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Abstract

Using gene-regulatory-networks based approach
for single-cell expression profiles can reveal un-
precedented details about the effects of external
and internal factors. However, noise and batch
effect in sparse single-cell expression profiles can
hamper correct estimation of dependencies among
genes and regulatory changes. Here we devise a
conceptually different method using graph-wavelet
filters for improving gene-network (GWNet) based
analysis of the transcriptome. Our approach
improved the performance of several gene-network
inference methods. Most Importantly, GWNet
improved consistency in the prediction of gene-
regulatory-network using single-cell transcriptome
even in presence of batch effect. Consistency of
predicted gene-network enabled reliable estimates
of changes in the influence of genes not highlighted
by differential-expression analysis. Applying
GWNet on the single-cell transcriptome profile of
lung cells, revealed biologically-relevant changes in
the influence of pathways and master-regulators
due to ageing. Surprisingly, the regulatory influ-
ence of ageing on pneumocytes type II cells showed
noticeable similarity with patterns due to effect of
novel coronavirus infection in Human Lung.
Keywords: graph-wavelet denoising, single-cell,
COVID, ageing lung, gene network

Introduction

Inferring gene-regulatory-networks and using them
for system-level modelling is being widely used
for understanding the regulatory mechanism in-
volved in disease and development. The inter-
dependencies among variables in the network is of-
ten represented as weighted edges between pairs of
nodes, where edge weights could represent regula-
tory interactions among genes. Gene-networks can
be used for inferring causal models [1], designing
and understanding perturbation experiments, com-
parative analysis [2] and drug discovery [3]. Due
to wide applicability of network inference, many
methods have been proposed to estimate inter-
dependencies among nodes. Most of the methods
are based on pairwise correlation, mutual informa-
tion or other similarity metrics among gene expres-
sion values, provided in a different condition or time
point. However, resulting edges are often influ-
enced by indirect dependencies owing to low but ef-
fective background similarity in patterns. In many
cases, even if there is some true interaction among
a pair of nodes, its effect and strength is not esti-
mated properly due to noise, background-pattern
similarity and other indirect dependencies. Hence
recent methods have started using alternative ap-
proaches to infer more confident interactions. Such
alternative approach could be based on partial cor-
relations [4] or ARACNE’s method of statistical
threshold of mutual information [5].
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Single-cell expression profiles often show het-
erogeneity in expression values even in a homo-
geneous cell population. Such heterogeneity can
be exploited to infer regulatory networks among
genes and identify dominant pathways in a cell-
type. However, due to the sparsity and ambigu-
ity about the distribution of gene expression from
single-cell RNA-seq profiles, the optimal measures
of gene–gene interaction remain unclear. Hence re-
cently, Sknnider et al. [6] evaluated 17 measures of
association to infer gene co-expression based net-
work. In their analysis, they found two measures
of association, namely phi and rho as having the
best performance in predicting co-expression based
gene-gene interaction using scRNA-seq profiles. In
another study, Chen et al. [7] performed indepen-
dent evaluation of a few methods proposed for gene-
network inference using scRNA-seq profiles such as
SCENIC [8], SCODE [9] , PIDC [10]. Chen et
al. found that for single-cell transcriptome profiles
either generated from experiments or simulations,
these methods had a poor performance in recon-
structing the network. Performance of such meth-
ods can be improved if gene-expression profiles are
denoised. Thus the major challenge of handling
noise and dropout in scRNA-seq profile is an open
problem. The noise in single-cell expression pro-
files could be due to biological and technical rea-
sons. The biological source of noise could include
thermal fluctuations and a few stochastic processes
involved in transcription and translation such as
allele specific expression [11] and irregular binding
of transcription factors to DNA. Whereas techni-
cal noise could be due to amplification bias and
stochastic detection due to low amount of RNA.
Raser and O’Shea [12] used the term noise in gene
expression as measured level of its variation among
cells supposed to be identical. Raser and O’Shea
categorised potential sources of variation in gene-
expression in four types : (i) the inherent stochas-
ticity of biochemical processes due to small num-
bers of molecules; (ii) heterogeneity among cells
due to cell-cycle progression or a random process
such as partitioning of mitochondria (iii) subtle
micro-environmental differences within a tissue (iv)
genetic mutation. Overall noise in gene-expression
profiles hinders in achieving reliable inference about
regulation of gene activity in a cell-type. Thus,
there is demand for pre-processing methods which
can handle noise and sparsity in scRNA-seq profiles

such that inference of regulation can be reliable.

The predicted gene-network can be analyzed fur-
ther to infer salient regulatory mechanisms in a cell-
type using methods borrowed from Graph theory.
Calculating gene-importance in term of centrality,
finding communities and modules of genes are com-
mon downstream analysis procedures [2]. Just like
gene-expression profile, inferred gene network could
also be used to find differences in two groups of
cells(sample) [13] to reveal changes in the regula-
tory pattern caused due to disease, environmental
exposure or ageing. In particular, a comparison of
regulatory changes due to ageing has gained atten-
tion recently due to a high incidence of metabolic
disorder and infection based mortality in the older
population. Especially in the current situation of
pandemics due to novel coronavirus (SARS-COV-
2), when older individuals have a higher risk of
mortality, a question is haunting researchers. That
question is: Why old lung cells have a higher risk
of developing severity due to SARS-COV-2 infec-
tion. However, understanding regulatory changes
due to ageing using gene-network inference with
noisy single-cell scRNA-seq profiles of lung cells is
not trivial. Thus there is a need of a noise and
batch effect suppression method for investigation
of the scRNA-seq profile of ageing lung cells [14]
using a network biology approach.

Here we have developed a method to handle
noise in gene-expression profiles for improving gene-
network inference. Our method is based on graph-
wavelet based filtering of gene-expression. Our ap-
proach is not meant to overlap or compete with ex-
isting network inference methods but its purpose is
to improve their performance. Hence, we compared
other output of network inference methods with
and without graph-wavelet based pre-processing.
We have evaluated our approach using several bulk
sample and single-cell expression profiles. We fur-
ther investigated how our denoising approach influ-
ences the estimation of graph-theoretic properties
of gene-network. We also asked a crucial question:
how the gene regulatory-network differs between
young and old individual lung cells. Further, we
compared the pattern in changes in the influence
of genes due to ageing with differential expression
in COVID infected lung.
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Results

Our method uses a logic that cells (samples) which
are similar to each other, would have a more sim-
ilar expression profile for a gene. Hence, we first
make a network such that two cells are connected
by an edge if one of them is among the top K near-
est neighbours (KNN) of the other. After building
KNN-based network among cells (samples), we use
graph-wavelet based approach to filter expression
of one gene at a time (see Fig. 1). For a gene, we
use its expression as a signal on the nodes of the
graph of cells. We apply a graph-wavelet transform
to perform spectral decomposition of graph-signal.
After graph-wavelet transformation, we choose the
threshold for wavelet coefficients using sureShrink
and BayesShrink or a default percentile value deter-
mined after thorough testing on multiple data-sets.
We use the retained values of the coefficient for in-
verse graph-wavelet transformation to reconstruct
a filtered expression matrix of the gene. The fil-
tered gene-expression is used for gene-network in-
ference and other down-stream process of analy-
sis of regulatory differences. For evaluation pur-
pose, we have calculated inter-dependencies among
genes using 5 different co-expression measurements,
namely Pearson and spearman correlations, φ and
ρ scores and ARACNE.

Evaluation using bulk expression pro-
files from DREAM challenge

The biological and technical noise can both exist
in a bulk sample expression profile ([12]). In or-
der to test the hypothesis that graph-based de-
noising could improve gene-network inference, we
first evaluated the performance of our method on
bulk expression data-set. We used 4 data-sets
made available by DREAM5 challenge consortium
[15]. Three data-sets were based on the original ex-
pression profile of bacterium Escherichia coli and
the single-celled eukaryotes Saccharomyces cere-
visiae and S aureus. While the fourth data-set
was simulated using in silico network with the
help of GeneNetWeaver, which models molecular
noise in transcription and translation using chem-
ical Langevin equation [16]. The true positive in-
teractions for all the four data-sets are also avail-
able. We compared Graph Fourier based low pass-
filtering with graph-wavelet based denoising using

three different approaches to threshold the wavelet-
coefficients. We achieved 5 -25 % improvement
in score over raw data based on DREAM5 crite-
ria [15] with correlation, ARACNE and rho based
network prediction. With φs based gene-network
prediction, there was an improvement in 3 out of 4
DREAM5 data-sets (Fig. 2A). All the 5 network in-
ference methods showed improvement after graph-
wavelet based denoising of simulated data (in silico)
from DREAM5 consortium (Fig. 2A). Moreover,
graph-wavelet based filtering had better perfor-
mance than Chebyshev filter-based low pass filter-
ing in graph Fourier domain. It highlights the fact
that even bulk sample data of gene-expression can
have noise and denoising it with graph-wavelet after
making KNN based graph among samples has the
potential to improve gene-network inference. More-
over, it also highlights another fact, well known in
the signal processing field, that wavelet-based fil-
tering is more adaptive than low pass-filtering.

Graph-wavelet based denoising of
single-cell expression profiles im-
proves gene-networks inference

In comparison to bulk samples, there is a higher
level of noise and dropout in single-cell expression
profiles. Dropouts are caused by non-detection
of true expression due to technical issues. Us-
ing low-pass filtering after graph-Fourier transform
seems to be an obvious choice as it fills in a back-
ground signal at missing values and suppresses
high-frequency outlier-signal [17]. However, in the
absence of information about cell-type and cell-
states, a blind smoothing of a signal may not prove
to be fruitful. Hence we applied graph-wavelet
based filtering for processing gene-expression data-
set from the scRNA-seq profile. We first used
scRNA-seq data-set of mouse Embryonic stem cells
(mESCs) [18]. In order to evaluate network in-
ference in an unbiased manner, we used gene reg-
ulatory interactions compiled by another research
group [19]. Our approach of graph-wavelet based
pre-processing of mESC scRNA-seq data-set im-
proved the performance of gene-network inference
methods by 8-10 percentage (Fig. 2B). However,
most often, the gold-set of interaction used for
evaluation of gene-network inference is incomplete,
which hinders the true assessment of improvement.
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Figure 1: The flowchart of GWNet pipeline. First, a KNN based network is made between samples/cell.
A filter for graph wavelet is learned for the KNN based network of samples/cells. Gene-expression of
one gene at a time is filtered using graph-wavelet transform. Filtered gene-expression data is used for
network inference. The inferred network is used to calculate centrality and differential centrality among
groups of cells.
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Figure 2: Improvement in gene-network inference by graph-wavelet based denoising of gene-expression
(A) Performance of network inference methods using bulk gene-expression data-sets of DREAM5 chal-
lenge. Three different ways of shrinkage of graph-wavelet coefficients were compared to graph-Fourier
based low pass filtering. The Y-axis shows fold change in area under curve(AUC) for receiver operating
characteristic curve (ROC) for overlap of predicted network with golden-set of interactions. For hard
threshold, the default value of 70% percentile was used. (B) Performance evaluation using single-cell
RNA-seq (scRNA-seq) of mouse embryonic stem cells (mESCs) based network inference after filter-
ing the gene-expression. The gold-set of interactions was adapted from [19] (C) Comparison of graph
wavelet-based denoising with other related smoothing and imputing methods in terms of consistency in
the prediction of the gene-interaction network. Here, Phi (φs) score was used to predict network among
genes. For results based on other types of scores see supplementary Figure S1. Predicted networks from
two scRNA-seq profile of mESC were compared to check robustness towards the batch effect.
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Hence we also used another approach to validate
our method. For this purpose, we used a mea-
sure of overlap among network inferred from two
scRNA-seq data-sets of the same cell-type but hav-
ing different technical biases and batch effects. If
the inferred networks from both data-sets are closer
to true gene-interaction model, they will show high
overlap. For this purpose, we used two scRNA-
seq data-set of mESC generated using two different
protocols(SMARTseq and Drop-seq). For compari-
son of consistency and performance, we also used a
few other imputation and denoising methods pro-
posed to filter and predict the missing expression
values in scRNA-seq profiles. We evaluated 7 other
such methods; Graph-Fourier based filtering [17],
MAGIC [20], scImpute [21], DCA [22] , SAVER
[23], Randomly [24], KNN-impute [25]. Graph-
wavelet based denoising provided better improve-
ment in AUC for overlap of predicted network with
known interaction than other 7 methods meant for
imputing and filtering scRNA-seq profiles (supple-
mentary Figure S1A). Similarly in comparison to
graph-wavelet based denoising, the other 7 methods
did not provided substantial improvement in AUC
for overlap among gene-network inferred by two
data-sets of mESC (Fig. 2C, supplementary Figure
S1B). However, graph wavelet-based filtering im-
proved the overlap between networks inferred from
different batches of scRNA-seq profile of mESC
even if they were denoised separately (Fig. 2C,
supplementary Figure S1B). With φs based edge
scores the overlap among predicted gene-network
increased by 80% due to graph-wavelet based de-
noising (Fig. 2C). The improvement in overlap
among networks inferred from two batches hints
that graph-wavelet denoising is different from im-
putation methods and has the potential to substan-
tially improve gene-network inference using their
expression profiles.

Improved gene-network inference
from single-cell profile reveal age-
based regulatory differences

Improvement in overlap among inferred gene-
networks from two expression data-set for a cell
type also hints that after denoising predicted net-
works are closer to true gene-interaction profiles.
Hence using our denoising approach before estimat-

ing the difference in inferred gene-networks due to
age or external stimuli could reflect true changes
in the regulatory pattern. Such a notion inspired
us to compare gene-networks inferred for young
and old pancreatic cells using their scRNA-seq pro-
file filtered by our tool [26]. Martin et al. de-
fined three age groups, namely juvenile ( 1month-6
years), young adult (21-22 years) and aged (38-
54 years) [26]. We applied graph-wavelet based
denoising of pancreatic cells from three different
groups separately. In other words, we did not
mix cells from different age groups while denois-
ing. Graph-wavelet based denoising of a single-
cell profile of pancreatic cells caused better per-
formance in terms of overlap with protein-protein
interaction (PPI) (Fig. 3A, Supplementary Fig-
ure S2A). Even though like Chen et al. [7] we
have used PPI to measure improvement in gene-
network inference, it may not be reflective of all
gene-interactions. Hence we also used the criteria
of increase in overlap among predicted networks for
same cell-types to evaluate our method for scRNA-
seq profiles of pancreatic cells. Denoising scRNA-
seq profiles also increased overlap between inferred
gene-network among pancreatic cells of the old and
young individuals (Fig. 3B, Supplementary Fig-
ure S2B). We performed quantile normalization of
original and denoised expression matrix taking all
3 age groups together to bring them on the same
scale to calculate the variance of expression across
cells of every gene. The old and young pancreatic
alpha cells had a higher level of median variance of
expression of genes than juvenile. However, after
graph-wavelet based denoising, the variance level
of genes across all the 3 age groups became almost
equal and had similar median value (Fig. 3C). No-
tice that, it is not trivial to estimate the fraction of
variances due to transcriptional or technical noise.
Nonetheless, graph-wavelet based denoising seemed
to have reduced the noise level in single-cell expres-
sion profiles of old and young adults. Differential
centrality in the co-expression network has been
used to study changes in the influence of genes.
However, noise in single-cell expression profiles can
cause spurious differences in centrality. Hence we
visualized the differential degree of genes in net-
work inferred using young and old cells scRNA-seq
profiles. The networks inferred from non-filtered
expression had a much higher number of non-zero
differential degree values in comparison to the de-
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noised version (Fig. 3D, Supplementary Figure
S2C). Thus denoising seems to reduce differences
among centrality, which could be due to random-
ness of noise. Next, we analyzed the properties of
genes whose variance dropped most due to graph-
wavelet based denoising. Surprisingly, we found
that top 500 genes with the highest drop in vari-
ance due to denoising in old pancreatic beta cells
were significantly associated with diabetes Melli-
tus and hyperinsulinism. Whereas, top 500 genes
with the highest drop in variance in young pancre-
atic beta cells had no or insignificant association
with diabetes (Fig. 3E). A similar trend was ob-
served with pancreatic alpha cells (Supplementary
Figure S2D) . Such a result hint that ageing causes
increase in stochasticity of the expression level of
genes associated with pancreas function and denois-
ing could help in properly elucidating their depen-
dencies with other genes.

Improvement in Gene-network infer-
ence for studying regulatory differ-
ences among young and old lung cells.

Studying cell-type-specific changes in regulatory
networks due to ageing has the potential to pro-
vide better insight about predisposition for disease
in the older population. Hence we inferred gene-
network for different cell-types using scRNA-seq
profiles of young and old mouse lung cells published
by Kimmel et al. [14].The lower lung epithelia
where a few viruses seem to have the most deterio-
rating effect consists of multiple types of cells such
as bronchial epithelial and alveolar epithelial cells,
fibroblast, alveolar macrophages, endothelial and
other immune cells. The alveolar epithelial cells,
also called as pneumocytes are of two major types.
The type 1 alveolar (AT1) epithelial cells for major
gas exchange surface of lung alveolus has an impor-
tant role in the permeability barrier function of the
alveolar membrane. Type 2 alveolar cells (AT2)
are the progenitors of type 1 cells and has the cru-
cial role of surfactant production. AT2 cells ( or
pneumocytes type II) cells are a prime target of
many viruses; hence it is important to understand
the regulatory patterns in AT2 cells, especially in
the context of ageing.

We applied our method of denoising on scRNA-
seq profiles of cells derived from old and young

mice lung [14]. Graph wavelet based denoising lead
to an increase in consistency among inferred gene-
network for young and old mice lung for multi-
ple cell-types (Fig. 4A). Graph-wavelet based de-
noising also lead to an increase in consistency in
predicted gene-network from data-sets published
by two different groups (Fig. 4B). The increase
in overlap of gene-networks predicted for old and
young cells scRNA-seq profile, despite being de-
noised separately, hints about a higher likelihood of
predicting true interactions. Hence the chances of
finding gene-network based differences among old
and young cells were less likely to be dominated
by noise. We studied ageing-related changes in
PageRank centrality of nodes(genes). Since PageR-
ank centrality provides a measure of “popularity”
of nodes, studying its change has the potential to
highlight the change in the influence of genes. First,
we calculated differential PageRank of genes among
young and old AT2 cells (supporting File-1) and
performed gene-set enrichment analysis using En-
richr [27]. The top 500 genes with higher PageR-
ank in young AT2 cells had enriched terms re-
lated to integrin signalling, 5HT2 type receptor me-
diated signalling, H1 histamine receptor-mediated
signalling pathway, VEGF, cytoskeleton regulation
by Rho GTPase and thyrotropin activating recep-
tor signalling (Fig. 4C). We ignored oxytocin and
thyrotropin-activating hormone-receptor mediated
signalling pathways as an artefact as the expres-
sion of oxytocin and TRH receptors in AT2 cells
was low. Moreover, genes appearing for the terms
“oxytocin receptor-mediated signalling” and “thy-
rotropin activating hormone-mediated signalling”
were also present in gene-set for 5Ht2 type receptor-
mediated signalling pathway. We found literature
support for activity in AT2 cells for most of the
enriched pathways. However, there were very few
studies which showed their differential importance
in old and young cells, such as Bayer et al. demon-
strated mRNA expression of several 5-HTR includ-
ing 5-Ht2, 5Ht3 and 5Ht4 in alveolar epithelial cells
type II (AT2) cells and their role in calcium ion
mobilization. Similarly, Chen et al. [28] showed
that histamine 1 receptor antagonist reduced pul-
monary surfactant secretion from adult rat alveo-
lar AT2 cells in primary culture. VEGF pathway
is active in AT2 cells, and it is known that age-
ing has an effect on VEGF mediated angiogenesis
in lung. Moreover, VEGF based angiogenesis is
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Figure 3: Performance and analysis of noise for single-cell RNA-seq profile of pancreatic cells. (A) Per-
formance based on overlap of predicted network with protein-protein interaction data-set. (B) Evaluation
of consistency of predicted network. For comparing two networks it is important to reduce differences
due to noise. Hence the plot here shows similarity of predicted networks before and after graph-wavelet
based denoising. The result shown here are for correlation-based co-expression network, while similar
results are shown using ρ score in supplementary Figure S2. (C) Variances of expression of genes across
single-cells before and after denoising (filtering) is shown here. Variances of genes in a cell-type was
calculated separately for 3 different stages of ageing (young, adult and old). The variance (estimate of
noise) is higher in older alpha and beta cells compared to young. However, after denoising variance of
genes in all ageing stage becomes equal (D) Effect of noise in estimated differential centrality is shown
is here. The difference in the degree of genes in network estimated for old and young pancreatic beta
cells is shown here. The number of non-zero differential-degree estimated using denoised expression is
lower than unfiltered expression based networks.(E) Enriched panther pathway terms for top 500 genes
with the highest drop in variance after denoising in old and young pancreatic beta cells.
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known to decline with age [29]. We further per-
formed gene-set enrichment analysis for genes with
increased pageRank in older mice AT2 cells. For
top 500 genes with higher pageRank in old AT2
cells, the terms which appeared among 10 most
enriched in both Kimmel et al. and Angelids et
al. data-sets were T cell activation, B cell acti-
vation, cholesterol biosynthesis and FGF signaling
pathway, angiogenesis and cytoskeletal regulation
by Rho GTPase (Fig. 4D). Thus, there was 60%
overlap in results from Kimmel et al. and Angelids
et al. data-sets in terms of enrichment of pathway
terms for genes with higher pageRank in older AT2
cells (supplementary Figure S3A, supporting file-2,
supporting file-3). Overall in our analysis, inflam-
matory response genes showed higher importance
in older AT2 cells. The increase in the importance
of cholesterol biosynthesis genes hand in hand with
higher inflammatory response points towards the
influence of ageing on the quality of pulmonary sur-
factants released by AT2. Al Saedy et al. recently
showed that high level of cholesterol amplifies de-
fects in surface activity caused by oxidation of pul-
monary surfactant [30].

We also performed Enrichr based analysis of dif-
ferentially expressed genes in old AT2 cells (sup-
porting File-4). For genes up-regulated in old AT2
cells compared to young, terms which reappeared
were cholesterol biosynthesis, T cell and B cell ac-
tivation pathways, Angiogenesis and Inflammation
mediated by chemokine and cytokine signalling.
Whereas few terms like RAS pathway, JAK/STAT
signalling and cytoskeletal signalling by Rho GT-
Pase did not appear as enriched for genes up-
regulated in old AT2 cells (Figure 3B, support-
ing File-4). However previously, it has been shown
that the increase in age changes the balance of pul-
monary renin-angiotensin system (RAS), which is
correlated with aggravated inflammation and more
lung injury [31]. JAK/STAT pathway is known to
be involved in the oxidative-stress induced decrease
in the expression of surfactant protein genes in AT2
cells [32]. Overall, these results indicate that even
though the expression of genes involved in relevant
pathways may not show significant differences due
to ageing, but their regulatory influence could be
changing substantially.

In order to further gain insight, we analyzed the
changes in the importance of transcription factors
in ageing AT2 cells. Among top 500 genes with

higher PageRank in old AT2 cells, we found sev-
eral relevant TFs. However, to make a stringent
list, we considered only those TFs which had non-
zero value for change in degree among gene-network
for old and young AT2 cells. Overall, with Kimmel
at el. data-set, we found 46 TFs with a change
in PageRank and degree (supplementary table-1)
due to ageing for AT2 cells (Fig. 4E). The changes
in centrality (PageRank and degree) of TFs with
ageing was coherent with pathway enrichment re-
sults. Such as ETV5 which has higher degree and
PageRank in older cells, is known to be stabilized
by RAS signalling in AT2 cells [33]. In the ab-
sence of Etv5 AT2 cell differentiate to AT1 cells
[33]. Another TF Jun (c-jun) having stronger in-
fluence in old AT2 cells, is known to regulate in-
flammation lung alveolar cells [34]. We also found
Jun to be having co-expression with Jund and Etv5
in old AT2 cell (Supplementary Figure S4). Jund
whose influence seems to increase in aged AT2 cells
is known to be involved in cytokine-mediated in-
flammation. Among the TFs Stat 1-4 which are
involved in JAK/STAT signalling, Stat4 showed
higher degree and PageRank in old AT2. Androgen
receptor(Ar) also seem to have a higher influence in
older AT2 cells (Fig. 4E). Androgen receptor has
been shown to be expressed in AT2 cells [35] .

We further performed a similar analysis for the
scRNA-seq profile of interstitial macrophages(IMs)
in lungs and found literature support for the ac-
tivity of enriched pathways (supporting File-5).
Whereas gene-set enrichment output for important
genes in older IMs had some similarity with re-
sults from AT2 cells as both seem to have higher
pro-inflammatory response pathway such as T cell
activation and JAK/STAT signalling. However,
unlike AT2 cells, ageing in IMs seem to cause
an increase in glycolysis and pentose phosphate
pathway. Higher glycolysis and pentose phosphate
pathway activity levels have been previously re-
ported to be involved in the pro-inflammatory re-
sponse in macrophages by Viola et al. [36]. In
our results, RAS pathway was not enriched sig-
nificantly for genes with a higher importance in
older macrophages. Such results show that the
pro-inflammatory pathways activated due to aging
could vary among different cell-types in lung.
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Figure 4: Improved regulatory inferences with graph-wavelet based pre-processing of the single-cell
transcriptome of ageing lung cells (A) Consistency of prediction of the networks using the scRNA-seq
profile (Kimmel et al. data-set) of young and old lung cells. The coverage of top 10000 edges in young
cells in network inferred for old cells is shown here. For the same type of cells, the predicted networks
for old and young cells seem to have higher overlap after graph-wavelet based filtering. The label ”Raw”
here means that, both networks (for old and young) were inferred using unfiltered scRNA-seq profiles.
Wheres the same result from denoised scRNA-seq profile is shown as filtered. Networks were inferred
using correlation-based co-expression.
(B) Plot showing the overlap of networks predicted from two different data-sets with their own batch

effect. X-axis shows the number of predicted edges in network predicted using Angelidis et al. data-set
(GEO Id: GSE124872). Y-axis shows the fraction of top 10000 edges in network estimated using

Kimmel et al. data-set. (C) 10 most enriched Panther pathway terms for top 500 genes with higher
PageRank in young AT2 cells compared to old. (D) 10 most enriched panther pathway terms for top

1000 genes with higher PageRank for old AT2 cells compared to young. (E) Scatter plot of differential
degree and PageRank (old-young) of transcription factors (TF) estimated using networks predicted for
old and young AT2 cells from Kimmel et al. data-set. Only TFs with a non-zero differential degree are

shown.
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Comparison of the effect of ageing with
COVID-19 infection in lung

In current pandemic due to SARS-COV-2, a trend
has emerged that older individuals have a higher
risk of developing severity and lung fibrosis than
the younger population. Since our analysis revealed
changes in the influence of genes in lung cells due
to ageing, we compared our results with expres-
sion profiles of lung infected with SARS-COV-2
published by Blanco-Melo et al. [37]. Recently
it has been shown that AT2 cells predominantly
express ACE2, the host cell surface receptor for
SARS-CoV-2 attachment and infection[38]. Thus
COVID infection could have most of the dominant
effect on AT2 cells. We found that genes with sig-
nificant upregulation in SARS-COV-2 infected lung
also had higher PageRank in gene-network inferred
for older AT2 cells (Fig. 5a). We also repeated the
process of network inference and calculating dif-
ferential centrality among old and young using all
types of cells in the lung together (supporting File-
6). We performed gene-set enrichment for genes
up-regulated in SARS-COV-2 infected lung. Ma-
jority of the 7 panther pathway terms enriched for
genes up-regulated in SARS-COV-2 infected lung
also had enrichment for genes with higher PageR-
ank in old lung cells (combined). Total 6 out of
7 significantly enriched panther pathways for genes
up-regulated in COVID-19 infected lung, were also
enriched for genes with higher PageRank in older
AT2 cells in either of the two data-sets used here
(5 in Angelids et al., 3 in Kimmel et al. data-based
results).

Among the top 10 enriched wikipathway terms
for genes up-regulated in COVID infected lung, 7
has significant enrichment for genes with higher
pageRank in old AT2 cells (supporting File-7).
However, the term type-II interferon signalling
did not have significant enrichment for genes with
higher PageRank in old AT2 cells. We further in-
vestigated enriched motifs of transcription factors
in promoters of genes up-regulated in COVID in-
fected lungs (supplementary methods). For pro-
moters of genes up-regulated in COVID infected
lung top two enriched motifs belonged to IRF (in-
terferon regulatory factor) and ETS family TFs.
Notice that Etv5 belong to sub-family of ETS
groups of TFs. Further analysis also revealed that
most of the genes whose expression is positively cor-

related with Etv5 in old AT2 cells is up-regulated in
COVID infected lung. In contrast, genes with neg-
ative correlation with Etv5 in old AT2 cells were
mostly down-regulated in COVID infected lung.
A similar trend was found for Stat4 gene. How-
ever, for Erg gene with higher pageRank in young
AT2 cell, the trend was the opposite. In com-
parison to genes with negative correlation, posi-
tively correlated genes with Erg in old AT2 cell,
had more downregulation in COVID infected lung.
Such trend shows that a few TFs like Etv5, Stat4
with higher PageRank in old AT2 cells could be
having a role in poising or activation of genes which
gain higher expression level on COVID infection.

Discussion

Inferring regulatory changes in pure primary cells
due to ageing and other conditions, using single-
cell expression profiles has tremendous potential
for various applications. Such applications could
be understanding the cause of development of a
disorder or revealing signalling pathways and mas-
ter regulators as potential drug targets. Hence to
support such studies, we developed GWNet to as-
sist biologists in work-flow for graph-theory based
analysis of single-cell transcriptome. GWNet im-
proves inference of regulatory interaction among
genes using graph-wavelet based approach to re-
duce noise due to technical issues or cellular bio-
chemical stochasticity in gene-expression profiles.
We demonstrated the improvement in gene-network
inference using our filtering approach with 4 bench-
mark data-sets from DREAM5 consortium and sev-
eral single-cell expression profiles. Using 5 different
ways for inferring network, we showed how our ap-
proach for filtering gene-expression can help gene-
network inference methods. Our results of com-
parison with other imputation, smoothing meth-
ods and graph-Fourier based filtering showed that
graph-wavelet is more adaptive to changes in the
expression level of genes with changing neighbor-
hood of cells. Thus graph-wavelet based denois-
ing is a conceptually different approach for pre-
processing of gene-expression profiles. There is a
huge body of literature on inferring gene-networks
from bulk gene-expression profile and utilizing it
to find differences among two groups of samples.
However, applying classical procedures on single-
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Figure 5: Analysis of gene-expression profile in lungs infected with SARS-COV-2 (COVID). (A) The
distribution of PageRank of genes up-regulated in COVID infected lung (FDR < 0.05) [37]. The
PageRank is shown for network estimated using the scRNA-seq profile of young and old AT2 cells. On
similar pattern PageRank is shown for genes down-regulated (FDR < 0.05) in COVID infected lung.
(B) Top 10 panther pathway enriched for genes up-regulated in COVID infected lung. The terms with
* sign also have significant enrichment for genes with higher pagerRank in old AT2 cells (C) Top 10

wiki pathway terms enriched for genes up-regulated in COVID infected lung. The terms with * are also
enriched (Pvalue < 0.05) for genes with higher pageRank in old AT2 cells. (D) Top 3 motifs of known
transcription factors (TF) enriched in promoters of genes up-regulated in COVID infected lung. (E)

Fold change of expression in the lung with COVID infection for genes positively and negatively
correlated with transcription factors in old AT2 cells. The results are shown for 2 transcription factors
(TFs) Etv5 and Stat4, which has higher PageRank in old AT2 cells. As a control, the results are also

shown for Erg, which have higher PageRank in young AT2 cells. Most of the genes which had a
positive correlation with Etv5 and Stat4 expression in old murine AT2 cells were up-regulated in

COVID infected lung. Whereas for Erg the trend is the opposite. Genes positively correlated with
ERG genes in old AT2 had more down-regulation than genes with negative correlation. Such results

hint that TFs whose influence (PageRank) increase during ageing could be involved activating or
poising the genes up-regulated in COVID infection.
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cell transcriptome profiles has not proved to be
effective. Our method seems to resolve this is-
sue by increasing consistency and overlap among
gene-networks inferred using an expression from
different sources (batches) for the same cell-type
even if each data-sets was filtered independently.
Such an increase in overlap among predicted net-
work from independently processed data-sets from
different sources hint that estimated dependencies
among genes reach closer to true values after graph-
wavelet based denoising of expression profiles. Hav-
ing network prediction closer to true values in-
creases the reliability of comparison of a regula-
tory pattern among two groups of cells. More-
over, recently Chow and Chen [39] have shown
that age-associated genes identified using bulk ex-
pression profiles of the lung are enriched among
those induced or suppressed by SARS-CoV-2 in-
fection. However, they did not perform analysis
with systems-level approach. Our analysis high-
lighted RAS and JAK/STAT pathways to be en-
riched for genes with stronger influence in old AT2
cells and genes up-regulated in COVID infected
lung. Ras/MAPK signalling is considered essen-
tial for self-renewal of AT2 cell [33]. Similarly,
JAK/STAT pathway is known to be activated in
the lung during injury [40] and influence surfac-
tant quality[32]. We have used murine aging-lung
scRNA-seq profiles however our analysis provides
an important insight that regulatory patterns and
master-regulators in old AT2 cells are in such a con-
figuration that they could be predisposing it for a
higher level of RAS and JAK/STAT signalling. An-
drogen receptor (AR) which has been implicated in
male pattern baldness and increased risk of males
towards COVID infection [41] had higher pageRank
and degree in old AT2 cells. However, further in-
vestigation is needed to associate AR with severity
on COVID infection due to ageing. On the other
hand, in young AT2 cells, we find a high influence of
genes involved in Histamine H1 receptor-mediated
signalling, which is known to regulate allergic reac-
tions in lungs [42]. Another benefit of our approach
of analysis is that it can highlight a few specific
targets of further study for therapeutics. Such as a
kinase that binds and phosphorylates c-Jun called
as JNK is being tested in clinical trials for pul-
monary fibrosis [43]. Androgen deprivation ther-
apy has shown to provide partial protection against
SARS-COV-2 infection [44]. On the same trend,

our analysis hints that Etv5 could also be consid-
ered as drug-target to reduce the effect of ageing
induced RAS pathway activity in the lung.

Methods

We used the term noise in gene-expression accord-
ing to its definition by several researchers such as
Raser and O’Shea [12]; as the measured level of
variation in gene-expression among cells supposed
to be identical. Hence we first made a base-graph
(networks) where supposedly identical cells are con-
nected by edges. For every gene we use this base-
graph and apply graph-wavelet transform to get an
estimate of variation of its expression in every sam-
ple (cells) with respect to other connected samples
at different levels of graph-spectral resolution. For
this purpose, we first calculated distances among
samples (cells). To get a better estimate of dis-
tances among samples (cells) one can perform di-
mension reduction of the expression matrix using
tSNE [45] or principal component analysis. We
considered every sample (cell) as a node in the
graph and connected two nodes with an edge only
when one of them was among K-nearest neighbors
of the other. Here we decide the value of K in
the range of 10-50, based on the number of sam-
ples(cells) in the expression data-sets. Thus we
calculated the preliminary adjacency matrix using
K-nearest neighbours (KNN) based on euclidean
distance metric between samples of the expression
matrix. We used this adjacency matrix to build
a base-graph. Thus each vertex in the base-graph
corresponds to each sample and edge weights to the
euclidean distance between them.

The weighted graph G built using KNN based
adjacency matrix comprises of a finite set of ver-
tices V which corresponds to cells (samples), a set
of edges E denoting connection between samples
(if exist) and a weight function which gives non-
negative weighted connections between cells (sam-
ples). This weighted matrix can also be defined as
a NXN (N being number of cells) weighted adja-
cency matrix A where Aij is 0 if there is no edge
between cells i and j , otherwise Aij = weight(i, j)
if there exist an edge between i, j. The degree of
a cell in the graph is the sum of weights of edges
incident on that cell. Also, diagonal degree matrix
D of this graph comprises of degree d(i) if i = j, 0
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otherwise. A non-normalized graph Laplacian op-
erator L for a graph is defined as L = D −A. The
normalized form of graph Laplacian operator is de-
fined as :

Lnorm = D−1/2LD−1/2 = I −D−1/2AD−1/2

Both laplacian operators produce different eigen-
vectors [46]. However, we have used a normal-
ized form of Laplacian operator for the graph be-
tween cells. The graph Laplacian is further used for
Graph Fourier transformation of signals on nodes
(see supplementary Methods) ([47] [46]).

For filtering in the Fourier domain, we used
Chebyshev-filter for gene expression profile. We
took the expression of each gene at a time con-
sidering it as a signal and projected it onto the raw
graph (where each vertex corresponds to each sam-
ple) object [17]. We took forward Fourier transform
of signal and filtered the signal using Chebyshev
filter in the Fourier domain and then inverse trans-
formed the signal to calculate filtered expression.
This same procedure was repeated for every gene.
This would finally give us filtered gene expression.

Spectral Graph Wavelet Transform

Spectral graph wavelet entails choosing a non-
negative real-valued kernel function which can be-
have as a bandpass filter and is similar to Fourier
transform. The re-scaled kernel function of graph
laplacian gives wavelet operator which eventually
produce graph wavelet coefficients at each scale.
However, using continuous functional calculus one
can define a function of self adjoint operator on the
basis of spectral representation of graph. Although
for a graph with finite dimensional Laplacian, this
can be achieved by eigenvalues and eigenvectors of
laplacian L [47]. The wavelet operator is given by
Tg = g(L). Tgf gives wavelet coefficients for a
signal f at scale = 1. This operator operates on
eigenvectors Ul as TgUl = g(λl)Ul. Hence, for any
graph signal, operator Tg operates on the signal by
adjusting each graph Fourier coefficient as

T̂gf(l) = g(λl)f̂(l)

and inverse Fourier transform given as

(Tgf)(m) =
N−1∑
l=0

f̂(l)Ul(m)

The wavelet operator at every scale s is given as
T s
g = g(sL). These wavelet operators are localized

to obtain individual wavelets by applying them to
δn, with δn being a signal with 1 on vertex n and
zero otherwise [47]. Thus considering coefficients at
every scale, the inverse transform can be obtained
as

(tsgf)(n) =
N−1∑
l=0

g(sλl)f̂(l)Ul(n)

Here, in spite of filtering in Fourier domain, we took
wavelet coefficients of each gene expression signal at
different scales. Thresholding was applied on each
scale to filter wavelet coefficients. We applied both
hard and soft thresholding on wavelet coefficients.
For soft thresholding, we implemented well-known
methods Sure Shrink and Bayes Shrink.

Choosing threshold for graph-wavelet
coefficients

Finding an optimal threshold for wavelet coeffi-
cients for denoising linear-signals and images has
remained a subject of intensive research. We
evaluated both soft and hard thresholding ap-
proaches and tested an information-theoretic cri-
terion known as the minimum description length
principle (MDL). Using our tool GWNet, user can
choose from multiple options of finding threshold
such as visuShrink, sureShrink and MDL. Here, we
have used hard-thresholding for most the data-sets
as proper soft-thresholding of Graph-wavelet coeffi-
cient is itself a topic of intensive research and may
need further fine-tuning. One can also use hard-
threshold value based on the best overlap among
predicted gene-network and protein-protein inter-
action (PPI). While applying it on multiple data-
sets we realized that threshold cutoffs estimated by
MDL criteria and best overlap of predicted network
with known interaction and PPI, were in the range
of 60-70 percentile. For comparing predicted net-
work from multiple data-sets, we needed uniform
percentile cutoff to threshold graph-wavelet coeffi-
cients. Hence for uniform analysis of several data-
sets, we have set the default threshold value of 70
percentile. Hence in default mode, wavelet coef-
ficient with absolute value less than 70 percentile
was made equal to zero.
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Methods used to infer network among
genes

GWNet tool is flexible, and any network inferences
method can be plugged in it for making regula-
tory inferences using a graph-theoretic approach.
Here, for single-cell RNA-seq data, we have used
gene-expression values in the form of FPKM (frag-
ments per kilobase of exon model per million reads
mapped). We pre-processed single-cell gene expres-
sion by quantile normalization and log transforma-
tion. To start with, we used spearman and Pearson
correlation to achieve a simple estimate of the mea-
sure of inter-dependencies among genes. We also
used ARACNE ( Algorithm for the Reconstruction
of Accurate Cellular Networks) to infer network
among genes. ARACNE first computes mutual in-
formation for each gene-pair. Then it considers all
possible triplet of genes and applies the Data Pro-
cessing Inequality (DPI) to remove indirect inter-
actions. According to DPI, if gene i and gene j do
not interact directly with each other but show de-
pendency via gene k, the following inequality hold

I(Gi, Gj) ≤ min(I(Gi, Gk), I(Gj , Gk))

Where I(Gi, Gj) represents mutual information be-
tween gene i and gene j. ARACNE also removes in-
teraction with mutual information less than a par-
ticular threshold eps. We have used eps value to
Recently Skinnider et al., [6] showed superiority of
two measures of proportionality rho(ρ) and phi(φs)
[48] for estimating gene-coexpression network us-
ing single-cell transcriptome profile. Hence we also
evaluated the benefit of graph-wavelet based de-
noising of gene-expression with measures of propor-
tionality ρ and φs. The measures of proportionality
φ can be defined as

φ(Gi, Gj) =
var(Gi −Gj)

var(Gi)

Where Gi is the vector containing log values of ex-
pression of a gene i across multiple samples (cells)
and var() represents variance function. The sym-
metric version of φ can be written as

φs(Gi, Gj) =
var(Gi −Gj)

var(Gi) + var(Gj)

Whereas rho can be defined as

rho(Gi, Gj) = 1 − var(Gi −Gj)

var(Gi +Gj)

To estimate both measures of proportionality, ρ and
φ, we used ‘propr’ package2.0 [49].

Comparison of Raw and Filtered
Graph

The networks inferred from filtered and unfil-
tered gene-expression were compared to the ground
truth. Ground truth for DREAM5 challenge data-
set was already available while for single-cell ex-
pression, we assembled the ground truth from HIP-
PIE (Human Integrated Protein-Protein Interac-
tion Reference) Database [50]. We considered all
edges possible in network, sorted them based on
the significance of edge weights. We calculated the
area under the Receiver operator curve for both
raw and filtered networks by comparing against
edges in the ground truth. Receiver operator is a
standard performance evaluation metrics from the
field of machine learning, which has been used in
the DREAM5 evaluation method with some modi-
fications. The modification for Receiver operating
curve here is that for X-axis instead of false-positive
rate, we used a number of edges sorted according
to their weights. For evaluation all possible edges
sorted based on their weights in network are taken
from the gene-network inferred from filtered and
raw graphs. We calculated improvement by mea-
suring fold change between raw and filtered scores.

Comparison with other methods

We compared the results of our approach of graph-
wavelet based denoising with other methods meant
for imputation or reducing noise in scRNA-seq pro-
files. For comparison we used Graph-Fourier based
filtering [17], MAGIC [20], scImpute [21], DCA
[22] , SAVER [23], Randomly [24], KNN-impute
[25]. Brief descriptions and corresponding parame-
ters used for other methods are written in supple-
mentary Method.

Data Sources

The bulk gene-expression data used here eval-
uation was download from DREAM5 portal
(http://dreamchallenges.org/project/dream-5-
network-inference-challenge/). The single-cell
expression profile of mESC generated using dif-
ferent protocols [18] was downloaded for GEO
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database (GEO id: GSE75790). Single-cell expres-
sion profile of pancreatic cells from individuals with
different age groups was downloaded from GEO
database (GEO id:GSE81547). The scRNA-seq
profile of murine aging lung published by Kimmel
et al. [14] is available with GEO id : GSE132901.
While aging lung scRNA-seq data published by
Angelids et al. [51] is available with GEO id:
GSE132901.

Availability

The code for graph-wavelet based filtering of
gene-expression is available at http://reggen.

iiitd.edu.in:1207/GraphWavelet/index.html.
The codes are present at https://github.

com/reggenlab/GWNet/ and supporting files are
present at https://github.com/reggenlab/

GWNet/tree/master/supporting$_$files.
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Key Points

• We found that graph-wavelet based denoising of
gene-expression profiles of bulk samples and single-
cells can substantially improve gene-regulatory net-
work inference.
• More consistent prediction of gene-network due

to denoising lead to reliable comparison of pre-
dicted networks from old and young cells to study
the effect of ageing using single-cell transcriptome.
• Our analysis revealed biologically relevant

changes in regulation due to aging in lung pneumo-
cyte type II cells, which had similarity with effects
of COVID infection in human lung.
• Our analysis highlighted influential pathways

and master regulators which could be topic of fur-
ther study for reducing severity due to ageing.
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