the total memory
available on servers is limited and a constant factor can determine whether an index can be
hosted.

To meet different efficiency needs when serving queries, MetaGraph provides a variety of
alternative annotation representations with different trade-offs between size of the index and
query performance. However, even when using the larger annotation representations optimized
for maximal query speed, MetaGraph needs significantly less memory than its competitors
(Supplemental Figure S-6).

2.3 MetaGraph shows superior search performance

In addition to scaling index construction to large input sizes, a second focus of MetaGraph lies on
providing efficient sequence search. With the batched query strategy, MetaGraph demonstrates
query times competitive to all other evaluated methods, and for some queried data, surpasses
BIGSI and COBS in query speed by up to several orders of magnitude (Figure 3c and d).

De Bruijn graph-based methods typically perform sequence search via exact k-mer matching
(e.g., [12, 14, 53]), which can be seen as an approximation of semi-global alignment of a query se-
quence against each label’s corresponding subgraph. However, this poses a sensitivity-specificity
trade-off, where reducing k increases sensitivity and reduces match specificity, and vice-versa.

To address this in MetaGraph, sequence search can be performed not only via exact k-mer
matching but also with alignment to graph. Notably, the sensitive alignment strategy in Meta-
Graph performs faster than some of the other exact k-mer matching methods (Supplemental
Figure S-1).

MetaGraph alignment improves search accuracy Alignment to an annotated de Bruijn
graph can be approached either via alignment to the entire graph, or via alignment to any
of its subgraphs, for instance, induced by any of the annotation labels. The latter case, as
mentioned above, more closely mirrors the classical problem of aligning sequences against a
reference genome.

Since searches of a query sequence against each label are independent, we evaluated the ac-
curacy of querying against single-label, read set-derived genome graphs as a proxy for alignment
against a reference genome (Figure 3e and Supplemental Figure S-2). For this, we simulated
Illumina HiSeq read sets from an Escherichia coli K-12, MG1655 reference genome (GenBank
accession ID NC 000913.3) with ART [31] at varying coverage levels and indexed them with
Mantis, BIGSI, COBS, and MetaGraph (see Online Methods 4.13.1). We then measured the ac-
curacy of both exact k-mer matching and alignment queries (where applicable). In addition, we
also measured the accuracy of the sequence-to-graph alignment tool GraphAligner [55] on a GFA
representation of the MetaGraph index. For testing, we simulated Illumina HiSeq and PacBio
read sets from 12 E. coli genomes and aligned them to the NC 000913.3 reference genome with
the Parasail aligner [18] to compute ground-truth alignment scores. We found that the accuracy
of alignment and k-mer matching with MetaGraph outperforms all other tools in this experi-
ment. Although exact k-mer matching did not perform as well for all methods, the alignment
methods in MetaGraph substantially improve the accuracy of match scores for the simulated
PacBio reads. In addition, we observed that alignments to graphs constructed from read sets of

9

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/

coverage 20× were as accurate as alignments to graphs constructed from the original reference
sequence (Supplemental Figure S-2). These results show that if MetaGraph indexes are built
on sufficiently deeply sequenced inputs, they can replace bona fide reference genome databases
as backends for sequence search. We further discuss the generalizability of this conclusion in
Section 3.

2.4 MetaGraph allows for distributed and interactive use

In addition to the single-machine use case, where the graph index is built and queried locally,
MetaGraph also supports the distribution of indexes for query via a client-server architecture.
Using this concept, a set of graphs and annotations can be easily spread across multiple ma-
chines. Each machine runs MetaGraph in server mode, offering one or multiple indexes, awaiting
queries on a pre-defined port. This modularity makes it straightforward to integrate one or many
queries across a whole set of graphs served on multiple servers. For easy integration of results and
coordination of different MetaGraph instances, we provide interfaces to popular scripting lan-
guages, such as Python, allowing for the interactive usage of one or several (remote) MetaGraph
index instances (Figure 4a).

ku
al

a_
lu

m
pu

r

of
fa

ha
no

i

m
in

ne
ap

ol
is

bo
go

ta

rio
_d

e_
ja

ne
iro

to
ky

o

do
ha

sa
nt

ia
go

be
rli

n

lo
nd

on

ilo
rin

se
nd

ai

lis
bo

n

zu
ric

h

fa
irb

an
ks

si
ng

ap
or

e

ne
w

_y
or

k_
ci

ty

ky
iv

so
fia

ho
ng

_k
on

g

de
nv

er

se
ou

l

ta
ip

ei

os
lo

pa
ris

po
rto

sa
o_

pa
ul

o

vi
en

na

ha
m

ilt
on

fu
ku

ok
a

ed
in

bo
ro

ug
h

na
pl

es

city

0

5

10

15

20

25

30

35

40

45

of

 A
M

R
 p

er
 s

am
pl

e

In [1]: from metagraph.client import GraphClient

SRV = “metagraph.ethz.ch”
PORT = 12345
g1 = GraphClient(SRV, PORT, api_path=“/metasub”)
g2 = GraphClient(SRV, PORT, api_path=”/refseq”)

In [2]:

Out [2]:

query = “GGCTAACTACGTGCCAGCAGCCGCGGTAATAC”
g1.search(query, align=True)

Python Client API Graph server(s)
a

b

0
1
2
...

sample

SRR2201245
ERR1732568

ERR847096
...

sequence

GGCTAACTACGTGCCAGCAGCCGCGGTAATAC
GGCTAACTACGTGCCAGCAGCCGCGGTAATAC
GGCTAACTACGTGCCAGCAGCCGCGGTAATAC

...

score

64
64
64
...

CA C
GA A
TA C
AC A
AC G
AC T
...

0 0 0 1 1 0
0 0 0 0 0 1
1 1 1 1 0 0
0 0 0 1 1 0
1 1 1 1 1 1
0 0 1 0 0 0
.

CA A
CA G
CA T
GA A
AC A
AG A
AG T
...

1 0 1 1 1 0
0 0 0 0 0 1
1 0 1 0 0 0
1 0 0 1 1 0
1 0 1 0 1 1
0 1 0 0 0 0
.

Ports

12345
23456

10.0.0.23

192.0.12.251

0 2 4 6 8 10
mean # AMR markers

skin

metal_plastic

glass

painted_metal

metal

other

plastic

rubber

wood

leather

m
at

er
ia

l

c

Bacteria

Fungi

Figure 4: Utility and usability – a) MetaGraph is designed to support a client-server infrastructure
as exemplified here with a script in Python. In a few steps, several remote (or local) graph instances can
be created and queried interactively. Results are returned as a data frame that can be used for further
analyses. b) Number of antimicrobial resistance (AMR) markers per sample for different cities in the
MetaSUB study. Bars represent ±σ. c) Distribution of the mean number of AMR markers grouped by
surface material based on all samples of the MetaSUB data set.

10

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/

We demonstrate this usability in publicly available example scripts1. In this analysis, the
full CARD AMR database [1] is queried against a MetaGraph index containing more than 4,400
whole metagenome sequencing samples from the MetaSUB cohort. We use the data to generate
a ranking of cities based on the average number of AMR-markers in a sample (Figure 4b),
largely consistent with the analysis performed on the raw data using orthogonal strategies [19].
Further, the script is used for exploratory analyses, linking sample metadata, such as surface
material at the sampling location, to the query results (Figure 4c). We invite readers to run
the script themselves, reproduce the plots interactively and further explore the available data.

2.5 Differential sequence assembly identifies pathogens in kidney transplant
patients

In additional to sequence search, MetaGraph also supports integrative analysis on the samples
in an annotated graph, assembling sequence markers satisfying user-provided criteria. For in-
stance, given a set of whole metagenome sequencing samples of two patient populations that
are distinguished by a certain phenotype (e.g., resistance to treatment), one can categorise the
patient samples according to this phenotype and select the corresponding distinguishing k-mers
(Figure 5a, top). These can then be assembled into differential sequences (Figure 5a, bottom),
which act as markers for further study. We refer to this process as differential assembly.

Classical approaches to solve this problem would involve aligning the reads from each sample
and selecting a subset to act as markers. This analysis, however, requires the raw sequencing
data for each sample to be available. With MetaGraph indexes, this analysis can be performed
directly on the compressed index.

Columns of the annotation matrix in a MetaGraph index mask nodes of the graph and induce
subgraphs from which sequences can be assembled. Thus, one can construct a desired subgraph
by performing a series of operations on the annotation columns to derive a corresponding node
mask (see Online Methods 4.10 for more details).

To demonstrate the concept of differential assembly on a real-world application, we per-
formed an analysis on whole metagenome sequencing samples collected from the urine of kidney
transplant patients to test for the transfection of JC polyomavirus and other pathogens [56].
Using the pre-transplantation samples of recipients as the background sets and the intersection
of the donor and post-transplantation samples of the recipients as foreground sets, we used the
MetaGraph representation of all samples to assemble sequences present in the foreground but
absent in the background for each pair. Given the assembly parameters, the differential assem-
bly resulted in sequences identified as JC polyomavirus (genome length 5032 bp) having average
lengths from 43 bp to 242 bp and NG50 values ranging from 0 (two samples) to 59. Consistent
with the original publication [56], we detected JC polyomavirus in 6 out of 15 samples as an
agent transmitted with transplantation. The detection was performed by querying the assem-
bled sequences against the MetaGraph SRA-Microbe index and the virus portion of the RefSeq
index (Figure 5b). Of the 16,913 differential sequences assembled from the patients (5502 of
them from those with positive detections), 906 were identified as containing JC polyomavirus
k-mers, among which 838 contained exclusively JC polyomavirus k-mers (see Supplemental
Figure S-4 and Supplemental Table S-12).

2.6 Uncovering unexpected transcriptome features in GTEx and TCGA

The Genotype Tissue Expression (GTEx) project has become a de facto reference set for human
RNA-Seq expression and is widely used in the community [42]. While gene expression values
and other summary statistics of the more than 10,000 samples are easily accessible, the whole set
of raw sequence RNA-Seq files comprises more than 40 TB even in compressed state. Similarly,
The Cancer Genome Atlas (TCGA) has collected more than 10,000 RNA-Seq samples from

1Available at https://github.com/ratschlab/metagraph_paper_resources/tree/master/notebooks

11

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint

https://github.com/ratschlab/metagraph_paper_resources/tree/master/notebooks
https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/

ba

0 0 0
0 0 0
1 1 1
0 0 0
1 1 1
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
1 1 1
1 1 1

1 1 0
0 0 1
1 0 0
1 1 0
1 1 1
0 0 0
1 1 0
0 0 1
0 0 1
1 1 1
1 0 0
1 0 0

1
1
0
1
0
0
1
1
1
1
0
0

() () or or and
or or

Differential assembly

CA C
GA A
TA C
AC A
AC G
AC T
GC A
GC G
CG A
CG C
CG T
GT A

CA C
GA A
TA C
AC A
AC G
AC T
GC A
GC G
CG A
CG C
CG T
GT A

ACG

CGT

GTA

CGC

GCA

TAC

ACA ACT GAA

CAC

GCG

CGA

.

>diff_1
CGCACA
>diff_2
CGCGAA
...

not

Target sample

NC_001699

aag951

knb739

qnx429

tvy653

ume111

wdk036

bgk952

iwv346

jns976

mek642

poo581

pqg516

qfv506

vpi912

xph346

Pa
tie

nt
s

†

0.0

0.2

0.4

0.6

0.8

1.0

%
 k-m

ers covered
��������������� ����������

�������

{
NC_001699

SRR1425639
SRR1425640
SRR1425641
SRR1425642
SRR1425643
SRR1425644
SRR1425646
SRR1425653
SRR1425661
SRR1425662
SRR1425663
SRR1425664
SRR3214092
ERR1706738
ERR1706744
SRR597642

1.00 0.16 0.15 0.17 0.14 0.17 0.18 0.18 0.17 0.14 0.16 0.09 0.14 0.14 0.00 0.00 0.00

0.77 0.20 0.24 0.28 0.22 0.27 0.29 0.29 0.22 0.23 0.25 0.17 0.23 0.14 0.00 0.00 0.00

0.86 0.19 0.24 0.28 0.22 0.27 0.29 0.29 0.22 0.23 0.25 0.17 0.23 0.15 0.00 0.00 0.00

0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00

0.47 0.15 0.18 0.21 0.17 0.20 0.22 0.22 0.16 0.17 0.19 0.20 0.17 0.20 0.00 0.00 0.00

0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.23 0.22 0.10

0.87 0.19 0.24 0.28 0.22 0.27 0.29 0.29 0.22 0.23 0.25 0.17 0.23 0.15 0.17 0.14 0.08

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.10 0.03

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.22 0.22

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Figure 5: Differential graph assembly – a) Differential assembly schema. Logical operations applied
on columns form a logical mask inducing a subgraph of the full graph. The example shows the subgraph
implied by using nodes present in the first three columns, but not present in any of the last three columns.
b) Assignment of sequences resulting from differential assembly of kidney transplant patients to target
genomes and samples (see Online Methods 4.10). Rows represent patient metagenome samples, columns
represent SRA samples in which the assembled sequences were discovered. Shading indicates fraction
of target genome covered. The SRR IDs represent samples annotated as JC polyomavirus, Salmonella
enterica, and uncultured bacteria (†) in the SRA-Microbe index, while NC 001699 represents the JC
polyomavirus reference genome.

primary tumors, spanning across more than 30 cancer types, constituting a central resource for
cancer research [61]. This cohort amasses 65 TB in compressed sequences for RNA-Seq samples
alone.

For either cohort, tasks that depend on access to the whole data set require an extraordinary
effort. For instance, in order to search for the presence of previously unobserved sequence
variants in the cohort (e.g., alternative splice forms or somatic variants) the entire data set
would need to be re-analyzed.

We compressed 9,759 RNA-Seq samples from GTEx [42], a total of 70 Tbp, into an annotated
MetaGraph index of only 56 GB in size. In addition, we constructed an extended transcrip-
tome index containing, in addition to all variation detected in the GTEx raw data, the human
reference genome sequence (version 38), the GENCODE reference transcriptome (version 32),
and all variants from the gnomAD cohort (release 3.0) [36]. We refer to the latter index as
GTEx++. Although the genome and gnomAD variation could also be represented using frame-
works like VG [46], the integration of transcriptome and raw sequencing data is currently not
straightforward. Adding annotations by sample and expression quantiles increased the index
size to 114 GB and 230 GB, for GTEx and GTEX++ indexes, respectively, which is still an
over 100-fold reduction in size to the original data. The compression of the TCGA cohort data
shows a similar ratio, reducing 81 Tbp of input data into an annotated graph of just 65 GB.

Although MetaGraph compresses the GTEx input sequences into a de Bruijn graph of only
15 GB through removing redundancy and sanitizing the (noisy) input, the graph index still shows
a remarkable sensitivity when queried with the original data, showing that indeed only a small
fraction of likely noisy unitigs was removed during the initial cleaning phase of the graphs. To
check how well MetaGraph preserves the sequence information present in the raw data and how
this affects alignment sensitivity relative to classical linear alignment tools, we re-aligned raw

12

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/

reads from 10 randomly picked GTEx samples back to the GTEx++ index. When we compared
the number of aligned reads between MetaGraph and a spliced alignment to a linear reference
genome [20], we found on-par results in all cases and superior sensitivity in 8 out of 10 query
samples (Supplemental Figure S-3a). When looking specifically into the fraction of reads
unmappable by the linear aligner, we found that generally more than half of these reads can
still be aligned by MetaGraph and find support in almost all GTEx samples (Supplemental
Figure S-3b).

Detection of trans-splice junctions Exploiting the efficient query of the graph index, we
investigated different transcriptome features. First, we assayed the use of exon combinations
arising from trans-splicing. In this atypical form of splicing the donor of an exon is not connected
to the acceptor of the subsequent exon but to the acceptor of the preceding exon (Figure 6a,
schema at the top). Due to their non-contiguity, classical linear RNA-Seq aligners are unable to
find such alignments, as we illustrate for genome alignments of a GTEx sample using a standard
spliced aligner (Figure 6a, bottom). We created short sequences of length 81 bp spanning
all theoretically possible trans-junctions in the GENCODE (version 30) annotation, using the
GRCh38 reference genome. This resulted in a total of 3,457,560 candidate trans-junctions. All
sequences not matching to the reference genome were aligned to the MetaGraph GTEx index,
which resulted in 472 trans-junction candidates, perfectly matching against at least one path
in a subgraph induced by a single sample. Interestingly, the occurrence of these junctions is
not uniformly distributed across tissues (Figure 6b), nor does it correlate with the number of
samples available per tissue (Supplemental Figure S-7). Even though the expression of trans-
junctions is lower than that of the flanking regular junctions, we find sufficient read coverage to
support these alignments, making an artefactual discovery unlikely (Figure 6c).

Expression evidence for somatic variants in TCGA We were interested to collect the
RNA-Seq expression evidence for a large set of known somatic mutations in the TCGA cohort.
Based on all single nucleotide variants of the COSMIC database (version 82) [59], we generated
query sequences from the GRCh37 reference genome spanning the variant with additional 20 bp
of sequence context both upstream and downstream. All sequences that did not map to the
GRCh37 reference, were then aligned to the MetaGraph TCGA index. We matched the corre-
sponding variants against the somatic variant calls of the MC3 project, performed on a large
set of TCGA samples [22]. For all samples with both expression and MC3 evidence available,
we asked which COSMIC variants were both detected in the whole exome sequencing (WXS)
based variant calling and supported by RNA-Seq expression evidence. While over half of the
positions were confirmed both by RNA-Seq and WXS, showing a Jaccard index of larger than
0.5 (Figure 6d), about 30% of the positions were mainly supported by RNA-seq, resulting in a
Jaccard index of 0. Especially those positions that were solely found in RNA piqued our inter-
est. One such position is COSM6336980, that expresses the variant allele exclusively in TCGA
samples of the thyroid cancer sub-cohort (Figure 6e). Our first suspicion of a cancer specific
variant was not confirmed, when we found that all of the normal samples in the Thyroid Cancer
(THCA) sub-cohort expressed the variant allele as well (Supplemental Figure S-8). Inter-
estingly, when confirming in the GTEx MetaGraph index, we found that also all GTEx thyroid
tissue samples exclusively express the variant allele (Figure 6f), which led us to hypothesize
tissue-specific RNA-editing as the possible source of this alteration. Interestingly, the observed
variant is not a classical A-to-I editing, but instead represents a silent G-to-A alteration, which
shows an astonishing pervasiveness across all thyroid tissue samples.

13

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155
supporting reads

0

50

100

150

200

250

300

350

fla

nk
in

g
ju

nc
tio

ns

trans-junction
flanking junction (upstream)
flanking junction (downstream)

0 10 20 30 40 50 60
trans junctions

Brain - Caudate (basal ganglia)

Brain - Amygdala

Colon - Sigmoid

Brain - Cortex

Nerve - Tibial

Pancreas

Artery - Coronary

Brain - Frontal Cortex (BA9)

Heart - Left Ventricle

Skin - Sun Exposed (Lower leg)

Brain - Cerebellar Hemisphere

Cells - Transformed fibroblasts

Testis

Brain - Cerebellum

Thyroid

Artery - Tibial

Lung

Whole Blood

Adipose - Subcutaneous

Muscle - Skeletal

Tissues with trans junctions (top 20)

chr 9
TCTCCCTTACCTTAAGATACAGAAGCAGCTCTTCGCTCCTGAAGATAAGCGGCAGAACCCGAATC

CTTAAGATACAGAAGCAGCTCTTCGCTCCTGAAGATAAGCGGCAGAACCCGAATC

... CTGTCCTGGGATAGGCCACTTCAACATATACTTCAAATGTGGTCTCTGGATTCTGCCTACAAAAGA

CTGTCCTGGGATAGGCCACTTCAACATATACTTCAAATGTGGTCTCTGGATTCTGC

 CTGGGATAGGCCACTTCAACATATACTTCAAATGTGGTCTCTGGATTCTGCCTTAAGATACAGAAGCAGCTCTTCGCTCCTGAAGATAAGCGGCAGAACCC
 TCCTGGGATAGGCCACTTCAACATATACTTCAAATGTGGTCTCTGGATTCTGCCTTAAGATACAGAAGCAGCTCTTCGCTCCTGAAGATAAGCGGCAGAAC
 CTGGGATAGGCCACTTCAACATATACTTCAAATGTGGTCTCTGGATTCTGCCTTAAGATACAGAAGCAGCTCTTCGCTCCTGAAGATAAGCGGCAGAACCC
 CGGGGGTAGGCCACTTCAACATATACTTCAAATGTGGTCTCTGGATTCTGCCTTAAGATACAGAAGCAGCTCTTCGCTCCTGAAGATAAGCGGCAGAACCC
 GGATAGGCCACTTCAACATATACTTCAAATGTGGTCTCTGGATTCTGCCTTAAGATACAGAAGCAGCTCTTCGCTCCTGAAGATAAGCGGCAGAACCCGAA
 GGATAGGCCACTTCAACATATACTTCAAATGTGGTCTCTGGATTCTGCCTTAAGATACAGAAGCAGCTCTTCGCTCCTGAAGATAAGCGGCAGAACCCGAA
 CTTCAACATATACTTCAAATGTGGTCTCTGGATTCTGCCTTAAGATACAGAAGCAGCTCTTCGCTCCTGAAGATAAGCGGCAGAACCCGAATGTCTGTTTG
GGATCTGAAAGAGTGCCGCCTGTCCTGGGATAGGCCTCTTCAACATATACTTCAAATGTGGTCTCTGGATTCTGCCTTAAGATACAGAAGCAGCTCTTCGC
 GATCTGAAAGAGTGCCACCTGTCCTGGGATAGGCCACTTCAACATATACTTCAAATGTGGTCTCTGGATTCTGCCTTAAGATACAGAAGCAGCTCTTCGCT
 ACCTGTCCTGGGATAGGCCACTTCAACATATCCTTCAAATGTGGTCTCTGGATTCTGCCTTAAGATACAGAAGCAGCTCTTCGCTCCTGAAGATAAGCGGC
 TCCTGGGATAGGCCACTTCAACATATACTTCAAATGTGGTCTCTGGATTCTGCCTTAAGATACAGAAGCAGCTCTTCGCTCCTGAAGATAAGCGGCAGAAC
 AGGCCACTTCAACATATACTTCAAATGTGGTCTCTGGATTCTGCCTTAAGATACAGAAGCAGCTCTTCGCTCCTGAAGATAAGCGGCAGAACCCGAATCTC
 GCCACTTCAACATATACTTCAAATGTGGTCTCTGGATTCTGCCTTAAGATACAGAAGCAGCTCTTCGCTCCTGAAGATAAGCGGCAGAACCCGAATCTCTG
 TTCAACATATACTTCAAATGTGGTCTCTGGATTCTGCCTTAAGATACAGAAGCAGCTCTTCGCTCCTGAAGATAAGCGGCACCAACAGAATCTCTGTTTGC
 ACATATACTTCAAATGTGGTCTCTGGATTCTGCCTTAAGATACAGAAGCAGCTCTTCGCTCCTGAAGATAAGCGGCAGAACCCGAATCTCTGTTTGCTGTC
 CCCGGGATAGGCCACTTCAACATATACTTCAAATGTGGTCTCTGGATTCTGCCTTAAGATACAGAAGCAGCTCTTCGCTCCTGAAGATAAGCGGCAGAACC

50S51M
52S49M
50S51M
50S51M
47S54M
47S54M
37S64M
4M86320N73M24S
3M86320N73M25S
60M41S
55M46S
46M55S
44M57S
39M62S
35M66S
*

DENND1A - exon 3

DENND1A - exon 3

DENND1A - exon 2

123,879,021123,757,703

SR
R6

27
45

5

b c

a

e

f

d

DENND1A - exon 2

Figure 6: Analysis of transcriptome graphs – a) Schematic of the trans-splicing principle illustrated
using the human gene DENND1A (chr 9) as an example. Top: Schematic representation of exon re-
arrangement into a trans-junctions. Bottom: Spliced alignments to the linear reference genome for
GTEx sample SRR627455. b) Top 20 GTEx tissues sorted by number of detected trans-junctions. c)
Distribution of the number of supporting reads for all trans-junctions (red), compared to the distribution
of read-support for the acceptor of the upstream junction (green) and the donor of the downstream
junction (blue). d) COSMIC variants in cancer census genes found in the MetaGraph index. Each
value on the x-axis corresponds to a single COSMIC variant with indices sorted by Jaccard index (blue),
describing how well RNA and DNA samples agree on presence of the variant. Number of samples
uniquely supporting RNA and DNA is shown in green and red, respectively. e) Expression distribution for
COSMIC variant COSM6336980 across TCGA tumor samples, grouped by tumor type. Reference allele
is shown in orange, variant allele in blue. f) Expression distribution for COSMIC variant COSM6336980
across GTEx samples, grouped by tissue.

14

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/

3 Discussion

Recent advances in DNA sequencing technology have led to massive growth in the amount
of high-throughput sequencing data available to the scientific community. However, a lack of
standardized approaches for optimal representation and indexing of sequencing data at petabase
scale severely limits the interactive exploration of this data and complicates large-scale genomic
analysis efforts.

We have presented MetaGraph, a scalable framework designed for indexing and analysis of
large collections of biological sequence data. We have shown that MetaGraph scales with the
size of the input data exceptionally well and, in most cases, constructs index representations
significantly smaller than those produced by current state-of-the-art methods. In addition,
unlike BIGSI and other databases designed for approximate membership queries, MetaGraph
constructs exact k-mer index representations that make no false-positive errors when querying.

We demonstrated the scalability of our approach by constructing queryable indexes for almost
the entire collection of microbial, fungi, plant, and metazoa whole genome sequencing data
sets present in NCBI’s Sequence Read Archive, comprising a total of more than 3.2 petabases
of input and representing more than 1.4 million individual samples. We know of no other
available method that was applied to such large amounts of input data. Based on our scalability
experiments, we expect that the framework can also keep up with future increases in data growth.
However, when indexing the available data, we had to restrict ourselves to data generated on
platforms with modest error rate. It is part of our future work, to adapt our raw data cleaning
and error correction protocols to also be applicable to sequencing platforms with higher error
rates, such as PacBio’s SMRT or Oxford Nanopore Technologies long reads.

For the query task of experiment discovery, we have shown that the MetaGraph index
achieves superior query performance to existing methods. In addition, its sequence-to-graph
alignment method allows for increased search sensitivity, especially when querying more di-
vergent sequences, while still maintaining competitive query times. While the current search
methods return either a k-mer count or a disjoint sequence of alignments covering the query
sequence, these results do not take into account different notions of node ordering on the graph.
Recently, this has been addressed via indexing coordinates [60] or graph traversal distances [16]
on genome graphs. With these additions, MetaGraph indexes have the potential to act as a
faster replacement for database search methods such as BLAST.

We have further explored the utility of MetaGraph on a number of diverse computational
biology applications. Based on a joint cohort of over 20,000 RNA-Seq samples from TCGA
and GTEx, we used MetaGraph to explore the human transcriptome for interesting features.
Thereby our focus was on properties that are hard to detect using linear reference genome
alignments or require the integration of many samples to be seen. Specifically, we have evaluated
the occurrence of trans-splicing and found over 200 cases commonly occurring within samples
of the GTEx cohort. So far our analysis was restricted to trans-junctions occurring within the
same gene but could be easily extended into a whole genome assay. A second focus of our
transcriptome exploration was on the expression of somatic variants from the COSMIC catalog
in different tissue and cancer types. We found that a large fraction of variants has evidence in
RNA, but is not reliably called using methods based on whole exome sequencing. One mechanism
we suggest contributes to this discrepancy is the occurrence of RNA editing. Thereby we put a
special focus on tissue-specific RNA-editing, which seems to occupy a regulatory role. Further
investigations in this direction are needed but are out of scope for this work.

Another innovative feature implemented in MetaGraph is a generalized framework for se-
quence assembly from subgraphs. This framework enables the user to fetch biological sequences
specific to certain properties or groups of interest (e.g., individual samples, patients subgroups,
or any set function of them). As a consequence, MetaGraph can answer such queries as “get
all sequences found in samples x and y but not present in sample z”, or “get all sequences
shared by all organisms in this taxonomic group”. This generalized view on assembly allows

15

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/

for new kinds of integrative analyses. We demonstrated the concept of differential assembly
using whole metagenome sequencing of urine samples taken from kidney transplant patients.
Using MetaGraph, we could reproduce findings on the data in a few minutes and could gener-
alize the analysis. While our sequence assembly methods mirror those of other metagenomics
assemblers by extracting unitigs [11, 47, 39] (non-branching stretches of the de Bruijn graph),
many of these methods rely on iterative cleaning procedures to increase the lengths of the as-
sembled contigs [11, 47]. As an alternative approach, the problem of chaining together unitigs
to form longer contigs and scaffolds is a clear target for future work [10]. In particular, the
use of the annotation matrix to motivate the path traversal strategy at branching points could
potentially lead to the assembly of longer contigs without compromising assembly quality with
heavy cleaning procedures.

A main goal of MetaGraph is to make large data sets accessible for interactive exploration.
We facilitate this via providing a server-mode for the MetaGraph-backend that enables inter-
active queries from a client via the MetaGraph API. Several of the display panels in this work
can be reproduced using the public MetaGraph instance and a Jupyter Notebook (Supplemental
Data, Section 5). The interfaces can be easily extended to also support querying from other
languages such as R or Julia.

We envision MetaGraph not only to provide a scalable framework for indexing highly diverse
sequence databases but also to serve as a versatile tool that enables researchers to perform large-
scale comparative analyses in genomics and medicine on typical academic compute clusters. It
makes public data sets interactively accessible that are otherwise too big to handle or hard
to retrieve. Along with the functionality currently provided, the scalability of many other
pipelines could also be improved by translating string matching procedures into equivalent graph
operations and supporting such operations using our framework.

4 Online Methods

4.1 Graph representations

MetaGraph uses k-mers (short contiguous sequences of length k) as elementary indexing tokens.
Every two k-mers with overlap of at least k-1 characters are connected with a directed edge, which
induces a node-centric de Bruijn graph, or more generally, an abstract sequence graph, with its
nodes representing sequences and its edges representing overlap between them or adjacency in
the input sequences.

MetaGraph employs several data structures for storing k-mer sets: i) a simple hash table, ii) a
compressed indicator vector (e.g., for DNA sequences, a binary vector of size 4k indicating which
k-mers are present in the set) represented as a bitmap [17], iii) the succinct BOSS table [13]
storing the set of k-mers succinctly. All of these data structures support exact membership
queries, map k-mers to their positive indexes (or zero, if the queried k-mer does not belong to
the set), and are used as a basis to implement different representations of the de Bruijn graph
abstraction. We call these representations i) HashDBG, ii) BitmapDBG, and iii) SuccinctDBG,
respectively. HashDBG and SuccinctDBG also feature dynamic versions of the representations
that support online updates of the graph (e.g., insertion of a k-mer or a path in the graph).

In all experiments presented in this work, we used the static version of SuccinctDBG to
represent full compressed graphs and the fast HashDBG to represent uncompressed query graphs
(see Batched sequence search, Figure 2). The BOSS table used as a base data structure in
SuccinctDBG often achieves the best compression of the k-mer dictionary and requires only
about 6 bits per k-mer (in contrast, HashDBG requires at least ten times more than that
for k = 31), which becomes a game-changer when indexing data at petabase scale. However,
the lower memory footprint of the BOSS table comes at the cost of slower k-mer membership
queries and mapping to retrieve their respective node indexes in the graph, requiring k internal
traversal steps [13]. We alleviate this issue by augmenting the BOSS table with an auxiliary

16

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/

table mapping the k-mer suffixes (usually of length 10) to their respective ranges of rows in the
BOSS table. With this optimization and the careful implementation in general, SuccinctDBG
achieves performance sufficient to make the overall query times competitive to other methods
while keeping the memory footprint at least an order of magnitude lower (see benchmarks,
Figure 3a-c).

4.2 Graph construction

For graph construction, all k-mers are extracted from the given input sequences. For each
k-mer, the number of times it occurred in the input is counted and the duplicate k-mers are
discarded. MetaGraph uses the SortedSet approach to generate the so-called k-mer spectrum
of the input: the input k-mers are appended to a list, which is sorted and de-duplicated every
time it reaches the allocated space limit or after all input k-mers have been processed. During
de-duplication, the k-mer counts are summed up to maintain the total count of each unique k-
mer. In addition, MetaGraph offers the SortedSetDisk approach, which implements a similar
algorithm in external memory. It imposes limits to memory usage and allows constructing
arbitrarily large k-mer spectra, but requires a larger amount of disk I/O. Lastly, MetaGraph
supports passing pre-computed outputs from the k-mer counter KMC3 [38] as input to make use
of its extremely efficient counting algorithm and filters. Once the full spectrum is constructed
and all k-mers are ordered, they are converted into the final data structure to construct the
target graph representation.

4.3 Graph traversal and sequence extraction

All sequence information stored in the graph (or a defined subgraph) can be extracted and stored
in FASTA format via graph traversal. Starting at all nodes with no incoming edges, the graph
is fully traversed, and its paths formed by consecutive overlapping k-mers are converted into
sequences (contigs) that are returned as a result of the operation. Each k-mer of the graph (or
subgraph) appears in the assembled contigs exactly once. That is, the resulting set of sequences
is a disjoint node cover of the traversed graph.

MetaGraph distinguishes two main types of traversal: i) traversal in contig mode extends a
traversed path until no further outgoing edge is present or if all the next outgoing edges have
already been traversed, while ii) traversal in unitig mode only extends a path if its last node
has a single outgoing edge, and this edge is the single edge incoming to its target node. This
is similar to the definition of unitig by [32]. For all traversal modes, we assemble sequences in
parallel.

4.4 Graph cleaning and refinement

After a sample graph is constructed from raw data, paths likely originating from noisy inputs
are pruned off. Then, the remaining sequences are extracted from the cleaned graph and output
in FASTA format. To identify potentially erroneous k-mers, we use an algorithm originally
developed by Iqbal and colleagues [32], adapted and scaled up in MetaGraph to work not only
for small but also for large graphs (up to trillions of nodes). Briefly, the k-mer spectrum is used
to calculate an abundance threshold for solid (non-noise) k-mers. Then, the graph is traversed
and all unitigs with the median read support for k-mers below the pre-computed threshold are
pruned off of the graph. In addition, all tips (unitigs where the last node has no outgoing edges)
shorter than a given length are pruned off as well.

When indexing cohorts of large raw sequencing files, we optionally performed an additional
step of pre-filtering based on their k-mer spectra. In this step, before building initial sample
graphs, we discarded all k-mers occurring only once in the sequencing experiment, if the average
k-mer count for that experiment exceeded 5 (see respective sections for each index in Online
Methods and descriptions of experiments on SRA data sets 4.13).

17

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/

4.5 Primary sequence graphs

When indexing sequencing reads from unknown strands, we supplement each read with its reverse
complement, which is then indexed along with its originating read. As a result, the de Bruijn
graph accumulates each k-mer in both orientations. Such graphs (which we call canonical) can
be represented by storing only one orientation of each k-mer and simulating the full canonical
graph on-the-fly (e.g., for querying outgoing edges, return not only the edges outgoing from the
source k-mer, but also all edges incoming to its reverse complement).

Storing only canonical k-mers (the lexicographically smallest among the k-mer and its reverse
complement) effectively reduces the size of the graph by up to two times. However, this cannot
be efficiently used with the succinct graph representation based on the BOSS table. The BOSS
table by design requires that each k-mer in it has other k-mers overlapping its prefix and suffix
of length k− 1 (at least one incoming and one outgoing edge in the de Bruijn graph). However,
among any two consecutive k-mers in a read, only one is likely to be canonical. In other words,
storing only canonical k-mers in the BOSS table would usually require adding at least two
extra dummy k-mers for each canonical one, which makes this approach memory-inefficient. We
overcome this issue by constructing so called primary graphs, where the word “primary” reflects
the traversal order, as described below.

When traversing a canonical de Bruijn graph, we can additionally apply the constraint that
only one of the orientations of a given k-mer is output. More precisely, the traversal algorithm
works as usual, but never visits a k-mer if its reverse complement had already been visited.
Whichever orientation of the forward or reverse complement k-mer is visited first, is considered
to be the primary k-mer of the pair. This results in a set of sequences, which we call primary
(primary contigs or primary unitigs). Note that the traversal order of the graph may change the
set of primary sequences extracted from it, but it may never change the total number of k-mers in
these sequences (primary k-mers). This is relevant when extracting primary contigs in multiple
threads, since the node traversal order may differ between runs. We call graphs constructed from
primary sequences primary graphs. Unlike the common approach where only canonical k-mers
are stored, primary de Bruijn graphs can be efficiently represented succinctly using the BOSS
table, and effectively allow us to reduce the size of the graph part of the MetaGraph index by
up to two times.

4.6 Graph annotation and its construction

Independent of the choice of graph representation, a variety of methods are provided in Meta-
Graph for compressing the annotation matrix to accommodate for different query types. For
fast sequence search queries, we provide implementations of the matrix compression techniques
from VARI [45] (RowFlat) and Rainbowfish [6]. For query graphs (see Batched sequence search,
Figure 2), we developed a compressed row-major sparse matrix representation RowCompressed
which additionally supports dynamic operations. For differential assembly and high compression
performance, we employ the Multiary Binary Relation Wavelet Tree (Multi-BRWT) compression
technique [35]. Finally, a hybrid dynamic matrix compressor ColumnCompressed is provided for
memory-efficient construction of the annotation matrix.

The typical workflow for constructing an annotation matrix for a large input set consists
of the following steps. After the joint sequence graph for the input set has been constructed,
we iterate over the input samples in parallel and map all k-mers of each sample to the graph,
generating a single annotation column. To avoid the mapping of identical k-mers multiple times
and prevent searching for noise k-mers, we typically use the unitig FASTA files of the cleaned
sample graphs instead of the raw sequences when annotating a graph, which greatly reduces the
annotation construction time. Once all columns have been constructed, MetaGraph performs an
agglomerative hierarchical clustering on them to generate a guide tree. This guide tree is then
used to construct a joint Multi-BRWT compressed representation of the matrix of all annotation

18

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/

columns. Finally, the Multi-BRWT scheme is relaxed to apply local optimizations of its structure
improving the compression performance [35].

4.7 Index distribution scheme

Large data sets can be partitioned by input samples into multiple parts and indexed separately.
These indexes can then be independently hosted on different servers. For greater flexibility, the
graph representation can also be separated from the annotation representation. This distribution
approach enables virtually unlimited scalability. For search, each query is sent to each part of
the full index, followed by aggregation of the partial results to generate a final result of the
query returned back to the user.

4.8 Dynamic index augmentation and batch updates

We support three strategies for extending an existing MetaGraph index. First, the new batch
can be indexed in a separate annotated de Bruijn graph hosted on the same or a different server.
Then, both can be queried simultaneously as it is done for a distributed MetaGraph index.
Second, a graph can be directly updated if it is represented using dynamic data structures
(e.g., SuccinctDBG in the dynamic form), which support dynamic updates. This approach
allows making instant changes, however, does not enable large updates because of the limited
performance of dynamic data structures [2]. Finally, for large updates, the existing index can
be completely reconstructed. For reconstruction, the index is first decomposed into contig
buckets, where each bucket stores contigs extracted from the subgraph induced by its respective
annotation column. Then these buckets are extended with the new data and a new index is
constructed from them. Notably, this approach uses the non-redundant set of contigs and does
not require processing raw data from scratch again. Thus, the construction is performed on data
up to 100 times smaller than the original raw reads.

4.9 Sequence search

The goal of sequence search is, given a query sequence, to retrieve the associated annotation
labels from the MetaGraph index. We distinguish two types of sequence search: i) exact k-mer
matching, intersecting the query k-mers with the set of k-mers of the index and ii) sequence-
to-graph alignment, finding the set of paths in the graph that spell a sequence within a given
edit distance to the query. Both approaches will be described in further detail in the following
subsections.

4.9.1 Exact k-mer matching

The simplest approach for sequence search is exact k-mer matching. Each query sequence is
decomposed into k-mers that are mapped onto the k-mer dictionary and their respective rows
of the annotation matrix are then decoded to answer the query.

4.9.2 Sequence-to-graph alignment

To achieve greater sequence search sensitivity in cases where exact k-mer matching is not suf-
ficient, we developed a sequence-to-graph alignment algorithm for the MetaGraph index. The
algorithm takes a classic seed-and-extend approach [7], using several heuristics in both stages
to improve query time.

Seeding Given an input sequence, the first step is finding exact k-mer matches in the graph.
From these, maximal exact matches (MEMs, i.e., contiguous stretches of matching k-mers) are
used as seeds. However, since the strategy of greedily taking exact nucleotide matches at graph

19

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/

bifurcation nodes may lead to the extension algorithm starting from a suboptimal node, we
impose an additional constraint that MEMs must be contained within a single unitig (called
Uni-MEMs [41]). By default, this seeding algorithm restricts seeds to be at least of length k. If
the k-mer dictionary supports matching sequences of length less than k, this restriction may be
relaxed to allow for shorter seed lengths. For instance, the BOSS table in SuccinctDBG forms
a self index that can be searched by iterating through a given pattern, resulting in a range of
row indices pointing to k-mers prefixed by the query [13]. If multiple nodes in the graph match
a prefix of length k′ < k, then all of them are considered as seeds.

Iterative seed extension Each seed is extended forwards and backwards in the graph to
produce a local alignment. The extension algorithm is a generalization of the Smith-Waterman-
Gotoh pairwise local alignment algorithm [26] to de Bruijn graphs. It extends the bit-parallel
sequence-to-graph alignment algorithms introduced in [54, 55] to support affine gap penalties
and introduces heuristics which improve alignment accuracy in the context of long error-prone
reads, or graphs derived from low-coverage samples (see Section 2.3).

We now describe the extension algorithm in more detail. Given a seed, let s = s1 · · · s`
denote the suffix of the query sequence beyond the end of the seed. In the subsequent extension
algorithm, we use a dynamic programming table to represent the scores of the best partial
alignments. More precisely, each node v has three corresponding integer score vectors Sv, Ev,
and Fv of size `. Sv[i] stores the best alignment score of the prefix s1 · · · si ending at node
v. Ev[i] and Fv[i] represent the best alignment scores of s1 · · · si ending with an insertion and
deletion at node v, respectively.

Since the graph may be cyclic, multiple passes are made over the elements of the dynamic
programming table until their values converge [54]. For this, we maintain a priority queue
storing graph nodes whose corresponding score vectors have not yet converged and iteratively
update them until the queue has been exhausted. Each node is prioritized by the greatest score
among all elements updated in the last iteration [54]. To restrict the alignment search space,
we employ the X-drop criterion [8, 62], skipping an element if it is more than X units lower
than the current best computed alignment score. In addition, we apply a restriction on the total
number of nodes which can be explored as a constant factor of `.

Chaining local alignments The algorithm described above results in a set of local alignments
of the query sequence. From this, a set of non-overlapping local alignments is constructed via a
weighted job scheduling algorithm (see Algorithm 1). The local alignments are first sorted in non-
decreasing order by their positions in the query sequence. Then, chains of local alignments are
constructed iteratively. When two alignments cover overlapping regions in the query sequence,
we trim the alignments to remove the overlapping region and maximize the sum of their scores.

20

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/

Algorithm 1 Chaining local alignments

Precondition: q = q1 · · · qn is a query sequence, A1, . . . , Am are local alignments of q to the
graph sorted by their ending coordinates in q.

Postcondition: A, a sequence of disjoint alignments of q to the graph.

1: function ChainLocalAlignments([A1, . . . , Am])
2: S ← [−∞, . . . ,−∞] . Initialize the vector of n scores
3: A∗ ← [] . Initialize an empty alignment chain
4: for j ← 0 to m− 1 do
5: A ← Chain([Aj], j + 1) . Find the best alignment chain starting with Aj

6: if Score(A) > Score(A∗) then
7: A∗ ← A
8: end if
9: end for

10: return A∗

11: end function

12: function Chain(A, i)
13: if i = m then
14: return A
15: end if
16: if S[EndPos(Last(A))] ≥ Score(A) then
17: return [] . return nothing if this chain scores lower than previous chains
18: end if
19: S[EndPos(Last(A))] ← Score(A) . store best score at the current end point
20: A∗ ← []
21: for j ← i to m− 1 do . append an alignment
22: if BeginPos(Aj) ≥ EndPos(Last(A)) then . check for overlap with Aj

23: A′ ← Chain(Append(A, Aj), j + 1)
24: else
25: A′ ← DisjoinAppend(A, Aj) . Trim last alignment and append
26: A′ ← Chain(A′, j + 1)
27: end if
28: if Score(A′) > Score(A∗) then
29: A∗ ← A′

30: end if
31: end for
32: return A∗

33: end function

4.9.3 Seed-and-extend on primary graphs

While primary graphs act as an efficient representation of canonical de Bruijn graphs, special
considerations need to be made when aligning to these graphs to ensure that all paths which are
present in the corresponding canonical graph are still reachable. For this, we introduce a further
extension of the alignment algorithm to allow for alignment to an implicit canonical graph while
only keeping a primary graph in memory. During seed extension, the children of a given node
are determined simply by finding the children of that node in the primary graph, along with
the parents of its reverse complement node. Finding exact matching seeds of length ≥ k can
be achieved in a similar fashion, searching for both the forward and reverse complement of each
k-mer in the primary graph.

To find seeds of length < k, matching to the suffixes of nodes in the canonical graph, a three

21

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/

step approach is taken. First, seeds corresponding to the forward orientation of the query are
found according to the algorithm described in 4.9.2. The next two steps then retrieve suffix
matches which are represented in their reverse complement form in the graph. In the second
step, the reverse complements of the query k-mers are searched to find node ranges corresponding
to suffix matches of length k′. Finally, these ranges are traversed forwards k − k′ steps in the
graph to make the prefixes of these nodes correspond to the sequence matched. The reverse
complements of these nodes are then returned as the remaining suffix matches.

4.9.4 Batched sequence search and alignment

To increase sequence search performance, MetaGraph processes query sequences in batches and
queries each batch against a small uncompressed query graph extracted from the full compressed
index (see Figure 2, right). Given a batch of query sequences, they are transformed into a
transient batch graph, which is then traversed to extract a non-redundant set of contigs. These
contigs are then queried against the full MetaGraph index via exact k-mer match to select the
respective subset of annotations. The resulting small annotated graph is called query graph and
represents the intersection of the batch graph with the full MetaGraph index. All inputs are
then searched against the query graph.

For alignment queries, the query graph is augmented with additional neighbouring contigs
from the full index to include the alignment paths that would be present if the query sequences
were aligned to the full graph. We refer to this extension as the hull of the initial query graph.
The size of the hull is set such that all k-mers which would potentially be explored by alignment
to the full index are added to the query graph.

4.10 Sequence extraction from subgraphs

Another type of query on a MetaGraph index consists in the extraction of sequences from its
given subgraph (see Figure 5 bottom middle – Sequence extraction). Depending on how such
a subgraph is defined, this may be used for filtering low coverage unitigs, constructing the core
genome of a cohort, or assembling differential sequences. Extraction of sequences from subgraphs
defined by masks is done by marking all nodes excluded from the subgraph as visited before
starting traversal. Thus, only nodes in the subgraph are visited during traversal and assembled
into target sequences.

In particular, constructing a node mask that can be used for differential assembly or core
genome assembly proceeds in three stages. In the first stage, the annotation columns for each
label of interest are counted in a bit-packed integer count vector. Then, all nodes corresponding
to non-zero counts are included in the target subgraph. In the second stage, unitigs from this
subgraph are evaluated according to user-defined inclusion criteria based on the values in the
count vector. Those not passing these criteria are discarded from the subgraph. Finally, short
tips are removed and the remaining subgraph is assembled into the resulting unitigs.

4.11 API

For interactively querying large graph indexes, MetaGraph offers a Python API that enables
programmatic access to a single or multiple MetaGraph servers. Started in server mode, the
MetaGraph index will be persistently present in memory of the server machine and accept queries
on a pre-defined port. The API then allows sending search or alignment queries to the index
and returns the result as a Pandas data frame for further downstream analysis.

4.11.1 MetaGraph online search engine

We make a subset of the indexes constructed and presented in this work available for online
search queries at https://metagraph.ethz.ch. The list of indexes currently hosted includes
SRA-Fungi, SRA-Microbe, MetaSUB and will further grow in the future.

22

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint

https://metagraph.ethz.ch
https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/

4.12 Data sets

We have generated a wide range of different MetaGraph indexes on very diverse input data sets.
In this section we describe the sources and compositions of those data.

4.12.1 Sequence Read Archive (SRA)

Most of the publicly available sequencing data generated in the past decades is collected in the
databases of NCBI’s Sequence Read Archive (SRA) [37]. Either using data set definitions of
prior work [14] or defining own sub-sets using the metadata provided through the database,
separating the data into different groups of related samples. For each such sub-set we have
then constructed a separate MetaGraph. In the following, we will provide details for each group
separately.

SRA - Microbe This data set was first used in [14] and presented as a data basis for the BIGSI
index. Consisting of 446,506 microbial genome sequences, this set originally posted the largest
indexed genome dataset. Although representing only a snapshot of ENA at that time, we decided
to keep the same sequence set for this work, to enable direct comparison and benchmarking.
A full list of SRA ids contained in this set is available as file TableS1 SRA Microbe.tsv (with
further information available in TableS10 SRA Microbe McCortex logs.tsv.gz and
TableS11 SRA Microbe no logs.tsv) in the Supplemental Resources described in Section 5.
For details on how the set of genomes was selected, we refer to the original publication of [14].

SRA - Fungi This data set contains all whole genome sequencing samples from NCBI SRA
assigned to the taxonomic ID 4751 (fungi) specifying the library source GENOMIC and exclud-
ing samples using platforms PACBIO SMRT or OXFORD NANOPORE. In total this amounts
to 125,585 samples processed for cleaning. Out of these 114,839 (91.44%) could be successfully
cleaned and were used to assemble the final MetaGraph index. All sample metadata was re-
quested from SRA using the BigQuery tool on the Google Cloud Platform. The complete list
of all samples (including information which ones were successfully cleaned) is available as file
TableS2 SRA Fungi.tsv in the Supplemental Resources described in Section 5.

SRA - Plants This data set contains all whole genome sequencing samples from NCBI SRA
assigned to the taxonomic ID 4751 (fungi) specifying the library source GENOMIC and exclud-
ing samples using platforms PACBIO SMRT or OXFORD NANOPORE. In total this amounts
to 576,226 samples processed for cleaning. Out of these 531,736 (92.28%) could be successfully
cleaned and were used to assemble the final MetaGraph index. All sample metadata was re-
quested from SRA using the BigQuery tool on the Google Cloud Platform. The complete list
of all samples (including information which ones were successfully cleaned) is available as file
TableS3 SRA Plant.tsv in the Supplemental Resources described in Section 5.

SRA - Metazoa This data set contains all whole genome sequencing samples from NCBI
SRA assigned to the taxonomic ID 33208 (metazoa) specifying the library source GENOMIC
and excluding samples using platforms PACBIO SMRT or OXFORD NANOPORE. In total
this amounts to 899,045 samples processed for cleaning. Out of these 797’883 (88.75%) could be
successfully cleaned and were used to assemble the final MetaGraph index. All sample metadata
was requested from SRA using the BigQuery tool on the Google Cloud Platform. The complete
list of all samples (including information which ones were successfully cleaned) is available as
file TableS4 SRA Metazoa.tsv in the Supplemental Resources described in Section 5.

23

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/

SRA - Human Gut Microbiome (MetaGut) This data set contains all sequencing sam-
ples of the assay type WGS and AMPLICON from NCBI SRA that were annotated with the
organism label “human gut metagenome”, excluding the subset of experiments using platforms
PACBIO SMRT and OXFORD NANOPORE. In total this amounts to 242,619 samples, where
177,759 (73.3%) were AMPLICON and 64,860 (26.7%) were WGS samples. Using a more le-
nient cleaning strategy, no automatic coverage threshold was detected for these samples and all
processed records were included into the final MetaGraph index. All sample metadata was re-
quested from SRA using the BigQuery tool on the Google Cloud Platform. The complete list of
all samples processed for this index is available as file TableS5 MetaGut.tsv n the Supplemental
Resources described in Section 5.

4.12.2 MetaSUB

This data set contains 4,220 whole metagenome sequencing samples collected from the built
environment through the MetaSUB consortium [19]. The raw data can be downloaded using
the MetaSUB utils2. A list of all sample IDs used in this study is available as file
TableS6 MetaSUB.csv.gz in the Supplemental Resources described in Section 5.

4.12.3 GTEx

The GTEx data set contains 9,759 raw RNA-seq files from the GTEx project [42] (version 7).
The data was downloaded from SRA via dbGaP and processed on the Leonhard Med compute
cluster of ETH Zurich. A list of all sample IDs used together with accompanying metadata is
available as file TableS7 GTEX.txt in the Supplemental Resources described in Section 5.

4.12.4 TCGA

The TCGA database has been built using RNA-Seq samples collected by The Cancer Genome
Atlas (TCGA) project [61]. In total, the index contains 11,095 individual records spanning
over all available TCGA cancer type. The data was downloaded from the Genomic Data
Commons Portal of the NCI. A list of all sample IDs used in this study is available as file
TableS8 TCGA.tsv.gz in the Supplemental Resources described in Section 5.

4.12.5 RefSeq

This data set contains all assembled reference genome sequences present in the version 97 release
of the NCBI Refseq database. In total the sequences for 103,302 taxonomic IDs are integrated
into the MetaGraph index, each taxonomic ID forming a label in the annotation. The full list
of taxonomic IDs included in the index is available as file TableS13 RefSeq97 taxIds.tsv in
the Supplemental Resources described in Section 5.

4.13 Experiments

This section summarizes the experimental setup for the different results presented in this work.

4.13.1 Measuring the accuracy of sequence search

Given the reference genome for Escherichia coli K-12 MG1655 (RefSeq accession NC 000913.3 [48]),
we simulated Illumina HiSeq-type reads with ART [31] with coverage C ∈ {1, 10, 20} and con-
structed cleaned MetaGraph indexes with k = 31 from the read sets. For cleaning, we trimmed
short tips of length less than 2k and discarded low-coverage unitigs, using unitig abundance
fallback values of 5 and 2 for input read sets of coverage > 5 and ≤ 5, respectively when an ap-
propriate cutoff could not be determined. Then, we constructed MetaGraph, BIGSI, and COBS

2https://github.com/MetaSUB/metasub_utils

24

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint

https://github.com/MetaSUB/metasub_utils
https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/

indexes from these cleaned unitigs. To generate an index for GraphAligner, we exported the
MetaGraph index in GFA format. For evaluation, we simulated both Illumina HiSeq and PacBio
CLR-type reads (the latter using PBSIM [52]) from 12 E. coli reference genomes (see Supple-
mentary Table S9) and computed their optimal semi-global alignment scores to the NC 000913.3

reference using the Parasail aligner [18].

4.13.2 Construction of the SRA-Microbe index

The SRA-Microbe graph was constructed from the same samples used to construct the BIGSI
index [14]. A merged canonical graph with k = 31 was constructed from cleaned contigs obtained
from the European Bioinformatics Institute FTP file server. The graph was then serialized into
primary contigs, then reconstructed and annotated by sample ID to form the final graph.

4.13.3 Construction of the SRA-Fungi, SRA-Plants, and SRA-Metazoa indexes

Briefly, each sample was either transferred and decompressed from NCBI’s cloud mirror or
downloaded from ENA (if not available on SRA) onto a cloud compute server and subjected to
k-mer counting using KMC3 [38] to generate the k-mer spectrum. If the median k-mer count on
the spectrum was less than 2, the sample was further processed without cleaning. Otherwise, the
sample was subjected to cleaning, using MetaGraph’s clean mode, pruning tips shorter than 2k,
and using an automatically detected coverage threshold for unitig removal, with a fallback value
of 3. After cleaning, for each sample a canonical graph with k = 31 was created and serialized
into primary contigs. For each cohort (Fungi, Plants, and Metazoa) the serialized samples were
joined into a merged graph representation. Further details are available in the Supplemental
Methods.

The general procedure to construct the MetaGraph index was as follows. A sample was
downloaded from SRA and then subjected to k-mer counting using KMC3 [38]. Based on the
count-spectrum, we used MetaGraph’s cleaning procedure, with a fallback value of 2. If the
median k-mer count in the spectrum was less than 2, we did not attempt cleaning. All samples
that were successfully cleaned or were not subjected to cleaning due to low coverage, were then
used for MetaGraph index construction in canonical mode, using the build strategy based on
external disk memory. Subsequently, we extracted primary contigs from the graph and rebuild
a primary graph from the extracted contigs.

After graph construction, we used the cleaned input sequences to annotate the joint graph.
Each input sample thereby formed an individual annotation column. All annotation columns
were then transformed in to the Multi-BRWT representation for improved compression and
higher query performance.

4.13.4 Construction of the SRA-MetaGut index

The construction of this index mainly follows the same procedure as previously described for
the SRA-Fungi, SRA-Plants, and SRA-Metazoa indexes. The only difference is in input sample
cleaning. As the automatic threshold estimation is not particularly well suited for metagenomics
data, we have switched off the singleton filtering on the k-mer spectrum and used a constant
cleaning threshold of 2 during graph cleaning. All remaining steps of construction and annotation
remained unaltered.

4.13.5 Construction of the MetaSUB graph

All input samples were directly assembled into canonical de Bruijn graphs using MetaGraph
with k = 41. All graphs were then cleaned using the MetaGraph cleaning mode, pruning tips
shorter than 2k and removing unitigs depending on coverage (automatically detected based on
k-mer spectrum). If no threshold could be detected, we used 3 as fallback value. The cleaned

25

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/

graphs were then transformed into primary contigs and stored on disk. Based on the primary
contigs a joint graph was built, using external memory.

The joint primary graph was then annotated with each individual sample, where one sample
was transformed into a single annotation column. The columns were then aggregated into a
joint Multi-BRWT index, using the transform anno mode of MetaGraph.

4.13.6 Construction and differential assembly of kidney transplant graphs

Graphs were constructed from each raw sequencing sample with k = 31. Each graph was then
cleaned by trimming short tips of length < 2k and pruning low coverage unitigs. A fallback
of 2 was used when an appropriate coverage cutoff could not be determined. Joint annotated
graphs were then constructed for all samples of each donor-recipient pair. Given a joint graph,
the post-transplant recipient sample and the donor sample were considered to be the foreground
set, while the pre-transplant sample of the recipient was considered to be the background. To
define the differential subgraph, each graph unitig was kept if at least 80% of its constituent
k-mers were present in both foreground patients and at most 20% of its constituent k-mers were
present in the background set.

4.13.7 Construction and query of GTEx indexes

All available RNA-Seq samples that were part of the version 7 release of GTEx [42] were down-
loaded via dbGaP. A list of all samples used is available in the Supplemental Data Section 5.
Each sample was individually transformed into a graph using k = 41 and then cleaned using
MetaGraph’s clean module, trimming tips shorter than 2k and using an automatically detected
coverage threshold with fallback 3 for removing noisy unitigs, and then serialised to disk into
fasta format. All resulting fasta file were then assembled into a joint graph and then serialized to
disk again into primary contigs. From these primary contigs a final graph was assembled. The
primary merged graph was then annotated using the cleaned fasta file of each sample, generating
one label per sample. All individual annotation columns were then collected into a joint matrix,
that was transformed into relaxed Multi-BRWT representation.

Re-alignment experiments against GTEx index We randomly selected a subset of 10
samples from the GTEx cohort (available as file TableS14 GTExSubset.tsv in supplemental
resources given in Section 5) to evaluate the re-alignment of samples against the graph. For
each sample, we considered the first 250,000 read pairs. The reads were re-aligned to the human
reference genome (version hg38.p12) using the STAR aligner [20] (version 2.7.0f). Similarly, we
used the MetaGraph sequence-to-graph alignment to align the reads back to the GTEx index.
In either setting, we used sensitive alignment criteria, utilizing --outFilterMatchNmin 21 for
STAR and --align-min-seed-length 21 for MetaGraph. The latter setting does not apply
for MetaGraph exact k-mer matching, where always a full k-mer is mapped.

4.13.8 Construction and query of TCGA index

All available TCGA RNA-Seq samples availabe at the Genomic Data commons were downloaded.
A list containing all processed samples is available as file TableS8 TCGA.tsv in the Supplemental
Data Section 5. The same assembly and annotation strategy as for GTEx samples was used,
with the only difference that k was chosen as 31.

To generate the list of candidate trans-junctions, we iterated over all genes present in the
GENCODE annotation (version 32) and formed for all transcripts

5 Supplemental Data

Additional resources for this project, including sample metadata, interactive notebooks and anal-
ysis scripts are available in GitHub at https://github.com/ratschlab/metagraph_paper_

26

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint

https://github.com/ratschlab/metagraph_paper_resources
https://github.com/ratschlab/metagraph_paper_resources
https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/

resources. The source code of the MetaGraph software is available under GPLv3 License at
https://github.com/ratschlab/metagraph.

Acknowledgements

This work was supported through funds of ETH Zurich, MK and HM are funded by the Swiss Na-
tional Science Foundation Grant No. 407540 167331 “Scalable Genome Graph Data Structures
for Metagenomics and Genome Annotation” as part of Swiss National Research Programme
(NRP) 75 “Big Data.” The authors would like to thank the members of the MetaSUB interna-
tional consortium for early access to raw sequencing data and their feedback on early versions of
the geolocation DNA sequence search. We also would like to acknowledge the NCBI staff work-
ing on maintaining and developing the Sequence Read Archive for their support and interest
in our project. The authors thank the members of the Biomedical Informatics Group at ETH
Zurich for constant feedback and input on the project. The authors also would like to thank
Google Inc. for providing a package of free compute credits on the Google Cloud Platform. We
further would like to thank the donors and their families who contributed data to the GTEx
and TCGA projects. This study contains data gathered by the Genotype-Tissue Expression
(GTEx) Project available through dbGaP at http://www.ncbi.nlm.nih.gov/gap through dbGaP
accession number phs000424.v7.p1. This study further contains data gathered by The Cancer
Genome Atlas (TCGA) project available through dbGaP at http://www.ncbi.nlm.nih.gov/gap
through dbGaP accession number phs000178.v1.p1. The authors are also grateful for the ability
to use the publicly available data gathered by the gnomAD project.

27

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint

https://github.com/ratschlab/metagraph_paper_resources
https://github.com/ratschlab/metagraph_paper_resources
https://github.com/ratschlab/metagraph
https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/

References

[1] Brian P Alcock, Amogelang R Raphenya, Tammy TY Lau, Kara K Tsang, Mégane
Bouchard, Arman Edalatmand, William Huynh, Anna-Lisa V Nguyen, Annie A Cheng,
Sihan Liu, et al. Card 2020: antibiotic resistome surveillance with the comprehensive
antibiotic resistance database. Nucleic acids research, 48(D1):D517–D525, 2020.

[2] Bahar Alipanahi, Alan Kuhnle, Simon J Puglisi, Leena Salmela, and Christina Boucher.
Succinct Dynamic de Bruijn Graphs. Bioinformatics, 05 2020. btaa546.

[3] Bahar Alipanahi, Martin D Muggli, Musa Jundi, Noelle R Noyes, and Christina Boucher.
Metagenome snp calling via read colored de bruijn graphs. Bioinformatics, 2020.

[4] Alexandre Almeida, Stephen Nayfach, Miguel Boland, Francesco Strozzi, Martin Bera-
cochea, Zhou Jason Shi, Katherine S Pollard, Ekaterina Sakharova, Donovan H Parks,
Philip Hugenholtz, et al. A unified catalog of 204,938 reference genomes from the human
gut microbiome. Nature Biotechnology, pages 1–10, 2020.

[5] Fatemeh Almodaresi, Prashant Pandey, Michael Ferdman, Rob Johnson, and Rob Patro. An
efficient, scalable and exact representation of high-dimensional color information enabled
via de bruijn graph search. In International Conference on Research in Computational
Molecular Biology, pages 1–18. Springer, 2019.

[6] Fatemeh Almodaresi, Prashant Pandey, and Rob Patro. Rainbowfish: A Succinct Colored
de Bruijn Graph Representation. In Russell Schwartz and Knut Reinert, editors, 17th In-
ternational Workshop on Algorithms in Bioinformatics (WABI 2017), volume 88 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 18:1–18:15, Dagstuhl, Germany,
2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[7] Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J Lipman.
Basic local alignment search tool. Journal of molecular biology, 215(3):403–410, 1990.

[8] Stephen F Altschul, Thomas L Madden, Alejandro A Schäffer, Jinghui Zhang, Zheng Zhang,
Webb Miller, and David J Lipman. Gapped blast and psi-blast: a new generation of protein
database search programs. Nucleic acids research, 25(17):3389–3402, 1997.

[9] European Nucleotide Archive. Ena statistics – assembled/annotated sequence growth.
https://www.ebi.ac.uk/ena/about/statistics. Accessed: 2020-05-26.

[10] Jasmijn A Baaijens, Leen Stougie, and Alexander Schönhuth. Strain-aware assembly of
genomes from mixed samples using flow variation graphs. In International Conference on
Research in Computational Molecular Biology, pages 221–222. Springer, 2020.

[11] Anton Bankevich, Sergey Nurk, Dmitry Antipov, Alexey A Gurevich, Mikhail Dvorkin,
Alexander S Kulikov, Valery M Lesin, Sergey I Nikolenko, Son Pham, Andrey D Prjibel-
ski, et al. Spades: a new genome assembly algorithm and its applications to single-cell
sequencing. Journal of computational biology, 19(5):455–477, 2012.

[12] Timo Bingmann, Phelim Bradley, Florian Gauger, and Zamin Iqbal. Cobs: a compact bit-
sliced signature index. In International Symposium on String Processing and Information
Retrieval, pages 285–303. Springer, 2019.

[13] Alexander Bowe, Taku Onodera, Kunihiko Sadakane, and Tetsuo Shibuya. Succinct de
Bruijn graphs. In Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 2012.

28

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint

https://www.ebi.ac.uk/ena/about/statistics
https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/

[14] Phelim Bradley, Henk C den Bakker, Eduardo PC Rocha, Gil McVean, and Zamin Iqbal.
Ultrafast search of all deposited bacterial and viral genomic data. Nature biotechnology,
37(2):152, 2019.

[15] FP Breitwieser, DN Baker, and Steven L Salzberg. Krakenuniq: confident and fast metage-
nomics classification using unique k-mer counts. Genome biology, 19(1):198, 2018.

[16] Xian Chang, Jordan Eizenga, Adam M Novak, Jouni Sirén, and Benedict Paten. Distance
indexing and seed clustering in sequence graphs. Bioinformatics, 36(Supplement 1):i146–
i153, 2020.

[17] Thomas C. Conway and Andrew J. Bromage. Succinct data structures for assembling large
genomes. Bioinformatics, 27(4):479–486, feb 2011.

[18] Jeff Daily. Parasail: Simd c library for global, semi-global, and local pairwise sequence
alignments. BMC bioinformatics, 17(1):81, 2016.

[19] David Danko, Daniela Bezdan, Ebrahim Afshinnekoo, Sofia Ahsanuddin, Chandrima Bhat-
tacharya, Daniel J Butler, Kern Rei Chng, Francesca De Filippis, Jochen Hecht, Andre
Kahles, et al. Global genetic cartography of urban metagenomes and anti-microbial resis-
tance. BioRxiv, page 724526, 2019.

[20] Alexander Dobin, Carrie A Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski, Sonali
Jha, Philippe Batut, Mark Chaisson, and Thomas R Gingeras. Star: ultrafast universal
rna-seq aligner. Bioinformatics, 29(1):15–21, 2013.

[21] Richard Durbin. Efficient haplotype matching and storage using the positional burrows–
wheeler transform (pbwt). Bioinformatics, 30(9):1266–1272, 2014.

[22] Kyle Ellrott, Matthew H Bailey, Gordon Saksena, Kyle R Covington, Cyriac Kandoth, Chip
Stewart, Julian Hess, Singer Ma, Kami E Chiotti, Michael McLellan, et al. Scalable open
science approach for mutation calling of tumor exomes using multiple genomic pipelines.
Cell systems, 6(3):271–281, 2018.

[23] Erik Garrison, Jouni Sirén, Adam M Novak, Glenn Hickey, Jordan M Eizenga, Eric T
Dawson, William Jones, Shilpa Garg, Charles Markello, Michael F Lin, et al. Variation
graph toolkit improves read mapping by representing genetic variation in the reference.
Nature biotechnology, 36(9):875–879, 2018.

[24] Evangelos Georganas, Aydın Buluç, Jarrod Chapman, Steven Hofmeyr, Chaitanya Aluru,
Rob Egan, Leonid Oliker, Daniel Rokhsar, and Katherine Yelick. Hipmer: an extreme-scale
de novo genome assembler. In SC’15: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–11. IEEE, 2015.

[25] Evangelos Georganas, Rob Egan, Steven Hofmeyr, Eugene Goltsman, Bill Arndt, An-
drew Tritt, Aydin Buluç, Leonid Oliker, and Katherine Yelick. Extreme scale de novo
metagenome assembly. In SC18: International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, pages 122–134. IEEE, 2018.

[26] Osamu Gotoh. An improved algorithm for matching biological sequences. Journal of molec-
ular biology, 162(3):705–708, 1982.

[27] Robert S Harris and Paul Medvedev. Improved representation of sequence bloom trees.
Bioinformatics, 36(3):721–727, 2020.

29

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/

[28] Mahdi Heydari, Giles Miclotte, Yves Van de Peer, and Jan Fostier. Browniealigner: accurate
alignment of illumina sequencing data to de bruijn graphs. BMC bioinformatics, 19(1):1–10,
2018.

[29] Glenn Hickey, David Heller, Jean Monlong, Jonas A Sibbesen, Jouni Sirén, Jordan Eizenga,
Eric T Dawson, Erik Garrison, Adam M Novak, and Benedict Paten. Genotyping structural
variants in pangenome graphs using the vg toolkit. Genome biology, 21(1):1–17, 2020.

[30] Guillaume Holley, Roland Wittler, and Jens Stoye. Bloom Filter Trie: an alignment-free
and reference-free data structure for pan-genome storage. Algorithms for Molecular Biology,
11(1):3, 12 2016.

[31] Weichun Huang, Leping Li, Jason R Myers, and Gabor T Marth. Art: a next-generation
sequencing read simulator. Bioinformatics, 28(4):593–594, 2012.

[32] Zamin Iqbal, Mario Caccamo, Isaac Turner, Paul Flicek, and Gil McVean. De novo assembly
and genotyping of variants using colored de Bruijn graphs. Nature Genetics, 2012.

[33] Pesho Ivanov, Benjamin Bichsel, Harun Mustafa, André Kahles, Gunnar Rätsch, and Mar-
tin Vechev. Astarix: Fast and optimal sequence-to-graph alignment. In International Con-
ference on Research in Computational Molecular Biology, pages 104–119. Springer, 2020.

[34] Chirag Jain, Sanchit Misra, Haowen Zhang, Alexander Dilthey, and Srinivas Aluru. Accel-
erating sequence alignment to graphs. In 2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 451–461. IEEE, 2019.

[35] Mikhail Karasikov, Harun Mustafa, Amir Joudaki, Sara Javadzadeh-No, Gunnar Rätsch,
and André Kahles. Sparse binary relation representations for genome graph annotation. In
International Conference on Research in Computational Molecular Biology, pages 120–135.
Springer, 2019.

[36] Konrad J Karczewski, Laurent C Francioli, Grace Tiao, Beryl B Cummings, Jessica Alföldi,
Qingbo Wang, Ryan L Collins, Kristen M Laricchia, Andrea Ganna, Daniel P Birnbaum,
et al. The mutational constraint spectrum quantified from variation in 141,456 humans.
Nature, 581(7809):434–443, 2020.

[37] Yuichi Kodama, Martin Shumway, and Rasko Leinonen. The sequence read archive: explo-
sive growth of sequencing data. Nucleic acids research, 40(D1):D54–D56, 2012.

[38] Marek Kokot, Maciej D lugosz, and Sebastian Deorowicz. KMC 3: counting and manipu-
lating k-mer statistics. Bioinformatics, 33(17):2759–2761, 2017.

[39] Dinghua Li, Chi-Man Liu, Ruibang Luo, Kunihiko Sadakane, and Tak-Wah Lam. Megahit:
an ultra-fast single-node solution for large and complex metagenomics assembly via succinct
de bruijn graph. Bioinformatics, 31(10):1674–1676, 2015.

[40] Antoine Limasset, Bastien Cazaux, Eric Rivals, and Pierre Peterlongo. Read mapping on
de bruijn graphs. BMC bioinformatics, 17(1):1–12, 2016.

[41] Bo Liu, Hongzhe Guo, Michael Brudno, and Yadong Wang. debga: read alignment with de
bruijn graph-based seed and extension. Bioinformatics, 32(21):3224–3232, 2016.

[42] John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor
Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, et al. The genotype-
tissue expression (gtex) project. Nature genetics, 45(6):580, 2013.

30

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/

[43] Charley GP McCarthy and David A Fitzpatrick. Pan-genome analyses of model fungal
species. Microbial genomics, 5(2), 2019.

[44] Duccio Medini, Claudio Donati, Hervé Tettelin, Vega Masignani, and Rino Rappuoli. The
microbial pan-genome. Current opinion in genetics & development, 15(6):589–594, 2005.

[45] Martin D. Muggli, Alexander Bowe, Noelle R. Noyes, Paul S. Morley, Keith E. Belk, Robert
Raymond, Travis Gagie, Simon J. Puglisi, and Christina Boucher. Succinct colored de
Bruijn graphs. Bioinformatics, 2017.

[46] Adam M Novak, Erik Garrison, and Benedict Paten. A graph extension of the positional
burrows–wheeler transform and its applications. Algorithms for Molecular Biology, 12(1):18,
2017.

[47] Sergey Nurk, Dmitry Meleshko, Anton Korobeynikov, and Pavel A Pevzner. metaspades:
a new versatile metagenomic assembler. Genome research, 27(5):824–834, 2017.

[48] Nuala A. O’Leary, Mathew W. Wright, J. Rodney Brister, Stacy Ciufo, Diana Haddad,
Rich McVeigh, Bhanu Rajput, Barbara Robbertse, Brian Smith-White, Danso Ako-Adjei,
Alexander Astashyn, Azat Badretdin, Yiming Bao, Olga Blinkova, Vyacheslav Brover, Vy-
acheslav Chetvernin, Jinna Choi, Eric Cox, Olga Ermolaeva, Catherine M. Farrell, Tamara
Goldfarb, Tripti Gupta, Daniel Haft, Eneida Hatcher, Wratko Hlavina, Vinita S. Joardar,
Vamsi K. Kodali, Wenjun Li, Donna Maglott, Patrick Masterson, Kelly M. McGarvey,
Michael R. Murphy, Kathleen O’Neill, Shashikant Pujar, Sanjida H. Rangwala, Daniel
Rausch, Lillian D. Riddick, Conrad Schoch, Andrei Shkeda, Susan S. Storz, Hanzhen Sun,
Francoise Thibaud-Nissen, Igor Tolstoy, Raymond E. Tully, Anjana R. Vatsan, Craig Wallin,
David Webb, Wendy Wu, Melissa J. Landrum, Avi Kimchi, Tatiana Tatusova, Michael
DiCuccio, Paul Kitts, Terence D. Murphy, and Kim D. Pruitt. Reference sequence (Ref-
Seq) database at NCBI: Current status, taxonomic expansion, and functional annotation.
Nucleic Acids Research, 2016.

[49] Nuala A O’Leary, Mathew W Wright, J Rodney Brister, Stacy Ciufo, Diana Haddad, Rich
McVeigh, Bhanu Rajput, Barbara Robbertse, Brian Smith-White, Danso Ako-Adjei, et al.
Reference sequence (refseq) database at ncbi: current status, taxonomic expansion, and
functional annotation. Nucleic acids research, 44(D1):D733–D745, 2016.

[50] Brian D Ondov, Gabriel J Starrett, Anna Sappington, Aleksandra Kostic, Sergey Koren,
Christopher B Buck, and Adam M Phillippy. Mash screen: High-throughput sequence
containment estimation for genome discovery. Genome biology, 20(1):232, 2019.

[51] Brian D Ondov, Todd J Treangen, Páll Melsted, Adam B Mallonee, Nicholas H Bergman,
Sergey Koren, and Adam M Phillippy. Mash: fast genome and metagenome distance
estimation using minhash. Genome biology, 17(1):132, 2016.

[52] Yukiteru Ono, Kiyoshi Asai, and Michiaki Hamada. Pbsim: Pacbio reads simulator—toward
accurate genome assembly. Bioinformatics, 29(1):119–121, 2013.

[53] Prashant Pandey, Fatemeh Almodaresi, Michael A Bender, Michael Ferdman, Rob Johnson,
and Rob Patro. Mantis: A Fast, Small, and Exact Large-Scale Sequence-Search Index. Cell
Systems, 7 2018.

[54] Mikko Rautiainen, Veli Mäkinen, and Tobias Marschall. Bit-parallel sequence-to-graph
alignment. Bioinformatics, 35(19):3599–3607, 2019.

[55] Mikko Rautiainen and Tobias Marschall. Graphaligner: Rapid and versatile sequence-to-
graph alignment. Genome Biology, 21(1):1–28, 2020.

31

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/

[56] Peter W Schreiber, Verena Kufner, Kerstin Hübel, Stefan Schmutz, Osvaldo Zagordi, Aman-
deep Kaur, Cornelia Bayard, Michael Greiner, Andrea Zbinden, Riccarda Capaul, et al.
Metagenomic virome sequencing in living donor and recipient kidney transplant pairs re-
vealed jc polyomavirus transmission. Clinical Infectious Diseases, 69(6):987–994, 2019.

[57] Brad Solomon and Carl Kingsford. Improved Search of Large Transcriptomic Sequencing
Databases Using Split Sequence Bloom Trees. Journal of Computational Biology, 25(7):755–
765, 7 2018.

[58] Zachary D. Stephens, Skylar Y. Lee, Faraz Faghri, Roy H. Campbell, Chengxiang Zhai,
Miles J. Efron, Ravishankar Iyer, Michael C. Schatz, Saurabh Sinha, and Gene E. Robinson.
Big data: Astronomical or genomical? PLoS Biology, 2015.

[59] John G Tate, Sally Bamford, Harry C Jubb, Zbyslaw Sondka, David M Beare, Nidhi Bindal,
Harry Boutselakis, Charlotte G Cole, Celestino Creatore, Elisabeth Dawson, Peter Fish,
Bhavana Harsha, Charlie Hathaway, Steve C Jupe, Chai Yin Kok, Kate Noble, Laura
Ponting, Christopher C Ramshaw, Claire E Rye, Helen E Speedy, Ray Stefancsik, Sam L
Thompson, Shicai Wang, Sari Ward, Peter J Campbell, and Simon A Forbes. COSMIC: the
Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Research, 47(D1):D941–D947,
10 2018.

[60] Isaac Turner, Kiran V Garimella, Zamin Iqbal, and Gil McVean. Integrating long-range
connectivity information into de bruijn graphs. Bioinformatics, 34(15):2556–2565, 2018.

[61] John N Weinstein, Eric A Collisson, Gordon B Mills, Kenna R Mills Shaw, Brad A Ozen-
berger, Kyle Ellrott, Ilya Shmulevich, Chris Sander, Joshua M Stuart, Cancer Genome
Atlas Research Network, et al. The cancer genome atlas pan-cancer analysis project. Na-
ture genetics, 45(10):1113, 2013.

[62] Zheng Zhang, Scott Schwartz, Lukas Wagner, and Webb Miller. A greedy algorithm for
aligning dna sequences. Journal of Computational biology, 7(1-2):203–214, 2000.

32

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.01.322164doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.01.322164
http://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Results
	A powerful framework for efficient sequence representation
	Constructing petabase-scale indexes as a community resource
	MetaGraph shows superior search performance
	MetaGraph allows for distributed and interactive use
	Differential sequence assembly identifies pathogens in kidney transplant patients
	Uncovering unexpected transcriptome features in GTEx and TCGA

	Discussion
	Online Methods
	Graph representations
	Graph construction
	Graph traversal and sequence extraction
	Graph cleaning and refinement
	Primary sequence graphs
	Graph annotation and its construction
	Index distribution scheme
	Dynamic index augmentation and batch updates
	Sequence search
	Exact k-mer matching
	Sequence-to-graph alignment
	Seed-and-extend on primary graphs
	Batched sequence search and alignment

	Sequence extraction from subgraphs
	API
	MetaGraph online search engine

	Data sets
	Sequence Read Archive (SRA)
	MetaSUB
	GTEx
	TCGA
	RefSeq

	Experiments
	Measuring the accuracy of sequence search
	Construction of the SRA-Microbe index
	Construction of the SRA-Fungi, SRA-Plants, and SRA-Metazoa indexes
	Construction of the SRA-MetaGut index
	Construction of the MetaSUB graph
	Construction and differential assembly of kidney transplant graphs
	Construction and query of GTEx indexes
	Construction and query of TCGA index

	Supplemental Data

