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Abstract 18 

 19 

We investigated motor skill learning using a path tracking task, where human subjects had to 20 

track various curved paths at a constant speed while maintaining the cursor within the path 21 

width. Subjects’ accuracy increased with practice, even when tracking novel untrained paths. 22 

Using a “searchlight” paradigm, where only a short segment of the path ahead of the cursor 23 

was shown, we found that subjects with a higher tracking skill differed from the novice subjects 24 

in two respects. First, they had lower motor variability, in agreement with previous findings. 25 

Second, they took a longer section of the future path into account when performing the task, 26 

i.e. had a longer planning horizon. We estimate that between one third and one half of the 27 

performance increase was due to the increase in planning horizon. An optimal control model 28 

with a fixed horizon (receding horizon control) that increases with tracking skill quantitatively 29 

captured the subjects’ movement behaviour. These findings demonstrate that human subjects 30 

not only increase their motor acuity but also their planning horizon when acquiring a motor 31 

skill.  32 
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New and Noteworthy 33 

We show that when learning a motor skill humans are using information about the 34 

environment from an increasingly longer amount of the movement path ahead to improve 35 

performance. Crucial features of the behavioural performance can be captured by modelling 36 

the behavioural data with a receding horizon optimal control model.  37 
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Introduction 38 

 39 

The human motor system can acquire a remarkable array of motor skills. Informally, a person 40 

is said to be “skilled” if he or she can perform faster and at the same time more accurate 41 

movements than other, unskilled, individuals. What we don't know, however, is what learning 42 

processes and components underlie our ability to move better and faster.  One component may 43 

be relatively “cognitive”, involving the faster and more appropriate selection and planning of 44 

upcoming actions (Diedrichsen and Kornysheva 2015; Wong et al. 2015). Another component 45 

may be related to motor execution – the ability to produce and fine control difficult 46 

combinations of muscle activations (Shmuelof et al. 2012; Waters-Metenier et al. 2014). 47 

Depending on the structure of the task, changes in visuo-motor processing or feedback control 48 

may also contribute to skill development. Motor adaptation extensively studied using 49 

visuomotor and force perturbations (Shadmehr et al. 2010), may play a certain role in 50 

stabilizing performance, but it cannot by itself lead to improvements in the speed-accuracy 51 

trade-off (Wolpert et al. 2011). 52 

 53 

A task commonly used in the experiments on motor skill learning is sequential finger tapping, 54 

where subjects are asked to repeat a certain tapping sequence as fast and as accurately as 55 

possible (Karni et al. 1995, 1998; Petersen et al. 1998; Walker et al. 2002). Improvement in 56 

such a task can continue over days, but previous papers have focussed mostly on the learning 57 

that is specific to the trained sequence(s) (Karni et al. 1995). 58 

 59 

Many real-world tasks, however, do not involve the production of a fixed sequence of motor 60 

commands, but the flexible planning and execution of movements. Such flexibility is often well 61 

described by optimal feedback control models (Braun et al. 2009; Diedrichsen et al. 2010; 62 
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Todorov and Jordan 2002) where the skilled actor appears to compute “on the fly” the most 63 

appropriate motor command for the task at hand. This requires demanding computations 64 

(Todorov and Jordan 2002), and the human motor system likely has found heuristics to deal 65 

with this complexity. One way to reduce complexity of the control problem is to not optimize 66 

the whole sequence of motor commands that will achieve the ultimate goal, but to only optimise 67 

the current motor command for a short distance into the future. This idea is called receding 68 

horizon control, also known as model predictive control (Kwon and Han 2005). Under this 69 

control regime, the system computes a feedback control policy that is optimal for a finite 70 

planning horizon. The control policy is then continuously updated as the movement goes on 71 

and the planning horizon is being shifted forward. This allows for adaptability, e.g. it can 72 

flexibly react to perturbations or unexpected challenges, as sensory information becomes 73 

available. Recent studies provided indirect evidence that favour the optimisation of short time-74 

periods of a motor command (Dimitriou et al. 2013). The notion of planning horizon also arises 75 

in reinforcement learning, e.g. in the context of the so-called successor representation 76 

(Momennejad et al. 2017). 77 

 78 

Motivated by these ideas, we propose that some of the skill of a down-hill skier or a race-car 79 

driver may lie not only in the increased ability to execute difficult motor commands (e.g. due 80 

to decreased motor variability), but also in the ability to plan further ahead and to optimize the 81 

movements for a longer time period into the future. In addition, we propose that the time span 82 

that subjects plan ahead increases with experience, leading to an increasing performance with 83 

training. 84 

 85 

To test this idea, we designed an experimental condition which would allow us to measure the 86 

planning horizon that skilled actors are using when executing long sequence of movements that 87 
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need to be planned “on the fly” – i.e. where the actual sequence of movements cannot be 88 

memorized. For this, we developed a path tracking task, where subjects had to maintain their 89 

cursor within a path that was moving towards them at a fixed speed. A similar task has been 90 

previously used in motor control research (Poulton 1974), using a mechanical apparatus with 91 

paths drawn on a paper roll that was moving at a fixed speed. It has been shown that subjects 92 

are able to increase their accuracy with training, but the different computational strategies 93 

between expert subjects and naïve performers remain unclear. In our study we use ‘searchlight’ 94 

trials in which subjects see various lengths of the approaching path ahead of their cursor to 95 

probe subjects forward planning and compare experts and novices in this respect. 96 

  97 
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Materials and Methods 98 

Subjects 99 

62 experimentally naïve subjects took part in this experiment (33 males and 29 females, age 100 

range 20-52 years old). Subjects gave written informed consent and were paid 10 €/h. The 101 

experimental procedures received ethics approval from the University of Freiburg. 102 

 103 

Setup 104 

Subjects sat at a desk looking at a computer monitor (Samsung Syncmaster 226BW) located 105 

~80cm away. A cursor displayed on the screen (Matlab and Psychophysics Toolbox Version 3 106 

(Brainard 1997)) was under position control by movements of a computer mouse. The mouse 107 

could be moved on the desk in all directions but only the horizontal (left and right) component 108 

contributed to the cursor movement: the vertical position of the cursor was fixed at 5.7mm 109 

above the base of the screen. 110 

 111 

Task 112 

To begin each trial subjects had to press the space bar. This displayed the cursor (R=2.9mm, 113 

1.1cm from the bottom of the screen) and the path (width = 2.83cm) that extended from the top 114 

to bottom of the screen (30cm). The path continuously moved downward on the screen at a 115 

vertical speed of 34.1cm/s. The initially visible path was a straight line centered in the middle 116 

of the screen with the cursor positioned in the middle of the path. Once this initial section 117 

moved through the screen, the path then followed a random curvature (Fig. 1A). Subjects were 118 

instructed to keep the cursor between the path borders at all times moving only in the horizontal 119 

plane and were told to be as accurate as possible. The cursor and path were displayed in white 120 
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if the cursor was within the path and both turned red when it was outside the path, always on a 121 

black background. 122 

 123 

The cursor position was sampled at 60 Hz and the tracking accuracy was defined for each trial 124 

as the percentage of time steps when the cursor was inside the path. Running accuracy values 125 

were continuously displayed in the top left corner of the screen and final accuracies were 126 

displayed between the trials. 127 

 128 

This experiment is based on a previous version where subjects were asked to track static 129 

randomly curved paths in 2D as quickly as possible without touching the sides [unpublished 130 

data, (Bashford et al. 2014)]. We later found that the 1D paradigm presented here was better 131 

suited to study the planning horizon as the speed was fixed. 132 

Paradigm 133 

Subjects were randomly assigned into two groups: expert (N=32) and naive (N=30). The 134 

paradigm included a training (expert group only) and a testing (all subjects) phase. Subjects in 135 

the expert group trained over 5 consecutive days, each day completing 30 minutes of path 136 

tracking (10 of 3-minute trials with short breaks in-between, searchlight length (s) 100%). If 137 

the performance improved from one trial to the next subjects saw a message saying 138 

“Congratulations! You got better! Keep it up!”, otherwise the message “You were worse this 139 

time! Try to beat your score!” was shown. The training paths were randomly generated on the 140 

fly. Experts performed the testing set of trials after a short break following training on the final 141 

(5th) day. Naïve subjects performed only the testing set of trials. 142 

 143 

The testing phase lasted 30 min (30 of 1-minute trials with breaks in-between) using 30 144 

different pre-generated paths that were the same for all subjects. The testing phase in this 145 
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experiment contained 3 normal trials (s=100%) and 27 searchlight trials (s=10-90%) where 146 

some upper part of the path was not visible. Three blocks of 10 trials with the searchlight length 147 

ranging from s=10% to s=100% (in steps of 10%) were presented, with the order shuffled in 148 

each block; the same fixed pseudorandom sequence was used for all subjects. 149 

 150 

Path generation 151 

Paths were generated before each trial start during training and a pre-generated fixed set was 152 

produced in the same way for testing. Each path was initialized to start at the bottom middle of 153 

the screen and the initial 30 cm of each path were following a straight vertical line. Subsequent 154 

points of the path midline had a fixed Y step of 40 pixels (1.1 cm) and random independent 155 

and identically distributed (iid) X steps drawn from a uniform distribution from 1 to 80 pixels 156 

(2.7mm – 2.2cm). Any step that would cause the path to go beyond the right or left screen 157 

edges was recalculated. The midline was then smoothed with a Savitzky-Golay filter (12th 158 

order, window size 41) and used to display path boundaries throughout the trial. All of the 159 

above parameters were determined in pilot experiments to create paths which were very hard 160 

but not impossible to complete after training. 161 

 162 

Statistical analysis 163 

In all cases, we used nonparametric rank-based statistical tests to avoid relying on the normality 164 

assumption. In particular, we used Spearman’s correlation coefficient instead of the Pearson’s 165 

coefficient, Wilcoxon signed-rank test instead of paired two-sample t-test, and Wilcoxon-166 

Mann-Whitney ranksum test instead of unpaired two-sample t-test. 167 

 168 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 4, 2020. ; https://doi.org/10.1101/505198doi: bioRxiv preprint 

https://doi.org/10.1101/505198
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Page 10 of 41 

 

We initially recorded N=10 subjects in each group and observed statistically significant 169 

(p<0.05) effect that we are reporting here: positive correlation between the asymptote 170 

performance and the horizon length, as estimated via the changepoint and exponential models. 171 

We then recorded another N=20/22 (naïve/expert) subjects per group to confirm this finding. 172 

This internal replication confirmed the effect (p<0.05). The final analysis reported in this study 173 

was based on all N=62 subjects together. A preliminary version of the analysis for the initial 174 

N=10/10 subjects can be found in our preprint (Bashford et al. 2014), but note that it used a 175 

different way to estimate planning horizon compared to the procedure presented here, and so 176 

the values are not directly comparable. 177 

 178 

Changepoint and Exponential model 179 

We used two alternative models to describe the relationship between the searchlight length and 180 

the accuracy: a linear changepoint model and an exponential model. We used two different 181 

models to increase the robustness of our analysis and both models support our conclusions. 182 

 183 

The changepoint model is defined by 184 

𝑦 = {
c𝑠 + 𝑜             if 𝑠 ≤ ℎ𝑐𝑝

cℎ𝑐𝑝 + 𝑜         if 𝑠 > ℎ𝑐𝑝
 185 

where y is the subject’s performance, s the searchlight length and (c, o, hcp) are the subject-186 

specific parameters of the model which define the baseline performance at searchlight 0% (o), 187 

the amount of increase of performance with increasing searchlight (c) and the planning horizon 188 

(hcp) after which the performance does not increase any further. 189 

 190 

The exponential model is defined by 191 

𝑦 = 𝜓 − exp (−𝜌𝑠 + 𝑑) 192 
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where the subject-specific parameters (𝜓, d, 𝜌) specify the performance at searchlight 0% (𝜓 −193 

exp [𝑑]), the asymptote for large searchlights (𝜓) and the speed of performance increase (𝜌). 194 

This function monotonically increases but it never plateaus. The speed of the increase depends 195 

on the parameter 𝜌 with larger values meaning faster approaching the asymptote. We used the 196 

following quantity as a proxy for the “effective” planning horizon: 10+log(5)/𝜌. It can be 197 

understood as the searchlight length that leads to performance being five times closer to the 198 

asymptote than at s=10%. The log(5) factor was chosen to yield horizon values of roughly the 199 

same scale as with the changepoint model above. 200 

 201 

 202 

Both models (changepoint and exponential) were fit to the raw performance data of each 203 

subject, i.e. to the 30 data points, 3 for each of the 10 searchlight length values. The exponential 204 

fit (see Equation 2 in the Results) was done with the Matlab's nlinfit() function, implementing 205 

Levenberg-Marquardt nonlinear least squares algorithm. The changepoint fit (see Equation 1 206 

in the Results) was done with a custom script that worked as follows. It tried all values of hcp 207 

on a grid that included s=10% and then went from s=20% to s=100% in 100 regular steps. For 208 

each value of hcp the other two parameters can be found via linear regression after replacing all 209 

s>hcp values with hcp. We then chose hcp that led to the smallest squared error. 210 

 211 

Trajectory analysis 212 

To shed light on the learning process we analysed additional parameters of the subjects’ 213 

movement trajectories. 214 

First, we computed the time lag between the subjects’ movement trajectories and the midline 215 

of the paths (Figure 4A-B). To compute the lags, we interpolated both cursor trajectories and 216 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 4, 2020. ; https://doi.org/10.1101/505198doi: bioRxiv preprint 

https://doi.org/10.1101/505198
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Page 12 of 41 

 

path midlines 10-fold (to increase the resolution of our lag estimates). We computed the 217 

Pearson correlation coefficient between cursor trajectory and path midline for time shifts from 218 

of -300 to 300 ms, and defined the time lag as the time shift maximizing the correlation. Second, 219 

we extracted the cursor trajectories in all sections across all paths that shared a similar curved 220 

shape to explore the differences in cursor position at the apex of the curve (Figure 4C). The 221 

segments were selected automatically by sliding a window of length 18 cm across the path. We 222 

included all segments that were lying entirely to one side (left or right) of the point in the middle 223 

of the sliding window ("C-shaped" segments), with the upper part and the lower part both going 224 

at least 4.5 cm away in the lateral direction (see Figure 3). Our results were not sensitive to 225 

modifying the exact inclusion criteria. 226 

To draw the 75% coverage areas of the path inflection points in each group (Figure 4C), we 227 

first performed a kernel density estimate of these points using the Matlab function kde2d(), 228 

which implements an adaptive algorithm suggested in  (Botev et al. 2010). After obtaining the 229 

2d probability density function p(x), we found the largest h such that ∫p(x)dx>0.75 over the 230 

area where p(x)>h. We then used Matlab's contour() function to draw contour lines of height h 231 

in the p(x) function. 232 

 233 

Receding horizon model 234 

We modelled subjects’ behaviour by a stochastic receding horizon model in discrete time t. In 235 

receding horizon control (RHC,(Kwon and Han 2005)) motor commands 𝑢𝑡  are computed to 236 

minimize a cost function 𝐿𝑡  over a finite time horizon of length h: 237 

minimize 𝐿𝑡({𝑥𝑡}, {𝑢𝑡}) (1) 238 

subject to 𝐿𝑡 = ∑ 𝑙𝑡+𝑘

ℎ

𝑘=1

 239 

                   𝑥𝑡+1 = 𝑓(𝑥𝑡, 𝑢𝑡) 240 
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where 𝑓 defines the dynamics of the controlled system. Equation (1) is equivalent to an optimal 241 

control problem over the fixed future interval [𝑡 + 1, 𝑡 + ℎ]. Solving (1) yields a sequence of 242 

optimal motor commands {𝑢0
𝑜𝑝𝑡, 𝑢1

𝑜𝑝𝑡, … , 𝑢ℎ−1
𝑜𝑝𝑡 }. The control applied at time t is the first 243 

element of this sequence, i.e. 𝑢𝑡 = 𝑢0
𝑜𝑝𝑡

. Then, the new state of the system 𝑥𝑡+1 is measured 244 

(or estimated) and the above optimization procedure is repeated, this time over the future 245 

interval [𝑡 + 2, 𝑡 + 1 + ℎ], starting from the state  𝑥𝑡+1. 246 

 247 

Applying RHC to our experimental task, the dynamics of the cursor movement was modelled 248 

by a linear first-order difference equation: 249 

𝑥𝑡+1 = 𝑥𝑡 + 𝑢𝑡−𝜏 + 𝜂𝑡    𝜂𝑡 ∈  𝒩(0, 𝜎2) (2)250 

where t is the time step, 𝑥𝑡 the cursor position at time t, 𝑢𝑡  is the motor command applied at 251 

time t and 𝜏 the motor delay. 𝜂𝑡 is the motor noise which was modelled as additive Gaussian 252 

white noise with zero mean and variance 𝜎2. We used the following cost function 253 

𝐿𝑡     = ∑ [− log(𝑞𝑡+𝑘) + 𝜆|𝑢𝑡−𝜏+𝑘−1|2]

ℎ

𝑘=𝜏+1

(3) 254 

where 𝐿𝑡 is the expected cost at time t, qt+k is the probability of the cursor being inside the path 255 

at time t+k, h is the length of the horizon in time and 𝜆 is the weight of the motor command 256 

penalty. At every time step t, 𝐿𝑡 is minimized to compute 𝑢𝑡 while {𝑢0, … , 𝑢𝑡−1} are known. 257 

Consequently, the lower bound of the sum in (3) is 𝜏 + 1. The cost function in (3) reflects a 258 

trade-off between accuracy (first term, i.e. log[qt+k]) and effort (second term) whereas their 259 

relative importance is controlled by 𝜆. Cost functions with a similar accuracy-effort trade-off 260 

have been used previously to successfully model human motor behaviour (Braun et al. 2009; 261 

Diedrichsen 2007; Todorov and Jordan 2002). 262 
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We assume that subjects have acquired a forward model of the control problem and they can, 263 

therefore, predict the cursor position at time t+1 from the cursor position at time t and the motor 264 

command in accordance with equation (2). We also assume that subjects have an accurate 265 

estimate of the position of the cursor at time t, i.e. xt is known. Subjects can then compute the 266 

probability distribution of the cursor position at future times t+k, given by: 267 

𝑝(𝑥𝑡+𝑘|𝑥𝑡 , {𝑢𝑡−𝜏, 𝑢𝑡−𝜏+1, … , 𝑢𝑡−𝜏+𝑘−1}} =
1

√2𝜋𝑘𝜎2
𝑒

− 
(𝑥̂𝑡+𝑘)2

2𝑘𝜎2 (5) 268 

with 269 

𝑥̂𝑡+𝑖 = 𝑥𝑡 + ∑ 𝑢𝑡−𝜏+𝑙−1

𝑖

𝑙=1

(6) 270 

The probability of the cursor being inside the path is then given by 271 

𝑞𝑡+𝑘 = ∫
1

√2𝜋𝑘𝜎2

𝑚𝑡+𝑘+
𝑤
2

𝑚𝑡+𝑘−
𝑤
2

𝑒
− 

(𝑥̂𝑡+𝑘−𝑧)2

2𝑘𝜎2 𝑑𝑧 (7) 272 

where 𝑚𝑡 is the position of the midline of the path at time t and w the width of the path. The 273 

receding horizon model assumes that motor commands 𝑢𝑡  are computed by minimizing the 274 

cost 𝐿𝑡 in each time step t for a fixed and known set of model parameters (ℎ, 𝜆, 𝜏, 𝜎2). We 275 

simplify the optimisation problem by approximating qt+k by 276 

𝑞𝑡+𝑘 ≈ 𝑤 
1

√2𝜋𝑘𝜎2
 𝑒

− 
(𝑥̂𝑡+𝑘−𝑚𝑡+𝑘)2

2𝑘𝜎2 (8) 277 

The higher 𝑘𝜎𝑘
2 is relative to the path width w, the higher the accuracy of this approximation. 278 

Note that the squared error is scaled by 𝑘𝜎2 and hence, errors in the future are discounted. This 279 

is a consequence of the used model of the cursor dynamics in (equation 2). 280 

Using equation (8) and removing all terms which do not depend on 𝑢𝑡, we can derive a 281 

simplified cost function 282 

𝐿̃𝑡 = ∑ [
(𝑥̂𝑡+𝑘 − 𝑚𝑡+𝑘)2

2𝑘𝜎2
+ 𝜆|𝑢𝑡−𝜏+𝑘−1|2]

ℎ

𝑘=𝜏+1

(9) 283 
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Equation (9) shows that the trade-off between accuracy and the magnitude of the motor 284 

commands is controlled by 𝜎2𝜆. We therefore can eliminate one parameter and use the 285 

equivalent cost function 286 

𝐿̃𝑡 = ∑ [
(𝑥̂𝑡+𝑘 − 𝑚𝑡+𝑘)2

2𝑘
+ 𝜆̃|𝑢𝑡−𝜏+𝑘−1|2]

ℎ

𝑘=𝜏+1

 with 𝜆̃ = 𝜎2𝜆 (10) 287 

The gradient of the cost function 𝐿̃𝑡 is given by 288 

𝜕𝐿̃𝑡

𝜕𝑢𝑡+𝑗
=  2𝜆̃𝑢𝑡+𝑗 + ∑ [

(𝑥̂𝑡+𝑘 − 𝑚𝑡+𝑘)

𝑘
]

ℎ

𝑘=𝑗+(𝜏+1)

(11) 289 

with 𝑗 =  0, … , ℎ − (𝜏 + 1). The Hessian of the cost function is given by 290 

𝜕2𝐿̃𝑡

𝜕𝑢𝑡+𝑚𝜕𝑢𝑡+𝑛
= 2𝛿𝑚,𝑛𝜆̃ + ∑

1

𝑘

ℎ

𝑘=max(𝑚,𝑛)+(𝜏+1)

 (12) 291 

with m, n = 0, … , ℎ − (𝜏 + 1). For 𝜆̃ = 0 all pivots of the Hessian matrix are positive and 292 

therefore the Hessian is positive definite for 𝜆̃ = 0. For the general case 𝜆̃ > 0 the Hessian 293 

remains positive definite as 𝐻2 = 𝐻1 + 𝐷 is positive definite if 𝐻1 is positive definite and 𝐷 is 294 

a diagonal matrix with only positive diagonal entries. Given the positive definiteness of the 295 

Hessian we can conclude that the cost function 𝐿̃𝑡 is strictly convex with a unique global 296 

minimum. Setting the gradient (12) to 𝟎 defines a system of h−𝜏 linear equations with h−𝜏 297 

unknowns (𝑢𝑡 , … , 𝑢𝑡+ℎ−(𝜏+1)) which solution minimizes 𝐿̃𝑡. The solution can be computed 298 

efficiently using standard numerical techniques. We used the ‘linsolve’ function of MATLAB 299 

(R2016b) which uses LU factorization. 300 

As a measure of task performance, we computed the expected time inside the path from the 301 

model trajectory 𝑧𝑡 as follows 302 

𝑎 =
1

𝑇
∑ [1 − ∫

1

√2𝜋𝜎2

𝑚
𝑡+

𝑤
2

𝑚
𝑡−

𝑤
2

𝑒
− 

(𝑧𝑡−𝜂)2

2𝜎2 𝑑𝜂]

𝑇

𝑡=1

(13) 303 
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with 𝑇 depicting the number of time steps per path. The lag was computed by maximizing the 304 

correlation coefficient between the model trajectories and the path midline identical to how the 305 

lag was computed for the subjects’ trajectories. 306 

When applying the model to the searchlight path we made the additional assumption that the 307 

model horizon increases with searchlight length 𝑠 up to a maximal value ℎ𝑚𝑎𝑥  beyond which 308 

the model horizon remains constant: 309 

ℎ(𝑠) = {
𝑠, 𝑠 < ℎ𝑚𝑎𝑥

ℎ𝑚𝑎𝑥 , 𝑠 ≥ ℎ𝑚𝑎𝑥
(14) 311 

 310 

Fitting the receding horizon model to subjects’ behaviour 312 

We fitted the RHC model to the subjects’ movement trajectories in the searchlight testing paths 313 

using Bayesian inference (Gelman et al. 2003). The model parameters were estimated by 314 

computing their expected values from the posterior distribution 315 

𝛽̂ = 〈𝛽〉 = ∫ 𝛽 𝑝(𝛽|𝑣) 𝑑𝛽 (15)316 

where 𝛽 is the model parameter, 𝑣 the movement trajectory data of a subject and 𝑝(𝛽|𝑣) the 317 

posterior probability distribution for 𝛽. We approximated the integral in (15) by sampling from 318 

the posterior distribution using the Metropolis algorithm which can sample from a target 319 

distribution that can be computed up to a normalizing constant (Gelman et al. 2003). The RHC 320 

model has four parameters (ℎ𝑚𝑎𝑥 , 𝜏, 𝜆̃, 𝜎2) out of which three (ℎ𝑚𝑎𝑥 , 𝜏, 𝜆̃) affect the shape of 321 

the trajectory (cf. equation (10)). Assuming a flat prior for the model parameters, i.e. . 322 

𝑝(ℎ𝑚𝑎𝑥 , 𝜏, 𝜆̃)=const., and a non-informative prior for the error-variance 𝛿2, i.e. 𝑝(𝛿2) = 1 𝛿2⁄  323 

(Gelman et al. 2003), we obtained the following equation for the posterior 324 

𝑝(𝛽|𝑤) ∝  𝑝(ℎ𝑚𝑎𝑥, 𝜏, 𝜆̃)
1

𝛿2+𝑁
𝑒

−
𝑚𝑠𝑒(ℎ𝑚𝑎𝑥,𝜏,𝜆̃)

2𝛿2 (16) 325 
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where 𝑚𝑠𝑒(ℎ𝑚𝑎𝑥 , 𝜏, 𝜆̃) is the mean squared error between the model and the subject movement 326 

trajectories and 𝑁 the number of trials. The mean squared error between the movement 327 

trajectories of a subject and the model is given by 328 

𝑚𝑠𝑒(ℎ𝑚𝑎𝑥 , 𝜏, 𝜆̃) =
1

10𝑇|ℱ|
∑ ∑ ∑ (𝑣𝑡

(𝑠,𝑗)
− 𝑧𝑡

(𝑠,𝑗)
(ℎ𝑚𝑎𝑥 , 𝜏, 𝜆̃))

2
𝑇

𝑡=1𝑗∈ℱ𝑠

10

𝑠=1

(17) 329 

with 𝑇 depicting the number of time steps per path, ℱ𝑠 the set of paths ids for searchlight 𝑠, 330 

𝑣𝑡
(𝑠,𝑗)

 the movement of subject 𝑖 at time 𝑡 in path 𝑗 for searchlight 𝑠 and 𝑧𝑡
(𝑠,𝑗)

(ℎ𝑚𝑎𝑥 , 𝜏, 𝜆̃) the 331 

corresponding movement predicted by the RHC model. 332 

To save computation time, we precomputed the 𝑚𝑠𝑒 for specific discrete combinations of the 333 

model parameters. The model horizon parameter ℎ𝑚𝑎𝑥 could take any integer value between 1 334 

and 26 given a maximum possible planning horizon of 30cm (vertical screen size) which is 335 

equivalent to 30cm (34
cm

s
∙

1

30
s)⁄ = 30cm (

34

30
cm)⁄ ≈ 26 time steps,  where 34 cm/s is the 336 

path speed and 1/30s the time step. Hence, admissible values for the horizon parameter 337 

corresponded to horizons of ℎ𝑚𝑎𝑥 = (1, … , 26) ∗
34

30
cm. For the delay we allowed the values 338 

𝜏 = (1, … , 15) ∗
1

30
s, assuming that subjects won’t have larger delays than 500ms. In fact, the 339 

maximum delay of a subject we found from fitting was 286 ms which is well below the limit 340 

we imposed. The motor penalty parameter 𝜆̃ was allowed to take any of 103 logarithmically 341 

equally spaced values between 10-4 and 107 and 0. In total, we had, therefore, 342 

26x15x1001=390390 admissible parameter combinations for ℎ𝑚𝑎𝑥 , 𝜏 and 𝜆̃. We simulated the 343 

model for all of these parameter values and computed the mean squared errors according to 344 

equation (17). We then used the Metropolis algorithm to generate 106 samples from the 345 

posterior distribution of the parameters. Each sample consisted of a 4-tuple of values for the 346 

parameters (ℎ𝑚𝑎𝑥, 𝜏, 𝜆̃, 𝛿2). We computed the motor noise parameter of the model 𝜎2 from the 347 
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estimated error-variance 𝛿2 as explained below and then 𝜆 = 𝜆̃ 𝜎2⁄   (cf. equation 10). For each 348 

parameter sample we also computed the lag, as explained at the end of the previous section, 349 

and the task performance using equation (13). As a result, we obtained 106 parameter values, 350 

lags and task performances, which reflect samples from the posterior distribution of the model 351 

parameters. 352 

To evaluate the quality of the model, we used three-fold cross-validation where in each fold 353 

the posterior distributions of the model parameters were estimated using the data from two of 354 

the three trials for each searchlight. The posterior distributions were then used to make model 355 

predictions of performance and lag in the remaining trial for each searchlight. This was done 356 

for each subject separately and the model predictions were compared to the experimentally 357 

observed performances and lags (cf. Fig. 5A-D). 358 

Expected values of the model parameters were computed according to equation (13). Expected 359 

values were calculated for each cross-validation fold separately and then averaged across the 360 

three cross-validation folds. This yielded the model parameters ℎ𝑚𝑎𝑥 , 𝜏, 𝜆, 𝜎2 for each subject, 361 

shown in Fig. 5E-H. 362 

 363 

Estimation of the motor noise parameter from the error-variance 364 

If all model assumptions are fulfilled, the motor noise model parameter 𝜎2 will be linearly 365 

related to the error-variance 𝛿2 and we should therefore be able to estimate 𝜎2 from  𝛿2. For 366 

each subject we computed 𝜎2 by minimizing the squared error between the model task 367 

performance (eq. 13) and the experimentally determined task performance. A scatter plot of 368 

the resulting 𝜎2 over the error-variance 𝛿2 revealed an approximate linear relationship between 369 

𝜎2 and 𝛿2. We then determined the proportionality factor 𝛼 by linear-least squares regression 370 

of the model 𝜎2 = 𝛼𝛿2 and used it to compute 𝜎2 from  𝛿2. The linear-least squares regression 371 
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was done for each subject separately, using only the 𝜎2 and  𝛿2 values from all other subjects 372 

to avoid overfitting. 373 

 374 

Estimating the influence of model parameters on performance difference between expert 375 

and naïve groups 376 

To estimate how much a single model parameter causes the experts' gain in performance we 377 

computed the performance of the model for naive group parameters but with one parameter 378 

(horizon, motor noise, delay or motor penalty) changed to expert group values. We also 379 

performed the opposite procedure, replacing each parameter for each participants of the expert 380 

with those of the naïve group. Using the Bayesian inference approach described in the previous 381 

section, we replaced the full posterior distribution of the affected parameter with the posterior 382 

distribution from the other group. This procedure was carried out for each subject separately 383 

and the posterior of the affected parameter was replaced by the posterior of each subject from 384 

the other group separately. We then computed the posterior of the performance curve and from 385 

that the expected values of the performance by averaging. Hence, we obtained for each 386 

parameter change 𝑁𝑒 ∙ 𝑁𝑛 performance curves where 𝑁𝑒 and 𝑁𝑛 are the number of subjects in the 387 

expert and naïve group, respectively. These performance curves were averaged and compared 388 

to the average performances for the expert and naïve groups obtained for the fitted model (see 389 

Results for details). 390 

 391 

Parts of the modelling computations were run on the high-performance computing cluster 392 

NEMO of the University of Freiburg (http://nemo.uni-freiburg.de) using Broadwell E5-2630v4 393 

2.2 GHz CPUs. 394 

All analysis code is available at https://github.com/dkobak/path-tracking. 395 

  396 
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Results 397 

 398 

Learning the Tracking Skill 399 

We designed an experiment where subjects had to a track a path moving towards them at a 400 

fixed speed (Fig. 1A and Methods). The narrow and wiggly path was moving downwards on a 401 

computer screen while the cursor had a fixed vertical position in the bottom of the screen and 402 

could only be moved left or right. Accuracy, our performance measure, was defined as the 403 

fraction of time that the cursor spent inside the path boundaries.  One group of subjects (the 404 

expert group, N=32) trained this task for 30 minutes on each of 5 consecutive days. Another 405 

group (the naïve group, N=30) did not have any training at all. Both groups then performed a 406 

testing block that we describe below. 407 

 408 

 409 

 410 

Figure 1. Experimental Paradigm. (A) Subjects had to track a curved path that was dropping 411 

down from top to bottom of the screen with a fixed speed of 34 cm/sec by moving the cursor 412 

horizontally. (B) Expert subjects’ performance over the 5 days of training. Bold line shows the 413 

group average, thin lines show individual subjects (each point is a mean over 3 trials with the 414 

same searchlight length, 100%). (C) Expert subjects' performance over the 5 days of training 415 

with the performance on the first day subtracted. 416 
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 417 

 418 

Over the course of five training days, the experts' accuracy increased from 66.9±8.0% to 419 

79.6±6.4% (mean±SD across subjects, first and last training day respectively) as shown on Figs 420 

1B-C, with the difference being easily noticeable and statistically significant (p=8 ∙ 10−7, z=4.9, 421 

Wilcoxon signed rank test; Cohen’s d=1.8, N=32). As all paths generated during the training 422 

were different, this difference cannot be ascribed to memorizing the path, therefore this 423 

improvement represents the genuine acquisition of the skill of path tracking. 424 

 425 

Searchlight testing 426 

To unravel the mechanisms of skill acquisition we designed testing trials called “searchlight 427 

trials”, during which subjects had to track curved paths as usual but could only see a certain 428 

part of the path (fixed distance s) ahead of the cursor. The searchlight length s varied between 429 

10% and 100% of the whole path length in steps of 10% (the minimal s was ~3cm) to probe 430 

subjects' planning horizon. Searchlight testing was conducted after 5 days of training for 431 

experts or immediately for novices. During the testing block all subjects completed 30 one-432 

minute-long trials (three repetitions of each of the 10 values of s). The average accuracy at full 433 

searchlight s=100% was 82.8±7.5% for the expert group and 65.7±8.4% for the naïve group 434 

(mean±SD across subjects), with the difference being highly significant (p=2 ∙ 10−9, z=6.0, 435 

Wilcoxon-Mann-Whitney ranksum test, Cohen’s d=2.2, N=62). The performance of the naïve 436 

subjects matched the initial performance of the expert subjects on their first day of training. 437 

 438 

Before we present the rest of the data, let us consider several possible ways in which the 439 

accuracy can depend on the searchlight length (Fig. 2A). For each subject, accuracy should be 440 

a non-decreasing function of searchlight length. The data presented in Poulton (1974) indicate 441 
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that this function tends to become flat, i.e. subjects reach a performance plateau, after a certain 442 

value of the searchlight length that we will call planning horizon (Fig. 2A, top), while we 443 

assume all subjects will be constrained to the similar poor performance at the smallest 444 

searchlight. For the expert group, this function has to reach a higher point at s=100%, but it 445 

could do so because the initial rise becomes steeper, for example due to lower motor variability 446 

(Fig. 2A, bottom left), or because the initial rise continues longer, i.e. planning horizon 447 

increases (Fig. 2A, bottom right), or possibly both. 448 

 449 

Fig. 2B shows subjects' accuracy in the searchlights trials as a function of the searchlight length 450 

s. All subjects were strongly handicapped at short searchlights, and at the shortest searchlight 451 

the performance of the two groups was similar with experts being only marginally better 452 

(42.5±2.3% for the expert group, 41.4±1.8% for the naïve group, p=0.042, z=2.0 Wilcoxon 453 

ranksum test; Cohen’s d=0.5, N=62). 454 

 455 

 456 
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 457 

 458 

Figure 2. Searchlight testing. (A) Expert subjects were trained to have a higher performance 459 

at full searchlight length (top). This could be achieved by an increased initial slope (bottom 460 

left) at smaller searchlight length and/or an increased planning horizon as indicated with 461 

dashed vertical lines (bottom right). (B) Mean tracking performance for each searchlight 462 

length for each individual subject, in blue for the expert group and in red for the naïve group. 463 

Faint lines show individual subjects and bold lines show group means. (C) Mean tracking 464 

performance for each searchlight length, rescaled for each subject to start at 0 and end at 1 465 

(see text). Error bars indicate 95% confidence intervals around the means, stars indicate 466 

significance between the groups (**: p<0.01, Wilcoxon rank sum text, Bonferroni-Holm 467 

corrected for multiple comparisons). (D-E) Planning horizon for each subject was defined by 468 

fitting a changepoint linear-constant curve (D) or an exponential curve (E) (see text). Both 469 

models yield an asymptote performance for each subject; the changepoint model yields a 470 
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horizon length and the exponential fit yields an “effective” horizon length. The scatter plots 471 

show relation between the asymptote performance (as a proxy for subjects' skill) and their 472 

planning horizon. Spearman’s correlation coefficients are shown on the plot (**: p<0.01, ***: 473 

p<0.001). Colour of the dot indicates the group. (F) Relationship between the asymptote 474 

performance and the initial slope in in the changepoint linear-constant model, colours and 475 

values as in D&E (***: p<0.001). 476 

 477 

 478 

Visual inspection of Fig. 2B suggests that both effects sketched in Fig. 2A contribute to expert 479 

performance. (i) the planning horizon for the expert group was longer than for the naïve group; 480 

and (ii) the expert group had higher accuracies in the initial part of the performance curve, 481 

before the performance plateaus, which could be explained by decreased motor variability. 482 

 483 

To better visualize the change in performance across searchlight lengths, we linearly rescaled 484 

each subject's performance curve, first by subtracting the mean performance at s=10% and then 485 

by dividing by the asymptote performance (computed as the mean performance across s=80-486 

100%). The resulting curves all start at 0 and end at 1 (Fig. 2C). We observed a significant 487 

difference between the groups at s=40% & 50% (p=0.005 and p=0.004 respectively, Wilcoxon 488 

ranksum test, p-values adjusted for testing 6 searchlight lengths between 20% and 70% with 489 

Holm-Bonferroni procedure, N=62), indicating that while naïve subjects had reached their 490 

plateau by then, the expert subjects kept increasing their performance. For this analysis we 491 

removed two naïve subjects with essentially flat searchlight curves (Fig. 1B), as rescaling those 492 

did not lead to meaningful results. 493 

 494 
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To investigate individual differences in tracking skill, we estimated the planning horizons of 495 

individual subjects (Fig. 2D). For this we fit each subject's performance (y) with a changepoint 496 

linear-constant curve (see Methods), where the location of the changepoint defines the horizon 497 

length. We found that the novice group had an average horizon length of 11.5±3.6cm 498 

(mean±SD; median: 12.0cm) and the expert group a horizon length of 14.2±3.5cm (median: 499 

13.2cm), with statistically significant difference (p=0.007, z=2.7, Wilcoxon ranksum test; 500 

Cohen’s d=0.8, N=62). We also found a positive correlation between the horizon length and 501 

the asymptotic performance (R=0.34, p=0.006, Spearman correlation, N=62). 502 

 503 

In addition to the changepoint model, we also quantified the “effective” planning horizon using 504 

a single exponential to fit the individual subjects' performance data (see Methods). This 505 

analysis confirmed our results (Fig. 2E). We again observed a significant difference in the 506 

effective horizon length between the two groups (14.76±4.6cm vs. 11.04±4.7cm, means±SD 507 

for both groups, medians: 13.6cm and 10.7cm, p=0.002, z=3.0, Wilcoxon ranksum test; 508 

Cohen’s d=0.8, N=62). Again, we found a positive correlation between the asymptote 509 

performance and the effective horizon length (R=0.43, p=0.0008, Spearman correlation, 510 

N=62). 511 

 512 

Not only was planning horizon positively correlated with tracking skill (the asymptote 513 

accuracy), but also the initial slope of the changepoint model (3.7±1.2 %/cm vs. 3.0±1.2 %/cm, 514 

mean±SD; medians: 3.6 %/cm vs. 2.6 %/cm). Fig. 2F shows that there was a positive 515 

correlation between the initial slope and asymptote accuracy (R=0.49, p=6.10-5 Spearman 516 

correlation, N=62) as well as a clear difference in the initial slope between the groups (p=0.008, 517 

z=2.6, Wilcoxon ranksum test; Cohen’s d=0.6, N=62). 518 

 519 
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We therefore conclude that the difference between expert and naïve performances is a 520 

combination of both possibilities presented in Fig. 2A. Using the expert and naive median 521 

estimates of the intercept, the slope, and the horizon in the changepoint model, we can estimate 522 

the contribution of both effects on the asymptote performance. The changepoint model 523 

asymptote performance for the naive group was 63.5%, compared to 78.7% for the expert 524 

group. The model performance of the expert group at the naive horizon was 74.2%.  Hence, 525 

approximately 71% of the expert performance gain of 15.2%, was due to the increase in the 526 

initial slope (possibly due to lower motor variability), and the remaining 29% can be attributed 527 

to the increase in planning horizon. The identical procedure with mean model parameter 528 

estimates instead of median estimates, yields 44% attributable to motor acuity and 56% 529 

attributable to planning horizon. We conclude that between a third and a half of the expert 530 

performance gain is attributable to their increase in planning horizon. 531 

 532 

Trajectory analysis 533 

Naïve subjects performed worse than the expert subjects at long searchlights but all subjects 534 

performed almost equally badly at short searchlights. What kinematic features can these 535 

differences be attributed to? 536 

 537 

Clearly, at short searchlights, performance has to be reactive. To measure how quickly changes 538 

in the path were reflected in the motor commands, we computed the time lag between cursor 539 

trajectory and path midline (the lag maximizing cross-correlation between them). As Fig. 3A 540 

shows the lag was ~200 ms at s=10% for all subjects and dropped to ~0 ms at s=50% for the 541 

expert group. While many naïve subjects also decreased their lags to zero, 10 out of 30 never 542 

achieved the 0 ms lag. The five naïve subjects showing the largest lags at large searchlights 543 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 4, 2020. ; https://doi.org/10.1101/505198doi: bioRxiv preprint 

https://doi.org/10.1101/505198
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Page 27 of 41 

 

were also those with the worst performance (Fig. 3B). Therefore, there was a strong negative 544 

correlation between the asymptote lag (mean across s=80-100%) and the asymptote 545 

performance (mean across s=80-100%) of R=-0.58 (Fig. 3B, p=8 ∙ 10−7, Spearman correlation, 546 

N=62). 547 

 548 

 549 

 550 

Figure 3. Analysis of trajectories. (A) Mean time lag between cursor trajectory and path 551 

midline, for each searchlight length for each individual subject (faint lines) and mean of per-552 

subject values (bold lines), in blue for the expert group and in red for the naïve group. (B) 553 

Asymptote lag and asymptote performance across subjects. Correlation coefficient is shown on 554 
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the plot (***p<0.001). Colour of the dot indicates the group. (C) Average per-subject 555 

trajectories in sharp bends (leftward bends were flipped to align them with the rightward 556 

bends). Each trajectory is averaged across approximately 40 bends (the number of bends 557 

varied across searchlight lengths). Colour of the lines indicates the group. Black lines show 558 

average path contour. Dots show turning points of the trajectory. Contour lines show the kernel 559 

density estimate 75% coverage areas. Subplots correspond to searchlight lengths s=10%, 20%, 560 

50%, 60%, 90% and 100%. 561 

 562 

Next, for each testing path we found all segments exhibiting sharp leftward or rightward bends 563 

(see materials and methods, our inclusion criteria yielded 13±5 segments per path, mean±SD). 564 

For each searchlight length s and for each subject, we computed the average cursor trajectory 565 

over all segments (N=38±8 segments per searchlight) after aligning all segments on the bend 566 

position (Fig. 3C, leftward bends were flipped to align them with the rightward bends). At 567 

s=10% all subjects from both groups follow very similar lagged trajectories, resulting in low 568 

accuracy. As searchlight increases, expert subjects reach zero lag and choose more and more 569 

similar trajectories, whereas naïve subjects demonstrate a wide variety of trajectories with some 570 

of them failing to reach zero lag and others failing to keep the average trajectory inside the path 571 

boundaries. To visualize this, we plotted the kernel density estimate 75% coverage contour of 572 

inflection points for each group. As the searchlight increases, the groups become less 573 

overlapping and the naïve group appears to form a bimodal distribution (Fig. 3C). 574 

 575 

In summary, at very short searchlights all subjects performed poorly because in this reactive 576 

regime their trajectories lagged behind the path. At longer searchlights the expert subjects were 577 

able to plan their movement to accommodate the bends (the longer the searchlight the better), 578 
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but naïve subjects failed to do so in various respects: either still lagging behind or not being 579 

able to plan a good trajectory. 580 

 581 

Receding horizon model analysis 582 

Next, we modelled subjects’ behaviour by receding horizon control (RHC) to illustrate that 583 

such an approach is able to capture some crucial features of the behavioural data. In RHC a 584 

sequence of motor commands is computed to minimize the expected cost over a future time 585 

interval of finite length, i.e. the horizon. After the first motor command is applied, the 586 

optimization procedure is repeated using a time interval shifted one time step ahead. See 587 

Methods section for a more detailed and formal description of RHC. As cost function, we used 588 

the weighted sum of a measure of inaccuracy (i.e. probability of being outside the path) and 589 

the magnitude of the motor cost (see Methods for details). Cost function with a similar trade-590 

off between movement accuracy and motor command magnitude have been used previously to 591 

describe human motor behaviour in different tasks (Braun et al. 2009; Diedrichsen 2007; 592 

Todorov and Jordan 2002). The model has four different parameters: horizon (ℎ), motor noise 593 

(𝜎2), motor delay (𝜏) and motor command penalty weight (𝜆. 594 

We ran the model on the experimental paths to obtain simulated movement trajectories from 595 

which task performance and lag could be computed in the same way as for the experimental 596 

trajectories (Fig. 2 and 3). Our simulations revealed that both, a larger model horizon as well 597 

as a smaller motor noise parameter increased the task performance and decreased the lag (Fig. 598 

4). Hence, the experimentally observed higher performance and smaller lag of expert subjects 599 

compared to naive (Fig. 2B and 3A) could be explained either by an increased model horizon 600 

or by reduced motor noise in the model. However, the searchlight length at which the task 601 

performance of the model reached a plateau increased with model horizon and did not change 602 

or even decreased with a smaller motor noise parameter (Fig. 4A, C). Experimentally, on the 603 
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other hand, we observed that subjects with a higher task performance reached their 604 

performance plateau at higher searchlights (Fig. 2D, E). This correlation between performance 605 

and plateau onset, that was observed experimentally, cannot be explained by the variation of 606 

the motor noise parameter across subjects, but is only consistent with an increase of the model 607 

planning horizon for subjects with higher performance. 608 

 609 

 610 

Figure 4: Task performance and lag as a function of searchlight length for model simulations 611 

with different horizons (A,B) or different amounts of motor noise (C,D). A motor noise of 𝜎2=1 612 

was used for (A,B) and a horizon of ℎ=15cm for (C,D). The motor delay and motor command 613 

penalty weight were fixed at 𝜏=200ms and 𝜆=0.5 in all simulations. 614 

 615 

Next, we used Bayesian inference to estimate the model parameters from the experimentally 616 

observed movement trajectories (see Methods for details). Based on inferred distributions of 617 

parameter values, we then predicted task performance and lag for each subject. To avoid over-618 

fitting cross-validation was used, i.e. fitting and prediction was done on different trials. Model 619 

task performance and lag resembled the experimentally observed task performance and lag 620 

with regard to their change across searchlights as well as with regard to the difference between 621 

naïve and the expert subjects (Fig. 5A,B). On a single subject and trial level there was a high 622 
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correlation between model and experimental task performance (Fig. 5C, Spearman correlation 623 

r=0.9, R2=0.84) and lags (Fig. 5D, Spearman correlation r=0.87, R2=0.88). 624 

 625 

We compared the estimated model parameters between expert and naïve subjects. The fitted 626 

model horizon was higher for the expert group than for the naïve group (Fig. 5E, Wilcoxon 627 

ranksum test: z=4.84, p=110-6, N=62) and was correlated with the horizon obtained from the 628 

change point analysis (Spearman correlation, r=0.48, p=710-5, N=62) and the exponential fits 629 

(Spearman correlation, r=0.43, p=610-4, N=62). One caveat here is that there was large 630 

uncertainty in the estimates of model horizon for most subjects, and the exact values shown in 631 

Fig. 5E might be systematically biased due to some model misspecification (in particular, note 632 

that the values in Fig. 5E are all larger than the estimates in Fig. 2D,E). That said, the RHC 633 

model estimates qualitatively agree with our earlier estimates that the expert horizons were 634 

larger than the naive horizons. 635 

 636 

The fitted motor noise was significantly lower for the expert than for the naïve group (Fig. 5F; 637 

Wilcoxon ranksum test: z=4.66, p=310-6, N=62) while the delay and the penalty parameters 638 

were not different (Fig. 5G,H; delay: Wilcoxon rank sum test, z=1.50, p=0.13; penalty: 639 

Wilcoxon rank sum test, z=0.528, p=0.60, N=62). In the model, lower motor noise lead to 640 

steeper initial accuracy slope (Fig. 4C). The expert group having lower estimated motor noise 641 

hence agrees well with our observation that experts had steeper initial accuracy slope (Fig. 2F). 642 

 643 
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 644 

Figure 5: Comparison between the receding horizon model and subjects’ behaviour. A,B: Task 645 

performance and lag as a function of the searchlight for expert and naïve subjects for the 646 

experiments and model simulations. C,D: Scatter plot of model and experimental task 647 

performance and lag for each trial of each subject. E-H: Model parameters for the subjects 648 

from the naïve and the expert group. Each dot depicts one subject, boxplots show medians as 649 

well as first and third quartiles. 650 

 651 

Using the model fits obtained above, we estimated how much of the experts' gain in asymptote 652 

performance was due to increased horizon vs. decreased noise. To do this, we simulate the 653 

model with naive group parameters but expert group horizons (see Methods). This brings the 654 

performance almost half-way to the expert performance (for large searchlights the performance 655 

levelled off at 72% instead of 82% with lower horizon, compared to 66% for the naïve 656 

subjects). We observe roughly the same increase (to 75%) when we simulate the model with 657 

naive group parameters but expert group noise levels. Similarly, when we use expert group 658 
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parameters but naive group horizons or noise levels, the performance drops approximately half-659 

way to the naïve accuracy (74% for naïve horizon, 71% for naïve motor noise). In contrast, the 660 

delay and the motor penalty parameters had less influence on the asymptote performance (63% 661 

and 64% for naïve group parameters with expert delay or motor penalty; 80% for expert group 662 

parameters with naïve delay or motor penalty). From this we conclude that the increase in the 663 

experts’ performance was caused by equal measures through an increase in planning horizon 664 

and the decrease in motor noise. This is in a good qualitative agreement with the conclusions 665 

we presented earlier based on the linear changepoint fits. 666 

  667 
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Discussion 668 

 669 

We used a paradigm that allowed us to study skill development when humans had to track an 670 

unpredictable spatial path. The skill requires fast reactions to new upcoming bends in the road, 671 

but also a substantial “planning ahead” component – i.e. the anticipation and preplanning of 672 

movements that have to be made in the near future. We used the accuracy, i.e. the fraction of 673 

time the cursor was inside the path boundaries, as the measure of performance. We observed a 674 

substantial improvement in accuracy after 5 days of training (Fig. 1B,C). The paths were 675 

different on every trial, so the improvement in performance cannot be attributed to a memory 676 

for the sequence. 677 

 678 

What changes in the motor system occur through learning that allowed skilled subjects to 679 

perform better? One component of this improvement has been previously called “motor acuity” 680 

(Shmuelof et al. 2012, 2014) and corresponds to the subjects’ ability to execute motor 681 

commands more accurately, i.e. due to the lower motor variability. We hypothesized that an 682 

additional component is an increased ability to take into account approaching path bends and 683 

to prepare for an upcoming movement segment. We directly estimated both effects by using a 684 

searchlight testing where only a part of the approaching curve was visible. In agreement with 685 

our hypothesis, we found that subjects with a higher tracking skill demonstrated larger planning 686 

horizons: on average ~14cm for the expert group vs. ~11cm for the naïve group, corresponding 687 

to the time horizons of ~0.4s and ~0.3s respectively. Our results suggest that the increase in 688 

planning horizon is not an epiphenomenon but is causally related to the performance increase, 689 

as expert subjects showed worse performance when the searchlight was reduced below their 690 

planning horizon (Figure 2C). We estimated that in our experiments between a third and a half 691 

of the increased performance after practice can be attributed to an increased planning horizon 692 
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while the rest can be accounted for by a reduction in the motor variability which may be 693 

interpreted as higher motor acuity. 694 

 695 

The expert group showed higher initial slope of the searchlight-accuracy curve. We interpreted 696 

this as an indirect evidence for lower motor variability, even though other explanations for 697 

higher slope are in principle also possible. Our assumption was that as long as the searchlight 698 

lengths does not exceed a subject’s horizon, all subjects (expert and naive) are able to use 699 

information about the whole visible path chunk. The results of the RHC fits showed a clear 700 

difference in motor noise between the groups, in agreement with our interpretation that the 701 

expert group had lower motor variability. 702 

 703 

Note that “planning”/“preparing” the movement can be interpreted differently depending on 704 

the computational approach. In the framework of optimal control (Todorov and Jordan 2002), 705 

subjects do not plan the actual trajectory to be followed, but instead use an optimal time-706 

dependent feedback policy and then execute the movement according to this policy. The 707 

observed increase in planning horizon can be interpreted in the framework of model predictive 708 

control, also known as receding horizon control, RHC (Kwon and Han 2005). In RHC, the 709 

optimal control policy is computed for a finite and limited planning horizon, which may not 710 

capture the whole duration of the trial. This policy is then applied for the next control step, 711 

which is typically very short, and the planning horizon is then shifted one step forward to 712 

compute a new policy. Hence, RHC does not use a pre-computed policy, optimal for an infinite 713 

horizon, but a policy which is only optimal for the current planning horizon. Increasing the 714 

length of the planning horizon is therefore likely to increase the accuracy of the control policy. 715 

In our experiments this would allow for a larger fraction of time spent within the path 716 

boundaries. We designed a simple RHC model to test directly which components in the model 717 
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would have to change through training to quantitatively explain the subject’s behaviour. The 718 

dynamics of movement and the cost function were modelled in line with previous studies that 719 

used optimal control to describe human behaviour in various motor control and learning tasks 720 

(Braun et al. 2009; Diedrichsen 2007; Todorov and Jordan 2002). We fitted the RHC model to 721 

the behaviour of each subject and found that it was able to fit the data very accurately (Fig. 5). 722 

The experimentally observed differences between expert and naïve subjects were reflected in 723 

the model fits by higher planning horizons and lower motor noise parameters in the expert 724 

group. Our findings, thus, demonstrate that subjects’ behaviour can be understood in the 725 

context of RHC, and longer planning horizons of the expert group indicate that subjects learn 726 

how to take advantage of future path information to improve motor performance. 727 

 728 

 729 

Despite a clear difference in the distribution of planning horizons between the naive and the 730 

expert groups (Fig. 2D), there was a substantial overlap: the planning horizon of many naive 731 

and expert subjects were similar. While this might simply reflect a moderate effect size 732 

combined with inter-subject variability and measurement noise, it also remains a possibility 733 

that the difference between groups was largely caused by those naive subjects with very low 734 

horizons and expert subjects with very high horizons.  735 

 736 

Related work 737 

Ideas like the RHC were put forward in a recent study (Ramkumar et al. 2016) that suggested 738 

that movements are broken up in ‘chunks’ in order to deal with the computational complexity 739 

of planning over long horizons. That study suggests that monkeys increase the length of their 740 

movement chunks during extended motor learning over the course of many days which may 741 

be explained by monkeys increasing their planning horizon with learning. At the same time, 742 
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the efficiency of movement control within the chunks improved with learning which may also 743 

be the result of a longer horizon. Despite these potential consistencies with our approach we 744 

note that in their model Ramkumar et al. (2016) assumed that ‘chunks’ are separated by halting 745 

points (i.e. points of zero speed) and movements within ‘chunks’ are optimized independently 746 

from each other. Our RHC model does not have independent movement elements but 747 

movements are optimized continuously. 748 

 749 

Even though our study, to the best of our knowledge, is the first to directly investigate the 750 

evolution of the planning horizon during continuous path tracking, an increase in the planning 751 

horizon after learning has been recently demonstrated when learning sequences of finger 752 

movements (Ariani et al. 2020). Similar path tracking tasks have been used before (Poulton 753 

1974). Using a track that was drawn on a rotating paper roll, these early studies found that the 754 

accuracy of the tracking increased with practice and with increasing searchlight length (which 755 

was modified by physically occluding part of the paper roll, (Poulton 1974), p 187). These 756 

studies, however, did not investigate the effect of learning on the planning horizon. 757 

 758 

More recent studies used path tracking tasks where the goal was to move as fast as possible 759 

while maintaining the accuracy (instead of moving at a fixed speed). In all of these studies the 760 

identical path was repeatedly presented. In one study subjects had to track a fixed maze without 761 

visual feedback and learnt to do it faster as the experiment progressed (Petersen et al. 1998); 762 

there the subjects had to once “discover” and then remember the correct way through the maze. 763 

In another series of experiments, Shmuelof et al. asked subjects to track two fixed semi-circular 764 

paths. Subjects became faster and more accurate over the course of several days (Shmuelof et 765 

al. 2012), but this increase in the speed and accuracy did not generalize to untrained paths 766 

(Shmuelof et al. 2014). In contrast to these previous path tracking studies, we used randomly 767 
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generated paths throughout the experiment. By investigating the generalization of the path 768 

tracking skill to novel paths we could reveal an increasing planning horizon with learning. 769 

 770 

Conclusion 771 

In conclusion, we have established that people are able to learn the skill of path tracking and 772 

improve their skill over 5 days of training. This increase in motor skill is associated with the 773 

increased motor acuity and increased planning horizon. The dynamics of preplanning can be 774 

well described by a receding horizon control model.  775 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 4, 2020. ; https://doi.org/10.1101/505198doi: bioRxiv preprint 

https://doi.org/10.1101/505198
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Page 39 of 41 

 

Acknowledgements 776 

The study was in parts supported by the German Federal Ministry of Education and Research 777 

(BMBF) grant 01GQ0830 to BFNT Freiburg-Tübingen. The authors acknowledge support by 778 

the state of Baden-Württemberg through bwHPC and the German Research Foundation (DFG) 779 

through grant no INST 39/963-1 FUGG. The authors also thank the ‘Struktur- und 780 

Innovationsfonds Baden-Württemberg (SI-BW)” of the state of Baden-Württemberg for 781 

funding. 782 

 783 

Author Contribution 784 

Conceptualization, LB. DK. and CM; Methodology, LB. DK. JD and CM; Formal Analysis, 785 

LB. DK and CM; Writing – Original Draft, LB. DK and CM; Writing – Review and Editing, 786 

LB, DK, JD and CM. 787 

  788 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 4, 2020. ; https://doi.org/10.1101/505198doi: bioRxiv preprint 

https://doi.org/10.1101/505198
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Page 40 of 41 

 

References 789 

Ariani G, Kordjazi N, Diedrichsen J. The planning horizon for movement sequences. 790 

bioRxiv 2020.07.15.204529, 2020. 791 

Bashford L, Kobak D, Mehring C. Motor skill learning by increasing the movement 792 

planning horizon [Online]. ArXiv14106049 Q-Bio , 793 

2014http://arxiv.org/abs/1410.6049 [15 Dec. 2015]. 794 

Botev ZI, Grotowski JF, Kroese DP. Kernel density estimation via diffusion. Ann Stat 38: 795 

2916–2957, 2010. 796 

Brainard DH. The Psychophysics Toolbox. Spat Vis 10: 433–436, 1997. 797 

Braun DA, Aertsen A, Wolpert DM, Mehring C. Learning Optimal Adaptation Strategies 798 

in Unpredictable Motor Tasks. J Neurosci 29: 6472–6478, 2009. 799 

Diedrichsen J. Optimal task-dependent changes of bimanual feedback control and 800 

adaptation. Curr Biol CB 17: 1675–1679, 2007. 801 

Diedrichsen J, Kornysheva K. Motor skill learning between selection and execution. Trends 802 

Cogn Sci 19: 227–233, 2015. 803 

Diedrichsen J, Shadmehr R, Ivry RB. The coordination of movement: optimal feedback 804 

control and beyond. Trends Cogn Sci 14: 31–39, 2010. 805 

Dimitriou M, Wolpert DM, Franklin DW. The Temporal Evolution of Feedback Gains 806 

Rapidly Update to Task Demands. J Neurosci 33: 10898–10909, 2013. 807 

Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian Data Analysis, Second Edition. 2nd 808 

edition. Boca Raton, Fla: Chapman and Hall/CRC, 2003. 809 

Karni A, Meyer G, Jezzard P, Adams MM, Turner R, Ungerleider LG. Functional MRI 810 

evidence for adult motor cortex plasticity during motor skill learning. Nature 377: 811 

155–8, 1995. 812 

Karni A, Meyer G, Rey-Hipolito C, Jezzard P, Adams M, Turner R, Ungerleider L. The 813 

acquisition of skilled motor performance : Fast and slow experience-driven changes in 814 

primary motor cortex. Proc Natl Acad Sci U S A 95: 861–868, 1998. 815 

Kwon WH, Han SH. Receding Horizon Control: Model Predictive Control for State Models 816 

[Online]. Springer-Verlag.//www.springer.com/la/book/9781846280245 [21 Mar. 817 

2018]. 818 

Momennejad I, Russek EM, Cheong JH, Botvinick MM, Daw ND, Gershman SJ. The 819 

successor representation in human reinforcement learning. Nat Hum Behav 1: 680–820 

692, 2017. 821 

Petersen SE, Mier H van, Fiez JA, Raichle ME. The effects of practice on the functional 822 

anatomy of task performance. Proc Natl Acad Sci 95: 853–860, 1998. 823 

Poulton EC. Tracking Skill and Manual Control. Academic Press, Incorporated, New York, 824 

N.Y., 1974. 825 

Ramkumar P, Acuna DE, Berniker M, Grafton ST, Turner RS, Kording KP. Chunking 826 

as the result of an efficiency computation trade-off. Nat Commun 7: 12176, 2016. 827 

Shadmehr R, Smith MA, Krakauer JW. Error Correction, Sensory Prediction, and 828 

Adaptation in Motor Control. Annu Rev Neurosci 33: 89–108, 2010. 829 

Shmuelof L, Krakauer JW, Mazzoni P. How is a motor skill learned? Change and 830 

invariance at the levels of task success and trajectory control. J Neurophysiol 578–831 

594, 2012. 832 

Shmuelof L, Yang J, Caffo B, Mazzoni P, Krakauer JW. The neural correlates of learned 833 

motor acuity. J Neurophysiol 112: 971–980, 2014. 834 

Todorov E, Jordan MI. Optimal feedback control as a theory of motor coordination. Nat 835 

Neurosci 5: 1226–1235, 2002. 836 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 4, 2020. ; https://doi.org/10.1101/505198doi: bioRxiv preprint 

https://doi.org/10.1101/505198
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Page 41 of 41 

 

Walker MP, Brakefield T, Morgan A, Hobson JA, Stickgold R. Practice with Sleep 837 

Makes Perfect : Sleep-Dependent Motor Skill Learning. Neuron 35: 205–211, 2002. 838 

Waters-Metenier S, Husain M, Wiestler T, Diedrichsen J. Bihemispheric Transcranial 839 

Direct Current Stimulation Enhances Effector-Independent Representations of Motor 840 

Synergy and Sequence Learning. J Neurosci 34: 1037–1050, 2014. 841 

Wolpert DM, Diedrichsen J, Flanagan JR. Principles of sensorimotor learning. Nat Rev 842 

Neurosci 12: 739–51, 2011. 843 

Wong AL, Lindquist MA, Haith AM, Krakauer JW. Explicit knowledge enhances motor 844 

vigor and performance: motivation versus practice in sequence tasks. J Neurophysiol 845 

114: 219–232, 2015. 846 

 847 

 848 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 4, 2020. ; https://doi.org/10.1101/505198doi: bioRxiv preprint 

https://doi.org/10.1101/505198
http://creativecommons.org/licenses/by-nc-nd/4.0/

