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Abstract 
Factor analysis is among the most-widely used methods for dimensionality reduction in 
genome biology, with applications from personalized health to single-cell studies. Existing 
implementations of factor analysis assume independence of the observed samples, an 
assumption that fails in emerging spatio-temporal profiling studies. Here, we present 
MEFISTO, a flexible and versatile toolbox for modelling high-dimensional data when spatial 
or temporal dependencies between the samples are known. MEFISTO maintains the 
established benefits of factor analysis for multi-modal data, but enables performing spatio-
temporally informed dimensionality reduction, interpolation and separation of smooth from 
non-smooth patterns of variation. Moreover, MEFISTO can integrate multiple related datasets 
by simultaneously identifying and aligning the underlying patterns of variation in a data-driven 
manner. We demonstrate MEFISTO through applications to an evolutionary atlas of 
mammalian organ development, where the model reveals conserved and evolutionary 
diverged developmental programs. In applications to a longitudinal microbiome study in 
infants, birth mode and diet were highlighted as major causes for heterogeneity in the 
temporally-resolved microbiome over the first years of life. Finally, we demonstrate that the 
proposed framework can also be applied to spatially resolved transcriptomics.   
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Main text 

Introduction 
Factor analysis is a first-line approach for the analysis of high-throughput sequencing data 1–

4, and is increasingly applied in the context of multi-omics datasets 5–8. Given the popularity of 
factor analysis, this model class has undergone an evolution from conventional principal 
component analysis to sparse generalizations 4, including non-negativity constraints 2,3,9. Most 
recently, factor analysis has been extended to model structured datasets that consist of 
multiple data modalities or sample groups 7,8. At the same time, the complexity of multi-omics 
designs is constantly increasing, where in particular strategies for assaying multiple omics 
layers across temporal or spatial trajectories have gained relevance.  However, existing factor 
analysis methods do not account for the resulting spatio-temporal dependencies between 
samples. Prominent domains where spatio-temporal designs are employed include 
developmental biology 10, longitudinal profiling in personalized medicine 11 or spatially resolved 
omics 12. Such designs and datasets pose new analytical challenges and questions, including 
(1) accounting for spatio-temporal dependencies across samples, which are no longer 
invariant to permutations, (2) dealing with imperfect alignment between samples from different 
data modalities and missing data, (3) identification of inter-individual heterogeneities of the 
underlying temporal and/or spatial functional modules and (4) distinguishing spatio-temporal 
variation from non-smooth patterns of variations. In addition, spatio-temporally informed 
dimensionality reduction can provide for more accurate and interpretable recovery of the 
underlying patterns, by leveraging known spatio-temporal dependencies rather than solely 
relying on feature correlations. To this end, we propose MEFISTO, a flexible and versatile 
method for addressing these challenges, while maintaining the benefits of previous factor 
analysis models for multi-modal data. 
 
 

Results 
MEFISTO takes as input a dataset that contains measurements from one or more (possibly 
distinct) feature sets (e.g. different omics) - referred to as views in the following - as well as 
one or multiple sets of samples (e.g. from different experimental conditions, species or 
individuals) - referred to as groups in the following. In addition to this high-dimensional data, 
each sample is further characterized by a continuous covariate such as a one-dimensional 
temporal or two-dimensional spatial coordinate. MEFISTO factorizes the input data into latent 
factors, similar to conventional factor analysis, thereby recovering a joint embedding of the 
samples in a low-dimensional latent space. At the same time, the model yields a sparse and 
thus interpretable mapping between the latent factors and the observed features in terms of 
view-specific weights.   
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Fig. 1 Method overview  
(A) MEFISTO takes as input a possibly incomplete tensor-like high dimensional data set that can comprise multiple views (e.g. 
omics, tissues, genomic regions) measured in multiple sample groups (e.g. individuals, biological conditions, species) at multiple 
values of a covariate (e.g. time). Each element of this tensor is a high-dimensional feature vector of possibly different dimensions 
and non-matching features across views. The covariates can be misaligned across groups and arbitrary combinations of the 
dimensions can be missing. While accounting for the covariate, MEFISTO decomposes the high-dimensional input data into a 
set of smooth latent factors that capture temporal variation as well as latent factors that capture variation independent of the 
temporal axis. The latent factors can display arbitrary dependencies between groups including shared or group-specific factors. 
Sparse view-specific weights link a latent factor to individual views and features in the measurements. If covariates do not 
correspond between sample groups, MEFISTO infers a common scale by performing a simultaneous alignment and 
decomposition. Once learnt, the functional approach of MEFISTO enables novel downstream analyses, including interpolation or 
extrapolation and identification of relationships between sample groups or outliers per factor.  
(B) Illustration of a decomposition using MEFISTO compared to sparse factor analysis that is not aware of time (MOFA+) in a 
setting with a non-smooth factor (Factor 1), a smooth, non-shared factor (Factor 2) and a smooth, shared factor (Factor 3).  
(C, D) Comparison of MEFISTO (time-aware) to sparse factor analysis (non-aware, MOFA+) on simulated data in terms of 
recovery of the latent space (C) and mean squared error (MSE) of imputation for missing values (D) for varying number of time 
points, groups and level of missingness. The dashed line indicates the base parameters (see Methods) used for simulation.  
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Critically, and unlike existing methods, MEFISTO incorporates the continuous covariate to 
account for spatio-temporal dependencies between samples, which allows for identifying both 
spatio-temporally smooth factors or non-smooth factors that are independent of the continuous 
covariate (Figure 1A,B). Technically, MEFISTO combines factor analysis with the flexible non-
parametric framework of Gaussian processes 13 to model spatio-temporal dependencies in the 
latent space, where each factor is governed by a continuous latent process to a degree 
depending on the factor’s smoothness (see Supp. Methods).  
 
For experimental designs with repeated spatio-temporal measurements, e.g. longitudinal 
studies involving multiple individuals, species or experimental conditions (termed groups in 
general), MEFISTO furthermore models and accounts for heterogeneity across these groups 
of samples, thereby inferring the extent to which spatio-temporal patterns are shared across 
groups (referred to as sharedness, Figure 1B). To cope with imperfect alignment across 
groups, MEFISTO comes with an integrated data-driven alignment step of the temporal 
covariate, e.g. aligning developmental stages between different species with unclear 
correspondences (see Supp. Methods).  
 
To enable efficient inference in large datasets, MEFISTO leverages sparse Gaussian process 
approximations 14, as well as regular designs with a common spatio-temporal sampling across 
groups 15 (see Supp. Methods). Once fitted, the model enables a broad range of downstream 
analyses (Figure 1A), including imputation as well as interpolation and extrapolation along 
the spatio-temporal axis, identification of molecular signatures underlying the latent factors 
using enrichment analysis as well as clustering and outlier identification on the level of 
samples, e.g. the measurement at a single time point, as well as groups of samples, e.g. an 
individual with distinct temporal trajectories. 
 
 
Validation using simulated data 
To validate MEFISTO, we simulated time-resolved multi-modal data drawn from the 
generative model with multiple views and sample groups (Methods). We evaluated MEFISTO 
in terms of recovery of the latent factors, imputation of missing values in the high-dimensional 
input data, as well as recovery of the smoothness and sharedness of each factor. For 
comparison we also considered MOFA+ 8, a related multi-modal factor analysis method that 
however does not take the temporal covariate into account. Over a range of simulated settings, 
we observed improved recovery of the latent space and better imputation of missing data when 
accounting for the spatio-temporal dependencies (Figure 1C,D). At the same time, MEFISTO 
correctly determined the smoothness of the factors, allowing to distinguish temporal variation 
from non-temporal variation (Supp. Fig. 1A). In addition, the model correctly identified 
relationships of the groups, distinguishing group-specific and shared factors in a continuous 
manner (Supp. Fig. 1B). MEFISTO was robust to misaligned time points across the different 
sample groups, learning the correct alignment in a data-driven manner (Supp. Fig. 2, 3). 
Finally, we showed how the sparse Gaussian processes approximations employed by 
MEFISTO can improve its computational complexity, enabling applications to larger sample 
sizes, while maintaining accurate inference (Supp. Fig. 4). 
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Application to an evolutionary atlas of mammalian organ development identifies 
conserved and diverged developmental programs 
Next, we applied MEFISTO to a comprehensive evolutionary atlas of mammalian organ 
development 10 (Figure 2A), comprising gene expression of 5 species (groups) profiled across 
5 organs (views) along development, starting from early organogenesis to adulthood (14 - 23 
time points per species). MEFISTO identified 5 robust latent factors (Supp. Fig. 5), which 
explained 35 to 85% of the transcriptome variation for different organs (Figure 2B). In addition 
to dealing with missing time points for several organs and species (Supp. Fig. 6), MEFISTO 
aligned the developmental time points of the samples (Figure 2C, Supp. Fig. 7, 8), thereby 
identifying meaningful correspondences of the developmental stages between species (Supp. 
Fig. 9). All five factors showed a high degree of smoothness  (Figure 2D), which is consistent 
with most variation in this dataset being driven by developmental programs. However, the 
sharedness across species varied considerably between the factors (Figure 2D). The first 
three factors displayed similar temporal profiles across all species, indicating that they 
captured conserved development programs. Factor 1 explained variation in all organs (Figure 
2B) and captured expression dynamics with a gradual change along development. To further 
characterize the underlying developmental programs and their molecular drivers, we 
investigated the weights of the factor. This revealed shared molecular signatures across 
organs that were linked to broad developmental processes and proliferation, e.g. cell cycle 
related pathways (Supp. Fig. 10A). Among the genes identified, there were key modulators 
of development such as IGF2BP1, SOX11 or KLF9 16–18, which are ubiquitously expressed in 
all organs and display conserved expression dynamics across species (Supp. Fig. 10B,C). At 
the same time, the weights of Factor 1 also revealed conserved but organ-specific signatures 
that vary in line with the major functions of the respective organ, e.g. upregulation of GFAP 
along Factor 1 in brain tissues of all species (Supp. Fig 11)19. Factor 2 was also active in 
multiple organs (Figure 2B) and captured developmental programs with onset in intermediate 
development, for example as characterized by a transient upregulation of HEMGN during 
development in the liver along Factor 2 in all species (Supp. Fig. 12)20. Factor 3 captured 
conserved gene expression signatures specific to the development of testis with a sharp 
transition in gene expression with the onset of male meiosis (Figure 2B, D, Supp. Fig. 13). In 
addition to these shared factors, MEFISTO identified two factors that explained variation 
specific to some of the species (human and opossum, Figure 2D). Here, MEFISTO identified 
a clear clustering that separated either human (Factor 4) or opossum (Factor 5) from the other 
species, which is consistent with their larger evolutionary distances to the remaining species 
(Figure 2E). Interestingly, these two affect gene expression programs in all organs (Figure 
2B, Supp. Fig. 14, 15). Based on the weights of these factors MEFISTO provides a direct 
means to identify genes for each organ that have undergone trajectory changes along 
evolution. To illustrate this, we compared the weights of these factors to previously identified 
genes with distinct developmental expression trajectories that evolved on the branch 
separating opossum or human from the other species and found a clear enrichment for high 
weights on the factors (Supp. Fig. 16, 17). Finally, we considered this dataset to further assess 
the applicability of MEFISTO to settings with pronounced missingness: We masked data for 
random species - timepoint combinations in some or all of the organs, and observed an 
accurate imputation by MEFISTO and the ability to interpolate time points with completely 
missing data (Supp. Fig 18). 
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Figure 2: Application of MEFISTO to an evolutionary gene expression atlas across development 
(A) Illustration of the input data and model setup, covering gene expression data from 5 species (groups) and 5 organs (views) 
across 14-23 developmental stages.  
(B) Variance explained in each species and organ per factor (bottom) and in total (top) 
(C) Scatter plot of first two latent factors with samples colored by the inferred common developmental time 
(D) Learnt latent factors are plotted against the inferred common developmental time. Points represent individual factor values, 
line and ribbons provide the mean and variance of the underlying latent process that generates the factor values. Bars on top 
indicate the smoothness along development and sharedness across species of the factor. 
(E) Learnt correlation structure of the species for the latent factor shown on top in (D) 
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Application to sparse longitudinal microbiome data  
As a second use case, we applied MEFISTO to longitudinal samples of children’s microbiome 
after birth 21,22. As common in microbiome data and longitudinal studies, this dataset is 
extremely sparse with 97.1 - 99.8% of zero or missing values and up to 17 missing time points 
per child  (out of 18, with an average of 4 time points missing). Nevertheless, MEFISTO 
identified distinct temporal trajectories depending on the birth mode (Factor 1, Figure 3A) and 
(to a lesser extent) the diet of the children (Factor 2, Figure 3B). Jointly, these two factors 
explained between 8 and 56% of variation in each child. While at the sample level clustering 
is mainly driven by time (Figure  3C), at the individual level Factor 1 shows a clustering 
depending on the delivery mode of the child (Figure  3D). Factor 2 does not show a clear 
clustering on the individual-level (Figure 3D). Microbial communities that are associated with 
Factor 1 reveal an enrichment of several bacteroid species in children with vaginal delivery as 
previously reported 21,22 (Figure 3E). 
 
 
Application to spatial transcriptomics 
Last, we demonstrate the applicability of the method to spatial data by applying it to a spatial 
transcriptomics data set of anterior part of the mouse brain 23, where it identified major 
anatomical structures and its associated markers such as Ttr as a marker of the choroid plexus 
(Figure 4), without the need of single-cell reference data. In addition, MEFISTO provides an 
integrated measure of the smoothness of each pattern across space (Figure 4A). Making use 
of sparse inference, time and memory requirements could be greatly reduced compared to full 
inference (Supp. Fig 19).  
 
 

Conclusions 
In summary, we here presented MEFISTO, a computational framework to open up multi-modal 
factor analysis models for applications to temporal or spatially-resolved data. We found that 
the ability to explicitly account for spatial or temporal dependencies is especially helpful in 
settings where data are sparse with many missing values in the high-dimensional 
measurements. Additionally, MEFISTO adds substantial value in cases where extra- or 
interpolation of temporal or spatial trajectories is required and/or when the temporal covariate 
and the associated measures are imperfectly aligned  across data sets. We focused on an 
application of MEFISTO to temporal and longitudinal studies, such as the developmental time 
courses. These designs are rapidly gaining relevance both in basic biology and biomedicine. 
However, the model is also readily applicable to spatial domains and settings, as illustrated in 
the application to visium gene expression arrays. Future developments could focus on 
extensions to enable spatial alignment across datasets,  as well as the deployment of specific 
noise models for example tailored for single-molecule data. In addition to time or space, other 
continuous covariates could be used to inform the factorization both for the factor values as 
well as their weights, e.g. using continuous clinical markers instead of time or known 
relationships in the feature space such as genomic positions in methylation or ATACseq data.  
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Figure 3. Application to a longitudinal microbiome study following children after birth. 
(A, B) Factor values (y-axis) across time (x-axis) colored by delivery mode (A)  and predominant feeding mode (B), termed diet; 
bd denotes breast milk-dominant, fd denotes formula-dominant. Dots represent inferred factor values per baby, the line shows 
the average across all samples in the respective category. 
(C) Scatterplot of samples on Factor 1 and 2 colored by delivery mode, diet and month of life 
(D) Inferred baby-baby correlation matrix for Factor 1 (left) and 2 (right) 
(E) Genus with the highest absolute mean weight for Factor 1 (left) and Factor 2 (right). Bars show the mean across the weights 
of all species in this genus, dots show the weights of individual species. 
 

 
Figure 4. Application to spatial transcriptomics data.  
(A) Recovered factor values across space. Bars below indicate smoothness per factor. 
(B) Genes with highest absolute weight per factor 
(C) Normalized gene expression of genes with highest absolute weight per factor  
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Methods  
 
MEFISTO model 
MEFISTO is a probabilistic model for factor analysis that accounts for continuous side 
information during inference of the latent space. To achieve this, MEFISTO combines multi-
modal sparse factor analysis frameworks 8 with a functional view on the latent factors based 
on Gaussian processes and additionally provides alignment functionalities and an explicit 
model of inter-group heterogeneity. As input MEFISTO expects a collection of matrices, 
where each matrix 𝒀𝒎,𝒈 corresponds to a group 𝑔 = 1,… , 𝐺 and view 𝑚 = 1,… ,𝑀 with 𝑁- 
samples in rows and 𝐷/ features in columns. Each sample is further characterized by a 
covariate 𝑪𝒈 ∈ ℝ3×56  that represents for example temporal or spatial coordinates. The 
matrices are jointly decomposed as  
 

𝒀𝒎,𝒈 = 	𝒁𝒈𝑾𝒎𝑻 +	𝜺𝒎,𝒈 𝑚 = 1,… ,𝑀, 𝑔 = 1,… , 𝐺 
 

where 𝒁𝒈 ∈ ℝ56×=contains the K latent factors and 𝑾𝒎 ∈ ℝ>?×=	their weights. A feature- 
and view-wise sparsity prior is employed for 𝑾𝒎 as in previous multi-modal factor analyses 
models 7,8.  Unlike existing factor models, however, the model additionally accounts for the 
covariate 𝑪𝒈. Each factor value 𝑧AB

-  is modelled as realization of a Gaussian process  
  

𝑧AB
- = 𝑓B(𝒄𝒏

𝒈) +	𝜂AB
-  with 𝑓B	~	𝐺𝑃(0, 𝜅B), 

 
where the covariance function 𝜅B models the relationship between groups as well as along 
the covariate, i.e.  
 

𝜅BM𝒄𝒏
𝒈, 𝒄𝒍𝒉P = 	 𝜅BQ(𝑔, ℎ)	𝜅B3(𝒄𝒏, 𝒄𝒍).  

 
The first term in this covariance function captures the covariance of the discrete sample 
groups g,h, while the second term describes the covariance along values of the covariate, 
which provide a continuous characterization of each sample, e.g. its temporal or spatial 
location. We choose a low-rank covariance function for 𝜅G

 and a squared exponential 
covariance function for 𝜅C, i.e. 

 
𝑲𝒌
𝑮 = V𝜅BQ(𝑔, ℎ)W-,X

= 𝒙𝒌𝒙𝒌𝑻 + 𝜎B[𝑰  𝒙𝒌 ∈ ℝQ×] 

	𝜅B3(𝒄𝒏, 𝒄𝒍) = 𝑠B exp b−
‖𝒄𝒏 − 𝒄𝒍‖[[

2𝑙B[
g 

𝜂AB
- ~	N(0, 1 − 𝑠B)  

 

The hyperparameters 𝒙𝒌, 𝜎B	𝑙B, 𝑠B determine the group-group covariance structure (𝒙𝒌, 𝜎B) as 
well as the smoothness of the latent factors along the covariate (𝑙B, 𝑠B). In particular, the 
scale parameter 𝑠B determines the relative smooth versus non-smooth variation per factor, 
and the lengthscale parameter 𝑙B the distance over which correlation decays along the 
covariate, e.g. in time or space. Details on the model specification, illustrations of the 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 5, 2020. ; https://doi.org/10.1101/2020.11.03.366674doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.03.366674
http://creativecommons.org/licenses/by-nd/4.0/


 

 10 

resulting covariance structures and a plate diagram are provided in Supp. Methods, 
Section 2. 
 
Inference 
To infer the unobserved model components as well as the hyperparameters of the Gaussian 
process, MEFISTO makes use of variational inference combined with optimization of the 
evidence lower bound in terms of the hyperparameters of the Gaussian processes. Details 
on the inference are described in Supp. Methods, Section 3, where  the specific updates of 
the inference algorithm are described. For large sample sizes, inference of the covariate 
kernel can be based on a subset of the original covariates chosen on a regular grid to 
reduce computational complexity (see Supp. Methods, Section 4). In addition, if the 
covariance matrix of the latent processes can be decomposed in terms of a Kronecker 
product, i.e. as 𝑲𝑮⨂𝑲𝑪, MEFISTO leverages this structure for accelerated inference based 
on spectral decomposition of the group- and covariate covariance (see Supp. Methods, 
Section 3).  
 
Alignment 
If temporal correspondences between different groups are imperfect, a non-linear alignment 
between sample groups is learnt based on dynamic time warping 24 in the latent space. To 
reduce noise prior to the alignment, MEFISTO simultaneously decomposes the input data 
and aligns the covariate. This is implemented by interleaving the updates of the model 
components with an optimization step, where a warping curve is found that minimizes the 
distance of each group to a reference group in the current latent space. The alignment can 
be partial, i.e. have different end or start points between groups using an asymmetric step 
pattern in the time warping algorithm, or provide a global alignment using a symmetric step 
pattern in the time warping algorithm. Details are described in Supp. Methods, Section 5.  
 
Downstream analyses 
Once the model is trained, the Gaussian process framework enables to interpolate or 
extrapolate the latent factors to unseen samples, groups or views as well as provide 
measures of uncertainty. Given a set of new covariate values 𝒄∗, MEFISTO makes 
predictions of the corresponding latent factor values 𝒛∗ based on the predictive distribution 
𝑝(𝒛∗|𝒀) (see Supp. Methods, Section 6). Missing values of the considered features are 
then imputed from the model equation as in previous models 7,8. Furthermore, the 
hyperparameters of the model give insights into the smoothness of a factor (𝑠B, between 0 
(non-smooth) and 1 (smooth)) and the group relationships specific to a latent factor (𝑲𝑮) that 
can be used to cluster the groups or identify outliers. An overall sharedness score per factor 
is calculated by the mean absolute distance to the identity covariance matrix in the off-
diagonal elements. 
 
Related methods 
MEFISTO is related to previous matrix factorization and tensor decomposition methods, which 
however mostly ignore temporal information 1–8 , use it only for pre-processing 25 or interpret it 
post-hoc 22. Those who incorporate such information do not allow multiple views (e.g. omics) 
26–28 or are restricted to the same features in each view 29. In addition, sparsity constraints are 
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not employed in these models which enhance interpretability and identifiability of the model. 
Besides linear methods, non-linear approaches have made use of continuous side-
information, e.g. in the context of variational autoencoders 30,31 or recurrent neural networks 
32. In particular, all of the above methods are incapable of handling non-aligned time courses 
across data sets (apart from Duncker & Sahani 29) and cannot capture heterogeneity across 
sample groups in the latent factors. For a detailed overview on related methods we refer to 
Supp. Methods, Table 1. 
 
Simulations 
Data was simulated from the generative model varying the number of time points per group in 
a [0,1]-interval, noise levels, number of groups and fraction of missing values. Ten 
independent data sets were simulated for each setting from the generative model with three 
latent processes, having scale parameters of 1, 0.6, 0 and lengthscales of 0.2, 0.1, 0. For the 
first two (smooth and partially smooth) factors, one was randomly selected to be shared across 
all groups, while for the other factor a correlation matrix between groups of rank 1 was 
simulated randomly based on a uniformly distributed vector. MEFISTO was compared to 
MOFA+ 8 in terms of factor recovery given by the correlation of the inferred and simulated 
factor values as well as in terms of the mean squared error between imputed and ground-truth 
values for the masked values in the high-dimensional input data. Base settings for all non-
varied parameters are 20 time points per group, five groups, four views with 500 features each 
and a noise variance of 1. 20% of randomly selected time points were masked per group and 
view, whereof 50% were missing in all views. To assess the alignment capabilities of the 
model, data was simulated with the same setup for 3 groups and covariates were transformed 
before training by a linear mapping (h(t) = 0.4t +0.3), a non-linear mapping (h(t) = exp(t)) and 
the identity in each group, respectively. These transformed covariates were passed to the 
model and the learnt alignment was compared to the ground-truth warping functions. To 
assess the scalability in the number of timepoints using sparse Gaussian processes, data was 
simulated from one group and with the same base parameters as above. 
 
Evo-devo data 
Count data was obtained from Cardoso-Moreira et al 10, corrected for library size and 
normalised using variance stabilizing transformation provided by DESeq2 33. Genes were 
subsetted to orthologous genes as given in Cardoso-Moreira et al 10. Following the trajectory 
analysis of the original publication, we focused on 5 species, namely human, opossum, 
mouse, rat and rabbit, and 5 organs, namely brain, cerebellum, heart, liver and testis. In total, 
this resulted in a data set of 5 groups (species) and 5 views (organs) with 7,696 features each. 
The number of time points for each species varied between 14 and 23. As developmental 
correspondences were unclear we used a numeric ordering within each species ranging from 
1 to the maximal number of time points in this species as input for MEFISTO and let the model 
infer the correspondences of time points between species. Stability analysis of the latent 
factors was performed by re-training the model on a down-sampled data set, where random 
selections of 1-5 time points were repeatedly masked in each organ-species combination. 
Gene set enrichment analysis was performed based on the reactome gene sets 34. To assess 
the imputation performance gene expression data in 2-20 randomly selected species - time 
combinations (out of a total of 82) were masked in 3, 4  or all organs and the model was 
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retrained on this data as described above. The experiment was repeated ten times and the 
mean squared error was calculated on all masked values. 
 
Microbiome 
Data was obtained from ‘Code Ocean’ capsule: https://doi.org/10.24433/CO.5938114.v1 and 
processed using a robust-centered log ratio and filtering steps as provided by Martino et al 22. 
This resulted in a total of 43 babies (groups) with up to 18 time points (months) and 3,236 
features that were provided as input to MEFISTO using month of life as covariate. All zero 
values were treated as missing following previous work 22. 
  
Spatial transcriptomics 
Data was obtained from the SeuratData R package as stxBrain.anterior1, normalized and 
subset to the 2,000 most variable features using NormalizeData and FindVariableFeatures 
functions provided by Seurat 23. Normalized expression values at all 2,696 spots were 
provided to MEFISTO with tissue coordinates as 2-dimensional covariate. For training of 
MEFISTO 1,000 inducing points were selected on a regular grid in space. For comparison a 
model with 500 inducing points and one with all spots was trained and compared in terms of 
their inferred factors. 
 
Data availability 
The evodevo data was obtained from Cardoso-Moreira et al 10 and can be accessed from 
ArrayExpress with codes E-MTAB-6782 (rabbit), E-MTAB-6798 (mouse), E-MTAB-6811 (rat), 
E-MTAB-6814 (human) and E-MTAB-6833 (opossum) (https://www.ebi.ac.uk/arrayexpress/). 
The microbiome data is based on Bokulich et al 21 and can be found on Qiita 
(http://qiita.microbio.me), processed data was obtained from the ‘Code Ocean’ capsule: 
https://doi.org/10.24433/CO.5938114.v1 provided by Martino et al 22. The spatial 
transcriptomics data set was obtained from the SeuratData package under the name 
stxBrain.anterior1.  
 
Code availability  
MEFISTO is implemented as part of the MOFA framework 7,8 which is available at 
https://github.com/bioFAM/MOFA2. Installation instructions and tutorials can be found at 
https://biofam.github.io/MOFA2/MEFISTO. Code to reproduce all figures is available at 
https://github.com/bioFAM/MEFISTO_analyses. In addition, we provide vignettes on the main 
applications as part of the MEFISTO tutorials on https://biofam.github.io/MOFA2/MEFISTO.  
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