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Abstract

Computing sequence similarity is a fundamental task in biology, with alignment
forming the basis for the annotation of genes and genomes and providing the core
data structures for evolutionary analysis. Standard approaches are a mainstay of
modern molecular biology and rely on variations of edit distance to obtain explicit
alignments between pairs of biological sequences. However, sequence alignment
algorithms struggle with remote homology tasks and cannot identify similarities
between many pairs of proteins with similar structures and likely homology. Recent
work suggests that using machine learning language models can improve remote
homology detection. To this end, we introduce DeepBLAST, that obtains explicit
alignments from residue embeddings learned from a protein language model in-
tegrated into an end-to-end differentiable alignment framework. This approach
can be accelerated on the GPU architectures and outperforms conventional se-
quence alignment techniques in terms of both speed and accuracy when identifying
structurally similar proteins.

1 Introduction

Proteins with unknown function can be annotated based on their similarity to proteins of known
function. Protein similarity can be measured based on their sequence or their structure. A core
tenet of molecular biology is that a protein’s sequence determines structure which in turn determines
the protein’s biological function. If the structures are known, structural alignment is the preferred
approach to align the protein residues and measure a protein similarity [1, 2, 3, 4, 5]. Unfortunately,
most sequences lack a known structure. Up to now there have been on the order of 108 protein
sequences discovered, but only 105 proteins have annotated functions [6] and only about 104 of those
proteins have experimentally verified structures [7].

While structural similarity would also seem to be the most direct connection to function, sequence
similarity has proven to be more pragmatic. In the case where the evolutionary distance is short,
sequence similarity provides a more reliable indicator of function than the hard task of interpreting
molecular structure. Thus sequence alignments are the dominant sourc of protein function inference.
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Conceptually, similarity is assessed by evolutionary distance through estimating the number of
mutations required to transform one protein sequence to another. Algorithms such as BLAST [8],
HMMER [9] and Needleman-Wunsch [10] are the state-of-the-art methods for computing sequence
alignments. However, proteins with similar structures do not necessarily have similar sequences [2],
resulting in the under-performance of traditional sequence alignments in remote homology tasks
[11, 12].

Unfortunately, over half of all proteins do not have detectable homologs in standard sequence
databases due to their distant evolutionary relationships [13]. Detecting these remote homologs would
help us better understand mutagenesis [14], aid protein design [15], predict protein function [16],
predict protein structure [17, 18, 19] and model evolution [20]. Moreover, these missing homologs
could be critical in annotating genomes of organisms that have not been studied before. Therefore,
for highly divergent genomes, structural comparison would potentially identify many functionally
related proteins; which is unattainable due to the lack of structures. Thus rather than directly compare
sequence to sequence, an attractive strategy is to infer structural features from each sequence and
then compare those structural features. However, computing protein-structural alignments given only
the protein sequence is still an outstanding challenge [21].

Recent work shows that large-scale direct structural alignment from sequence may be computationally
tractable. For sufficiently small proteins ab initio modeling can predict protein structure from
sequence. Consequently, structural alignments of laboriously generated ab initio predictions for
genes with no recognizable sequence similarity have been aligned for multiple genomes; ergo, pure
sequence-to-structure recognition. However these were computationally expensive calculations: on
the order of ten-thousand CPU hours per gene [22, 23].

Desirably then, a method that directly inferred structural properties and structurally informed align-
ments would not only enable remote homology detection for function prediction but also accelerate
those laborious structure predictions as well. [18, 19] This paper advances an approach to the grand
challenge[21] of directly producing the structural alignment of two proteins from just their sequence.

Naturally, given enough training data, one can imagine many possible supervised learning approaches
to this task. But as is so often the case, structurally labeled alignments are scarce due to the limited
number of experimentally validated protein structures. Therefore the central objective of this paper is
to validate our hypothesis that a particular unsupervised pre-training step will successfully extract
structural features into a latent space. This is desirable, since there are abundantly available protein
sequences for unsupervised estimation of this latent space. Our hypothesis requires that this latent
space embeds more structural information than just the sequence itself carries. If true, then one
can then subsequently use this embedding to enhance a supervised process over the limited set of
structurally labeled data.

We validate this hypothesis by showing that the supervised training produces better structural align-
ments when using our unsupervised embedding in comparison to a naive sequence-only embedding.
Our purpose here is not a contest against other possible methods but to determine that a language-
model-derived, unsupervised, embedding carries structural features. Once that is established, then
applications more sophisticated than our hypothesis validation harness become possible, and data-poor
applications are made easier due to the abundance of data for training these language models.

To this end, we develop an end-to-end differentiable neural network that takes sequences as input and
outputs a predicted structural alignment. This exploits transfer learning from a pre-trained protein lan-
guage model that can represent a protein sequence as a set of residue embeddings. These residue-level
embeddings are sequence position specific and can capture relevant structural information based on
the contextual residues. The final step uses dynamic programming to estimate the expected alignment
between two protein sequences, which is then fine-tuned against known structural alignments. Only
recently has an efficient backpropagation through dynamic programming become practical [24]. This
allows us to put together this end-to-end model for direct prediction of alignments from sequence
inputs and train it on limited labeled datasets.

We show this type of model can be trained and validated on structural alignments. We further evaluate
its precision and recall on a manually curated gold standard set of structures containing remote
homologies that standard sequence alignment techniques such as BLAST and HMMER could not
detect. As expected, the predicted alignments cannot perform as well as directly aligning known
structures, but they outperform state-of-the-art sequence alignments by a sizeable margin.
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1.1 Related Work

The most common approach to estimating sequence similarity is through computing a weighted edit
distance, with weights derived to approximate the likelihood of a given mutation. Popular sequence
alignment approaches often involve variants of Needleman-Wunsch [10] or Hidden Markov Models
(HMM) that enable a probabilistic treatment of sequence alignment and alignment detection [25].
To limit the scope of this paper we do not discuss the many relevant works on multiple alignment
[26, 27]. On the other hand, tools such as TM-align [2], Dali [3], Fast [28], and Mammoth [4], have
been designed to perform protein structural alignment when protein structures are available.

Recent studies have shown the benefits of using high-capacity self-supervised protein language
models to predict protein structure [11, 29, 30, 31, 32, 33, 34]. Pre-training these protein models on
large unlabeled datasets can reduce the number of labeled data required to train classifiers, while
improving the generalizability.

2 Methods

Here we build on the notion that sequence alignment algorithms should be designed to capture
structural similarity for protein sequences with corresponding well defined ensemble average protein
structures As shown in previous work [2], reliable alignments for many distant sequence pairs is
not possible with the conventional sequence alignment algorithms. Ideally, we would like align
structures instead of sequences to determine which residues are structurally analogous, and we’d like
to detect cases where the sequence similarity is low and the structure similarity is high. However,
many structure alignment methods aim to maximize atomic overlap between structures, ignoring
potentially relevant sequence information. Here, we aim to fuse the best of both worlds, leveraging
information from the protein sequence to infer structurally relevant alignments. To be able to train our
model to perform optimally at the alignment end goal defined in this manner, we create a workflow
that is end-to-end differentiable, with loss that is informed from the structural alignment. A major
technical hurdle here is the need to perform dynamic programming with an unknown position specific
alignment scoring matrix. This paper exploits a recent innovation [24] that we use to build a method
that enables differentiating through the dynamic programming step, allowing training of all salient
parameters and alignment scoring matrices.

Since we have only sequence, we need to capture the structural propensities of a given sequence.
Many potential choices for embeddings apropos to structurally informed tasks are computationally
expensive [11, 29, 30, 31, 32, 33, 34]. For this paper we have selected a well vetted language model
[11] to cast the protein residues to a latent space with the intention of recovering the underlying
grammars behind protein sequences.

In order to develop a model that can perform structural alignments, we propose using protein structural
alignments estimated using a widely adopted structure alignment tool TM-align [2] for training. Since
most protein structural alignments can be represented as linear sequence alignments [4], we argue
that differentiable dynamic programming coupled with language models can enable the estimation of
more complex structural alignments. The high-level workflow behind our proposed DeepBLAST
algorithm is given in Figure 1

Figure 1: DeepBLAST workflow.

ProteinsX and Y are fed into the pretrained LSTM protein language model [11] to obtain embeddings
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HX and HY . These residue-level embeddings are then propagated through the match embeddings
(M) and gap embeddings (G) in order to obtain the match scores µ and the gap scores g as discussed
in Section 2.1. The match and gap scores are used to evaluate the differentiable dynamic programming
algorithm and generate a predicted alignment traceback as discussed in Section 2.2. These alignments
can then be fine-tuned using a training dataset of ground truth alignments as discussed in Section 2.3
and Section 2.4.

2.1 Protein Language Modeling

In order to obtain an alignment from dynamic programming, the scoring parameters for matches and
gaps must be obtained. We propose to utilize the pretrained protein language models to estimate these
scoring parameters. These pretrained models ultimately construct a function, mapping a sequence
of residues, represented as one-hot encodings, to a set of residue vectors, providing an alternative
representation of these proteins. Often these models will learn these representations by being trained
to predict randomly masked residues within a protein sequence. Multiple studies have shown the
merits of these models when performing protein structure prediction, remote homology and protein
design [30, 35, 29, 32, 31, 33, 34]. Here, we have used the pretrained LSTM PFam model from [11].
Using this pretrained language model, two proteins X and Y can be represented by embeddings
HX ∈ Rp×d andHY ∈ Rq×d, where p and q represent the lengths of proteins X and Y and d is the
embedding dimension of the language model. Given these representations, we can construct mappings
M and G to obtain match scores and gap scores for the differentiable dynamic programming as
follows

µ = σµ
(
M(HX) ·M(HY )T

)
∈ Rp×q, g = σg

(
G(HX) ·G(HY )T

)
∈ Rp×q

The functions M : Rt×d → Rt×d and G : Rt×d → Rt×d are intermediate functions that take in
as input a set of t residue vectors. These functions are parameterized by LSTM networks, which
can be fine-tuned through the backpropagation enabled by the differentiable dynamic programming.
Activation functions σµ and σg are softplus and logsigmoid functions to ensure that the match scores
µ are strictly positive and the gap scores g are strictly negative. These constraints are used to penalize
gaps and reward matches. This also helps enforce identifiability of the model, which we have found
to improve the accuracy of the model in practice.

2.2 Differentiable Dynamic Programming

Our proposed differential dynamic programming framework doesn’t learn any parameters; it is
designed purely to enable backpropagation to fine-tune the scoring functionsM andG. Differentiable
dynamic programming has been extensively explored in the context of dynamic time warping [36, 24].
Koide et al [37] and Ofitserov et al [38] suggested that a differentiable Needleman-Wunsch alignment
algorithm could be derived, but its implementation has remained elusive. Here, we provide the first
GPU-accelerated implementation of the differentiable Needleman-Wunsch algorithm.

Previous work [24] has shown that backpropagation can be performed on dynamic programming
algorithms by introducing smoothed maximum and argmax functions. Doing so will enable the com-
putation of derivatives while providing a tight approximation to the optimal dynamic programming
solution. The traditional Needleman-Wunsch algorithm can be defined with the following recursion

vi,j = µi,j +max


vi−1,j−1 (Match)

gi,j + vi−1,j (Insert)

gi,j + vi,j−1 (Delete)

(1)

where the alignment score vi,j is evaluated on position i in the first sequence X and on position j
in the second sequence Y . Sequences X and Y are of lengths n and m respectively. µi,j represents
the log-odds score of residues Xi and Yj being aligned and gij represents the log-odds score of an
insertion or a deletion at positions i and j. Due to the structure of dynamic programming problems,
vn,m is guaranteed to be the optimal alignment score between the two sequences. Furthermore, the
optimal alignment can be obtained by tracing the highest-scoring path through the alignment matrix
via argmax operations.

As neither the max nor the argmax operations are differentiable, the alignment scores and the

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.03.365932doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.03.365932
http://creativecommons.org/licenses/by/4.0/


traceback cannot be differentiated in the traditional formulation of the traceback operations needed to
generate alignments. Accordingly, Mensch et al [24] introduced smoothed differentiable operators

maxΩ(x) = log

(∑
i

exp(xi)

)
, argmaxΩ(x) =

exp(x)∑
i exp(xi)

where the smooth max operator maxΩ(x) is given by the log sum exp function and the smoothed
argmaxΩ(x) is given by the softmax function. Since the softmax function can be derived from the
derivative of maxΩ, the traceback matrix can also obtained by differentiating the resulting alignment
matrix. The resulting traceback matrix will yield the expected alignment between the two proteins.
Since the loss function is defined as the difference between the predicted traceback matrix and the
ground truth traceback matrix, the derivatives of the traceback matrix also need to be defined, which
requires both the computations of the directional derivatives and the local Hessians of the alignment
matrix (Appendix A).

In practice, dynamic programming can be the major computational bottleneck due to GPU data
transfer and the quadratic runtime of the Needleman-Wunsch algorithm. To address this, we have
implemented a GPU-accelerated differentiable Needleman-Wunsch algorithm inspired by Manavski
et al [39]. As can be seen from the benchmarks shown in Figure 5, this algorithm is an order of
magnitude faster than the naive CPU-bound Needleman-Wunsch implementation. Furthermore, this
algorithm can enable batching, allowing for multiple alignments to be processed in parallel. As
shown in Figure 5, larger batch sizes can further improve the scaling over CPU-bound alignments.

2.3 Alignment Loss Function

By defining a loss function between the predicted alignment and the structural alignment from TM-
align, we can evaluate the accuracy of DeepBLAST and fine-tune the functions M and G. Mensch et
al [24] proposed using the Euclidean distance between the predicted and ground truth alignments as a
loss function. In practice, we found that a cross-entropy loss provided more reasonable alignment
results. This loss is given by

L(e∗, e) =
∑
i,j

e∗i,j log(ei,j) + (1− e∗i,j) log(1− ei,j) (2)

where e∗ is the ground truth alignment and e is the predicted alignment. As shown in [24], the
predicted traceback matrix represents the expectation across all possible predicted alignments, which
is represented as a matrix of probabilities. As a result, the resulting alignment problem can be
interpreted as a classification task of identifying whether two residues between a pair of proteins are
alignable. This provides additional motivation for utilizing cross-entropy as a loss function.

2.4 Training

We trained DeepBLAST on 1.5M alignments from the PDB [40] obtained using TM-align [41].
These proteins were obtained from a curated collection of 40k protein structures [42]. Details behind
the model specification and training can be found in Appendix C.

3 Results

3.1 Assessing alignment quality via held out analysis

Alignment accuracy was assessed on a held out test dataset of 79k structural alignments. To determine
how well DeepBLAST generalizes, proteins that were in both the heldout LSTM PFam dataset
[11] and the held out TM-align alignments used to train DeepBLAST were analyzed. Within the
DeepBLAST held out dataset, 57444 alignments were constructed from proteins that were unique
to the DeepBLAST held out dataset, 1853 alignments contained proteins that were similar to those
trained from the LSTM PFam training dataset and 19967 alignments contained a single protein that
was unique to the DeepBLAST held out dataset and a single protein that was in the LSTM PFam
training dataset. To evaluate the accuracy of the alignments, precision and recall were computed from
the number of correctly identified matching residues. Since each alignment can be represented as a
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Figure 2: Alignment between two validation proteins: An example of an exact alignment between
two proteins with very significant structural/fold similarity used to derive the ground truth alignment
that has little sequence similarity.

bipartite graph where the edges represents matching residues between two proteins, precision and
recall can be extracted from comparing the edge sets between the predicted alignment and the ground
truth alignments. Figure 6 shows the distribution of correctly identified alignment edges.

Within the DeepBLAST held out dataset, the true positive distribution of proteins held out from the
training roughly resembles the true positive distribution of proteins observed in pre-training. The
average true positive rate, false positive rate and false discovery rate are shown in Table 2.

As expected, DeepBLAST performs best with the TM-align structural alignments on sequences that
have been used for training the LSTM language model. This is observed in the true positive rate in
addition to the false positive and false negative rates, as shown in Table 2. Thus, it appears that the
generalization of DeepBLAST primarily hinges on the underlying language model, as suggested by
Rao et al [31].

3.2 Manually Curated Structural Alignment Benchmarks

We benchmarked DeepBLAST against three sequence alignment methods, Needleman-Wunsch,
BLAST and HMMER in addition to four structural alignment methods that work directly with
the atomic coordinates, namely FAST, TM-align, Dali and Mammoth-local. TM-align emphasizes
achieving the simultaneous maximal 3D spatial overlap of the atoms in each protein. Conversely,
the local structure alignment scores feasible residue pairings between the proteins according to
structural similarity of just seven-contiguous-neighbor windows, apropos to a remote homology
philosophy where the full length structure is allowed to be flexible and so does not require all the
aligned atoms to overlap simultaneously after a rigid body orientation. Dali utilizes distance matrix
computed from hexapeptide contacts to align the two protein structures. FAST tries to preserve
similar residue-residue contact patterns. We extracted the local structure alignment from first phase
of the Mammoth algorithm.

Thus from emphasizing long-range overlap, contacts, and local-window similarity, these reference
algorithms span the rational disagreement across different expert opinions for the most meaningful
structure alignment considering only backbone atomic coordinates (C-alpha or C-beta atoms). All of
those algorithms disregard sequence similarity. Our method uses sequence alone; we do not supply
the atomic coordinates of either protein to the algorithm after training it.

To form a common reference for all nine definitions of the optimal alignment, we designated a gold
standard to be the manually curated structural alignments. Manual structure alignment is intuitive
human assessment typically emphasizing 3D overlap and topology preservation since those features
are easier to visualize than a plethora of local alignments and contacts [43, 44, 45].
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Malidup Malisam

Method F1 Score # Detected F1 Score # Detected

BLAST 0.019 ± 0.019 5 0.000 ± 0.000 2
HMMER 0.020 ± 0.02 8 0.020 ± 0.020 3
Needleman-Wunsch 0.098 ± 0.010 234 0.025 ± 0.003 129
DeepBLAST 0.144± 0.012 234 0.063± 0.007 129

Mammoth-local 0.483 ± 0.020 234 0.187 ± 0.017 129
Fast 0.569 ± 0.026 234 0.300 ± 0.030 129
TM-align 0.576 ± 0.024 234 0.393 ± 0.031 129
Dali 0.791± 0.014 234 0.619± 0.029 129

Table 1: Malisam and Malidup Benchmarks. Sequence and structure alignment methods measured
by their F1 score. Fast, TM-align, Dali Mammoth-local are structure-structure alignment methods
and provide an structure-informed upper bound for this benchmark, as many of the most challenging
alignments in this benchmark are ultimately structure-derived or curated with a structure-structure
alignment as an oracle.

All methods tend to agree when the problem is trivial due to near sequence identity and thus near
structural identity. Therefore the most valuable gold-standard is where the dataset members have
low sequence identity as well as varied degrees of structural similarity. In that regime, human
intuition can provide an informative baseline by accessing additional evolutionary knowledge. Our
benchmarks were performed on the curated Malisam [46] and Malidup [47] protein structural
alignment benchmarking datasets.

As shown in Table 1, we observe that DeepBLAST outperforms all of the sequence alignment models
by a large margin. This is observed in terms of both precision and recall as shown in Figure 8. In
both benchmarks, the sequence similarity between proteins was below the observed detection limit
for both BLAST and HMMER. As a result, these tools were not able to detect the vast majority of
the alignments. This leaves Needleman-Wunsch as the baseline for sequence alignment methods.

However, there is no one definition of what the best structural alignment is [25, 48]. This task
becomes increasingly ambiguous as the remoteness of the homolog increases and the number of
homologous residues declines. Thus two sequence alignments might slightly disagree but still be
equally good in terms of structural superposition. Thus the above F1 score is indicative of alignment
accuracy but is rigid since it only scores sequence alignments exactly matching the reference.

A better measure than the true positive rate is to directly measure the degree of structural overlap of
two proteins given a specified alignment. The TM-score is one calibrated measure of this that factors
out the dependence of the number of partially superimposed residues on the length of the protein.
Figure 3 displays the TM-scores for multiple accepted criteria for superimpose 3D structures (Dali,
TM-align, Fast). Each is plotted against the TM-score of a human curated manual superposition.
The scatter in these points represents the reasonable disagreement among these varied structural
similarity criteria, since all are arguably good methods. One can even observe that TM-align and Dali
actually achieve slightly higher TM-scores than the supposedly ideal manual curation, highlighting
the uncertainty in the best structural superposition. It can be seen that all of the structure aware
methods agree at high structural similarity, TM-score=1 being perfect superposition of all atoms, but
disagree increasingly as the TM-score declines.

To determine the agreement between sequence alignment methods and direct alignment by known
structure, the TM-score was calculated for the predicted alignment. Both sequence alignment methods
under perform the structure aware methods in terms of their TM-scores. However it is apparent that
DeepBLAST is nearly always able to superimpose structures better than Needleman-Wunsch. We
also compared these to the scores generated by using just local secondary structure to perform the
alignment. This is essentially a Needleman-Wunsch alignment using local structural similarity to
determine the quality of the alignment based on the structures.

As shown in Figure 3, DeepBLAST is competitive with Mammoth-local while consistently outper-
forming Needleman-Wunsch. We suspect that a large part of the disagreement between DeepBLAST
and the structural alignment methods could be explained by the different strategies towards handling
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Figure 3: Visualization of Malisam and Malidup structural alignments. Each point represents an
alignment, crosses are sequence based alignment and circles are structure based alignments. The
estimated alignment is then superimposed on the structures to estimate the TM-score (Y-axis). The
more to the right on the plot the more significant the structural overlap. As a reference, these are
plotted against the Manual Alignment TM-score on the X-axis. The orange line derives alignment
from measured secondary structure alone, while other structural alignment methods optimize a 3D
structural superposition.

gaps. DeepBLAST does not have a mechanism that handles affine gaps, which would be expected to
cause it to over-align sequence instead of allowing large gaps for insertions or deletions. Figure 7
showcases a DeepBLAST predicted alignment with an affine gap; the long gaps are over-penalized
and DeepBLAST is forced to insert intermediate matches in order to obtain an optimal alignment.
This is more apparent from the TM-scores and RMS values highlighted in Figure 9; these metrics
suggest that DeepBLAST currently has difficulties obtaining accurate global structural alignments,
which may be partially attributed to the inability to handle affine gaps. Handling affine alignments
in a differentiable dynamic programming framework is currently an outstanding problem and we
discuss potential approaches to adding afine gaps, as an area for future work, below. In spite of
this shortcoming, there is evidence that DeepBLAST is able to learn structural information from
the sequence. From the PSI scores shown in Figure 9, the high confidence alignments predicted by
DeepBLAST are largely in agreement with the manually curated structural alignments. Furthermore,
the sequence identity scores in Figure 9 reveal that DeepBLAST is able to obtain structural alignments
that have less than 25% sequence identity, a known barrier for sequence alignment methods but can
be resolved with the known protein structures. All together, these metrics suggest that DeepBLAST
can perform local structure alignment.

Conclusion

The major finding of this work is that language model embeddings capture much more of the structural
basis for alignment than a purely sequence based alignment when used in an end to end differentiable
framework with a structure-alignment based loss. This shows that the objective function being
optimized by our method is strongly correlated to the desired objective of capturing the structural
basis for alignment that is implicit in the sequence. Our findings show that our proposed method can
generalize well on sequences observed by the protein language model and can align sequences where
there is little local sequence similarity.

As mentioned above, the spread in the true positive rate for the 4 gold standard structure based
alignment should not interpreted as performance differences across structural alignment methods.
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Instead, it reveals the widespread disagreement between experts regarding the ground truth structural
alignment. While sequence-only DeepBLAST does not perform well compared to these explicit
structural alignment methods, the resulting DeepBLAST alignments do agree more with the structural
alignment methods than the other sequence-only methods.

One major difference between Needleman-Wunsch and our proposed DeepBLAST algorithm is
we are not mainly weighting the alignment according to evolutionary distance. The embeddings
learned from DeepBLAST are able to capture position-specific structural hints in the sequence.
Given that protein secondary structure and tertiary contacts can be predicted from sequence alone
[49, 50, 51], this not surprising. Furthermore, DeepBLAST can be more readily scalable to large
proteins, potentially enabling structural similarity search where ab initio models cannot be built. This
is key for enabling more accurate sequence search, since the vast majority of protein sequences do
not have known protein structures.

As is stands DeepBLAST is already a better alternative to traditional sequence similarity align-
ment, and is usable as such. Moreover, having validated the hypothesis that the language-model
unsupervised training embeds structural attributes we can refine and adapt this signal for future appli-
cations, such as function prediction and protein structure prediction. Conveniently, the end-to-end
differentiable design facilitates retraining for each new objective.

The method seamlessly and continuously bridges both the sequence clues and the structural inferences.
What this paper establishes is that this combined sequence/structure feature space exists, can be
learned from language models, and is robust on held-out data. Our confidence in this conclusion
is high because this signal was found even in gold standards chosen for resistance to sequence
alignment.

Code Availability

Our software and analyses can be found on Zenodo at 10.5281/zenodo.4117030.
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Appendices
A Differentiable Needleman-Wunsch Algorithm

Recall from Equation 1 the recursion behind Needleman-Wunsch is given by

vi,j = µi,j +maxΩ

(
vi−1,j−1, gi,j + vi−1,j , gi,j + vi,j−1

)
where maxΩ(x) = log

(∑
i

exp(xi)
)

is the smoothed maximum operator. The recursion scheme can

be visualized as shown in Figure 4

Figure 4: Diagram of Needleman-Wunsch recursion

If one interprets the Needleman-Wunsch algorithm as a special case of a paired Hidden Markov
Model [25], then the smoothed maximum operator exactly corresponds to the aggregation operator
in the Forward algorithm. Given ω(k)

i,j =
∂vi,j
∂vk

for k ∈ {(i + 1, j), (i, j + 1), (i + 1, j + 1)} the
derivative of the terminal forward score vN,M can be obtained via

ei,j =
∂vN,M
∂vi,j

=
∂vN,M
∂vi+1,j+1

∂vi+1,j+1

∂vi,j
+
∂vN,M
∂vi+1,j

∂vi+1,j

∂vi,j
+
∂vN,M
∂vi,j+1

∂vi,j+1

∂vi,j

= ei+1,j+1ω
m
i+1,j+1 + ei+1,jω

x
i+1,j + ei,j+1ω

y
i,j+1

This derivative formulation will also enable backprogation to downstream parameters. Letting
θi,j = (µi,j , µi,j + gi,j , µi,j + gi,j), ωi,j can also be given by ωi,j =

∂vi,j
∂θi,j

.

The computation of the alignment scores and traceback matrices for the differentiable Needleman-
Wunsch algorithm is given in Algorithm 1. Insertion states (x), match states (m) and deletion states
(y) have all been color coded red, green and blue respectively. As proposed by Mensch et al, ei,j can
be interpreted as elements in an expected alignment. With this in mind, the expected alignment can be
compared to the ground truth alignment to estimate the loss as highlighted in Equation 2. Performing
backpropagation on this loss function requires the computation of local Hessians on vN,M . We will
refrain from providing the derivation of these Hessians, but the computation of the derivatives of
vi,j , ωi,j , ei,j are denoted by v̇i,j , ω̇i,j , ėi,j , which can be computed as shown in Algorithm 2. These
Hessians are calculated from directional derivatives that depend onZ, the gradient of the binary cross
entropy loss with respect to the variables µ and g.

It is important to note that all of the differentiable dynamic programming is only required for training.
When performing prediction, the standard Needleman-Wunsch algorithm can run on the learned
scoring matrices µ and g.
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Algorithm 1 Compute BlastΩ(θ) and∇BlastΩ(θ)

Require: θ = [µ, g] ∈ R2×p×q

Forward pass
vM0,0 = 1; v∗0,. = 0; v∗.,0 = 0
for i ∈ {1 . . . p}, j ∈ {1 . . . q} do

vi,j = maxΩ

(
µi,j + (vi−1,j−1, gi,j + vi−1,j , gi,j + vi,j−1)

)
ωi,j = ∇argmaxΩ

(
µi,j + (vi−1,j−1, gi,j + vi−1,j , gi,j + vi,j−1)

)
∈ R3

end for

Backward pass
ep,q+1 = 0; ep+1,q = 0; ep+1,q+1 = 1

for i ∈ {p . . . 1}, j ∈ {q . . . 1} do
ei,j = ωmi+1,j+1ei+1,j+1 + ωxi+1,jei+1,j + ωyi,j+1ei,j+1

end for

W = (ω)p+1,q+1
i,j,k=1 ; E = (e)p+1,q+1

i,j=1 ; Intermediate computations to be used in Algorithm 2.
return BlastΩ(θ) = vp,q,∇BlastΩ(θ) = (e)p,qi,j=1

Algorithm 2 Compute 〈∇BlastΩ(θ), Z〉 and∇2BlastΩ(θ)Z

Require: θ = [µ, g] ∈ R2×p×q, Z = [zµ, zg] ∈ R2×p×q

Forward pass
v0,0 = 1; v0,. = 0; v.,0 = 0
for i ∈ {1 . . . p}, j ∈ {1 . . . q} do

v̇i,j = zµi,j
+ ωmi,j(vi−1,j−1) + ωxi,j(zgi,j + vi−1,j) + ωyi,j(zgi,j + vi,j−1)

ω̇i,j = −JΩ(ωi,j)

(
ωmi,j(v̇i−1,j−1), ω

x
i,j(zgi,j + v̇i−1,j), ω

y
i,j(zgi,j + v̇i,j−1)

)
∈ R3

end for

Backward pass
ep,q+1 = 0; ep+1,q = 0; ep+1,q+1 = 1

for i ∈ {p . . . 1}, j ∈ {q . . . 1} do
ėi,j = ω̇mi+1,j+1ei+1,j+1 + ωmi+1,j+1ėi+1,j+1

+ ω̇xi+1,jei+1,j + ωxi+1,j ėi+1,j

+ ω̇yi,j+1ei,j+1 + ωyi,j+1ėi,j+1

end for
return 〈∇BlastΩ(θ), Z〉 = v̇p,q,∇2BlastΩ(θ)Z = (ė)p,qi,j=1
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B Runtime benchmarks

Figure 5: CPU vs GPU Differentiable Needleman-Wunsch benchmarks. The batch-size benchmark
was run with randomized proteins of length 800 and the length benchmark was run with a fixed batch
size of 64.

C Additional Training Details and Held out Analysis

The final DeepBLAST model consisted of 4 LSTM layers of dimension 512 to parameterize the
match embeddings M and gap embeddings G. A 2 layer bidirectional LSTM protein language model
pretrained by [11] was used as a precursor step for estimating residue vectors. The resulting model
had a total of 100M parameters. We used the ADAM optimizer to train the weights with an initial
learning rate of 5× 10−5 and the pretrained LSTM model weights were frozen. A batch size of 160
alignments was used for training. DeepBLAST was trained for 10 epochs on 4 Nvidia V100 GPUs
for 4 days.

The training dataset consisted of proteins from the PDB [7]. Only proteins that had less than 1000
residues and alignments with a TM-score greater than 0.4 were considered. Furthermore, since only
global alignments can be handled, the gaps at the ends of the alignment were trimmed before training.
The data was split into 80/10/10 train/validation/test splits.

To evaluate how well DeepBLAST can generalize across unobserved data, the alignment accuracy
was evaluated on the DeepBLAST heldout testing dataset. The intersection between the held out
PFAM test sequences used to train the LSTM and the heldout TM-align alignments were determined
by performing a pairwise alignment between the two held out datasets with BLAST. Alignments
whose sequences were both that were detected to be homologous to sequences in the hold out PFAM
dataset according to BLAST are labeled as “Both train”. Sequences that were only one sequence
was found in the hold out PFam dataset are labeled as “One test, one train”. Sequences where
neither sequence was found in the PFam dataset was labeled as “Both test”. As shown in Table 2,
DeepBLAST generalizes best on sequences observed in the LSTM pretraining procedure.

Dataset TPR FNR FDR

Both test 0.421 0.579 0.584
One test, one train 0.649 0.350 0.351
Both train 0.755 0.245 0.248

Table 2: Breakdown of the DeepBLAST True positive, False positive and False negative rates on the
Held out alignment datasets.
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Figure 6: Distribution of DeepBLAST true positive rates across heldout alignment datasets.

Figure 7: Examples of predicted alignments on the validation dataset.
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Figure 8: Precision and Recall metrics for each alignment on Malidup and Malisam benchmarks. The
true positive rate was evaluated within window.
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Figure 9: Comparison of DeepBLAST and Needleman-Wunsch on the Malidsam and Malidup
benchmark. TM score measures the superposition agreement between the two aligned protein
structures. The oPSI metric measures the fraction aligned residues relative to the smaller protein
on the aligned residues predicted to strongly superimposed by the alignment method. The oRMS
metric measures the root mean standard deviation of the atomic positions on the aligned residues
predicted to strongly superimposed by the alignment method. The oSeq identity score measures
the fraction of identical sequence measured over the subset of the sequence alignment that was also
aligned structurally by method. All of the alignment metrics are displayed in rank order, and the
points represent the manual scores for that given protein, representing and upper or lower bound of
the correct alignment.
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