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ABSTRACT 

The COVID-19 pandemic has revealed a range of disease phenotypes in infected patients with 

asymptomatic, mild or severe clinical outcomes, but the mechanisms that determine such 

variable outcomes remain unresolved. In this study, we identified immunodominant CD8 T-cell 

epitopes in the RBD and the non-RBD domain of the spike antigen using a novel TCR-binding 

algorithm. A selected pool of 11 predicted epitopes induced robust T-cell activation in 

unexposed donors demonstrating pre-existing CD4 and CD8 T-cell immunity to SARS-CoV-2 

antigen. The T-cell reactivity to the predicted epitopes was higher than the Spike-S1 and S2 

peptide pools containing 157 and 158 peptides both in unexposed donors and in convalescent 

patients suggesting that strong T-cell epitopes are likely to be missed when larger peptide pools 

are used in assays. A key finding of our study is that pre-existing T-cell immunity to SARS-CoV-

2 is contributed by TCRs that recognize common viral antigens such as Influenza and CMV, 

even though the viral epitopes lack sequence identity to the SARS-CoV-2 epitopes. This finding 

is in contrast to multiple published studies in which pre-existing T-cell immunity is suggested to 

arise from shared epitopes between SARS-CoV-2 and other common cold-causing 

coronaviruses. Whether the presence of pre-existing T-cell immunity provides protection against 

COVID-19 or contributes to severe disease phenotype remains to be determined in a larger 

cohort. However, our findings raise the expectation that a significant majority of the global 

population is likely to have SARS-CoV-2 reactive T-cells because of prior exposure to flu and 

CMV viruses, in addition to common cold-causing coronaviruses.  
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INTRODUCTION 

Uncovering the immunological responses to COVID-19 infection will help in designing and 

developing next-generation therapies and manage the treatment of critical COVID-19 patients. 

Many host factors associated with mild or severe disease symptoms have been reported. For 

example, leukopenia, exhausted CD8 T-cells, higher levels of TH2 cytokines in serum, a high 

titer of neutralizing antibodies, blunted interferon response, dysregulation of the myeloid cell 

compartment, activated NK cells, and the size of the naïve T-cell compartment is associated 

with critically ill patients (1-4). This wide range of variable factors shares a common 

immunological underpinning – that of a systemic dysregulation in immune homeostasis due to 

the failure of the host immune system to clear the virus during the early stages of the infection 

(5). Many studies have shown that clearance of respiratory viruses requires CD8 T-cell 

immunity (6). A delay in the activation of CD8 T-cells and a lack of early IFN- production lead to 

an increase in viral load triggering overactivation of the innate and the adaptive arm of the 

immune system leading to a loss of immune homeostasis resulting in severe disease 

phenotype, including death. Therefore, an early wave of strong CD8 T-cell response may delay 

viral titer build-up, allowing rapid clearance of the virus by the immune system without 

perturbing immune homeostasis. 

Healthy humans not exposed to COVID-19 show pre-existing CD4 and CD8 T-cell immunity to 

SARS-CoV-2 antigens (7-9). The pre-existing immunity to CD4 and CD8 T-cells was detected 

against structural and non-structural SARS-CoV-2 proteins by overlapping 15-mer peptide 

pools. The existence of a pool of SARS-CoV-2-reactive T-cells in unexposed individuals is 

thought to arise from coronaviruses that cause common cold (8, 10). Whether pre-existing 

immunity provides any protection to SARS-CoV-2 infection, or contribute to a faster recovery 

from infection remains speculative. Besides, it is unclear whether a pre-existing immunity, 

involving either CD4 or CD8 T-cells, or both, is required for maximal protection. Identifying 

robust pre-existing immunity against SARS-CoV-2 in the healthy population can be used as a 

measure to assess the mode of recovery and also viral spread in the global population.  

In this study, we identified strong CD8 T-cell-activating epitopes from SARS-CoV-2 spike protein 

by a combination of epitope prediction and T-cell activation assays in healthy donors unexposed 

to SARS-CoV-2. The rationale for identifying epitopes that favor CD8 T-cell activation was two-
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fold. First, robust CD8 T-cell activating epitopes can be formulated as second-generation 

vaccines for short and long-term protection against viral infection. Second, detection of pre-

existing immunity in healthy donors using epitopes that favor CD8 T-cell activation may provide 

a framework to understand the complex immune responses observed in clinical settings. It may 

also shed light on the differences in morbidity and mortality in different population groups across 

the globe.  

We developed a proprietary algorithm OncoPeptVAC to predict CD8 T-cell activating epitopes 

across the SARS-CoV-2 proteome. OncoPeptVAC predicts binding of the HLA-peptide complex 

to the T-cell receptor (TCR). We selected a cocktail of eleven 15-mer peptides with a broad 

class-I and class-II coverage and favorable TCR engagement predicted by the algorithm. The 

cocktail of peptides was tested for T-cell activation in healthy donors from the USA and India 

unexposed to COVID-19. We observed higher CD8 T-cell activation by the 11-peptide pool 

compared to the overlapping 15-mer peptide pools from the spike-S1 and S2 proteins. 

Homology analysis of the selected peptides with other coronavirus spike proteins indicated a 

lack of significant amino acid identity with any of the 11 peptides, suggesting engagement of 

one or more peptides in the pool to cross-reactive TCRs from other viruses, not particularly from 

a coronavirus. Bulk and single-cell TCR analysis revealed expanded clonotypes recognizing 

epitopes from CMV, Influenza-A, and other viruses to which most of us are exposed. Taken 

together, our findings support that strong pre-existing CD8 T-cell immunity in unexposed donors 

is contributed by cross-reactive TCRs from other viruses. Significantly, we discovered multiple 

immunodominant epitopes in our predicted pool of peptides that favored CD8 T-cell activation. 

Finally, we show that our cocktail of 11-peptides induced a robust immune response in 

convalescent patients demonstrating that these peptides are recognized by infected patients. 

Taken together, our study uncovered strong pre-existing CD8 T-cell immunity against SARS-

CoV-2 using a small set of 11 epitopes that engaged cross-reactive TCRs recognizing epitopes 

from other viruses, not necessarily common cold viruses belonging to the coronavirus family as 

hypothesized by other studies. Additionally, our findings provide a basis for the generation of 

herd immunity against COVID-19 without prior SARS-CoV-2 infection. 
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RESULTS 

Prediction of immunogenic epitopes favoring CD8 T-cell activation 

A deep CNN model OncoPeptVAC was implemented to predict the immunogenicity of the 

peptide-based only on the peptide and HLA sequences. A total of 8,870 immunogenic and non-

immunogenic peptide-HLA pairs were obtained from the IEDB (11). The BLOSUM encoding 

was used to represent the peptide and HLA molecules. The BLOSUM substitution scores 

encode evolutionary and physicochemical properties of the amino acids (12). In addition, 

hydrophobicity indices and predicted HLA binding scores were also used to represent the 

peptide and HLA sequences.  

OncoPeptVAC used the CNN model with multiple 2D convolutional layers combined with max-

pooling to confirm the additive effect of different input features on the performance of the model. 

All the model versions were trained using 5-fold cross-validation. The AUCs of the final model 

was 0.87 based on a blind test dataset (Figure 1A). The prediction algorithm showed a 

sensitivity of 0.64 and a specificity of 0.84 based on the score cut-off of 0.2 (Figure 1B). By 

increasing the cut-off score to 0.5, the specificity could be further increased to 96.8 with a 

concomitant loss in sensitivity.  OncoPeptVAC reduced the number of false positives 

significantly compared to the HLA-binding rank (Compare Figures 1B and C) reducing the 

number of epitopes that needed to be screened in a T-cell activation assay by 30% to identify 

true immunogenic epitopes. For example, to identify 50% (119 out of 238) of the immunogenic 

peptide-HLA pairs present in the blind test dataset, 256 top peptide-HLA pairs from 

OncoPeptVAC prediction needed to be screened, compared to 753 top peptide-HLA pairs 

predicted by netMHCpan-4.0.  

The prediction algorithm was applied to the SARS-CoV-2 proteome and screened against 23 

class-I HLAs covering over 98% of the world population. A schematic of the in silico screening 

approach is shown in Figure 1D. Briefly, 9-11-mer peptides from the SARS-CoV-2 proteome 

were screened for TCR-binding against 23 HLA, and peptides with OncoPeptVAC score >0.2 

were analyzed for class-I HLA binding. Peptide-HLA pairs with a high predicted binding affinity 

(<1 percentile rank) were selected, their length extended to 15-mer and screened for class-II 

HLA binding. Peptides with favorable TCR binding and class-I/II HLA binding features were 

selected for further validation. The number of predicted immunogenic epitopes from SARS-CoV-

2 protein-coding genes is shown in Figure 1E. The distribution of OncoPeptVAC scores against 

different class-I HLA genes indicates a higher number of favorable TCR-binding peptides for 
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HLA-B and C compared to HLA-A (Figure 1F). Natural biases in HLA-restrictions have been 

reported for immunogenic HIV epitopes (13). 

T-cells from unexposed donors respond to OncoPeptVAC-predicted peptides 

We performed T-cell activation assay using the selected 11 epitopes from the SARS-CoV-2 

spike antigen in unexposed donors. The 15-mer peptides are distributed across different 

segments of the RBD and the non-RBD regions of the spike antigens and few peptides carry 

ACE2 receptor binding sites (Figure 2A and Table-1). Many predicted peptides reside in flexible 

regions of the spike protein that could favor efficient processing and presentation.  

We screened PBMCs from 17 unexposed donors from the US collected between 2016 – 2018 

and India (2015 – 2017), much before SARS-CoV-2 was recognized as a global pandemic 

(Table-S1). Activation of T-cells using the cocktail of 11 peptides (All-peptide) was compared to 

the responses from Spike-S1 (157 peptides) and S2 (158 peptides) pools (see Methods for 

assay details). In a 48h assay, 70% of the unexposed donors responded strongly to the 

predicted peptide mix by inducing intracellular IFN+ in both CD4 and CD8 T-cells. The 

responses to Spike-S1 and S2 peptide pools were weaker (Figure 2B). A strong 48h IFN- 

response suggested recall to pre-existing antigen-experienced CD8 T-cells. The peptide-mix 

also induced a strong 4-1BB response in CD8 T-cells but not in CD4 T-cells (Figure 2B). Both 

IFN- and 4-1BB levels increased in CD8 T-cells at day-7 by the All-peptide mix compared to 

the Spike peptide pools (Figure 2C). We observed higher expression of IFN- and 4-1BB in the 

CD4 T-cells by the Spike peptide pools at day-7 suggesting de novo activation (Figure 2C). 

Although the use of 15-mer peptides is expected to skew the response towards CD4 T-cells, we 

observed a stronger CD8 T-cell response to the Peptide-mix suggesting that the 15-mer peptide 

though added exogenously, was processed and presented by class-I HLAs efficiently. Taken 

together, the results demonstrate that the use of OncoPeptVAC identified potent CD8 T-cell 

epitopes in the spike antigen that could not have been detected by using large overlapping 

peptide pools used in T-cell activation assays. 

Next, we tested individual peptides from the mix to assess their contribution to T-cell activation. 

The magnitude and kinetics of IFN- induction in CD8 T-cells were variable in different donors 

(Figure 2D). In most donors, the maximal response was detected by 7-days, but in donors D142 

and D176 the response peaked at 48h and declined (Figure 2D). We tested the effect of 

individual peptides in multiple donors as indicated by the arrows to determine their 

immunogenicity. As shown in Figure 2E-F and Supplementary Figures S1-S2, multiple peptides 
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from the All-peptide mix induced robust CD8 T-cell IFN- and 4-1BB in different donors. The 

magnitude and the kinetics of response were variable. Peptide-7 was an exceptionally strong 

CD8 T-cell epitope inducing IFN- in 3 out of 7 donors (Figure 2E-F and Supplementary Figure 

S1). Most immunogenic epitopes activated CD8 T-cells at 48h and achieved >2% activation by 

7-day, suggesting that these epitopes engaged pre-existing T-cell immunity in the unexposed 

donors. In many donors, strong CD4 T-cell response was detected by individual peptides 

(Figure S3A-J). Interestingly, in many donors, both IFN- and 4-1BB expression was induced by 

multiple individual peptides, although the magnitude of response by the All-peptide mix was not 

additive (Figure S3A (IFN- response and S3F (4-1BB response) confirming that the T-cell 

activation potential of individual peptides could be masked, when present as a part of a larger 

peptide pool. 

Multiple studies have reported pre-existing T-cell immunity in unexposed donors using spike 

peptide pools and attributed the response to T-cells recognizing epitopes from common cold-

causing coronaviruses to which a large section of the global population is exposed (7, 8, 10). 

Homology analysis of the selected epitopes (see Methods) indicated that 6 out of the 11 

peptides share >67% sequence identity with SARS-CoV and only 1 (Peptide-11) out of the 11 

peptides has over 70% identity with multiple coronaviruses (Table 2). Peptide-11 is in the S2 

domain of the spike protein and showed ≥1% CD8 T-cell response at 48h in 1 out of 7 donors 

tested (D167, Figure 1E). However, peptides 3, 6, 7, and 9 lacking significant identity to other 

coronaviruses (Table 2) showed ≥1% CD8 T-cell activation at 48h in at least one donor out of 7 

(Figure 2E-F and Figure S1). Peptide-7 induced high CD8 T-cell activation at 48 h in two donors 

(D089 and D225 (Figure 2F and Figure S1). Taken together, the data suggest that pre-existing 

T-cell immunity to these peptides may be derived from cross-reactive TCRs recognizing other 

viruses.  

Analysis of antigen-specific CDR3s in responsive donors 

To identify CDR3s amplified by individual peptides, or the All-peptide-mix, bulk TCR analysis 

was performed on antigen-stimulated PBMCs from donors D089 and D225 (see Methods). Both 

donors showed a robust IFN- response to Pep-7, and the Pep-Mix, but not to Pep-1 (Figure 

S4). Diversity and clonal amplification of unique public and private CDR3s were analyzed at 

three different time points (Figure 3A-B). Both the donors showed clonal expansion of multiple 

public CDR3s recognizing HCMV, human herpes virus-5 (HHV-5), and Influenza-A peptides 

when stimulated with Pep-7 and All-peptide mix, but not with Pep-1 (Table S2). HCMV and 

HHV-5 CDR3s were expanded in donor D089 (Figure 3A, top panel), whereas D225 showed 
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expansion of HCMV and Influenza-A CDR3s (Figure 3A, bottom panel). Significantly, these 

CDR3s were not amplified by Spike-S1 and S2 peptide pools or by Pep-1, the latter failed to 

activate T-cells in these donors. Further, CDR3s recognizing HCMV peptide NLVPMVATV in 

donors 089 and 225 were different, suggesting that the same antigen engages multiple cross-

reactive TCRs in different donors. Next, we analyzed private CDR3s in these two donors to 

identify novel SARS-CoV-2 antigen-specific CDR3 (Figure 3B). Donor 089 showed a lack of 

specific amplification of private CDR3s suggesting that the robust CD8 T-cell response detected 

in this donor may be contributed by the amplified public CDR3s (Figure 3B, top panel). In 

contrast, two private CDR3s were clonally amplified by Pep-7 and All-peptide mix in D225 

suggesting that the T-cell response is derived from both public and non-public TCRs in this 

donor (Figure 3B, bottom panel). A list of clonally amplified public and private CDR3s detected 

in the two donors is given in Table S2.  

To further investigate the TCR repertoire profile of donors 089 and 225 we analyzed the VDJ 

gene usage in the bulk CDR3 data. In D225, two V segments TRVB2 and TRVB30 and a J 

gene TRBJ2-1 were significantly over-represented in Pep7 and Peptide-mix treated samples 

(Figure 3C), whereas in D089 TRBV12-4 and TRBJ1-2 genes were amplified (Fig. 3D).  

Single-cell transcriptional and TCR profiling of activated T-cells 
 
To characterize the phenotype and functional state of activated T-cells and reveal differences 

between the different treatments, we performed single-cell sequencing on a 10X platform. 

Single-cell transcriptomics and TCR data obtained from 3500 – 4500 cells identified 3000 - 3500 

unique transcripts (see Methods). Using graph-based clustering of uniform manifold 

approximation and projection (UMAP) we captured transcriptomes of 4 distinct cell types (Figure 

4A and Table S3). Our assay method is enriched for the growth and proliferation of T-cells 

causing depletion of other immune cell types present in PBMC in a 14-day culture. Three cell 

types, CD8, /, and NK-T were detected in all the samples. Compared to DMSO and Pep-7 in 

which the CD8 T-cell fraction was ~60%, in spike-S1 and spike-S2 the CD8 T-cell fraction was 

50% and 38% respectively. Conversely, the CD4 cluster was expanded in spike-S1 (12%) and 

S2 (27%) compared to DMSO (7%) suggesting that the spike peptide pools engaged CD4 T-

cells (Table S3). The single cell transcriptomic analysis further revealed that Pep-7 induced 

effector phenotype in the CD8 T-cell cluster by the expression of activation markers IFN-, 4-

1BB (Figure 4B) TNFRSF9, FAS, and TIGIT (Compare Figure S5D with S5A-C). The top 10 

Pep-7-expanded clonotypes were CD27+/SELL- suggesting transition towards effector memory 
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phenotype (Figure 4B). Spike-S1 and S2 peptides induced CD27+/SELL- T-cells in the CD4 

clones 6 and 4 respectively (Figure 4B). Single-cell data revealed amplification of TRBV2 (40%) 

and TRBJ2-1 (32%) in Pep-7 stimulated T-cells (Figure 4C) confirming the results from the bulk 

TCR analysis.  

Next, we mapped CDR3- to specific clones from each treatment (Figure 4D). The DMSO, 

spike-S1, and S2-treated samples shared many clonotypes among themselves in the same 

frequency range suggesting weak antigen-induced activation and proliferation of T-cells. 

However, Pep-7 treated sample was enriched in many CDR3- clones absent in other samples 

indicating the specificity of response (Figure 4D, red bars). Four clones among the top-20 

clones encoded CMV and flu-specific CDR3-s in Pep-7 treated sample but not in other 

samples confirming the findings from the bulk TCR data that the peptide engaged cross-reactive 

TCRs (Figure 4D). The expanded CDR3- detected in the Spike-S2 treated sample belonged to 

CD4 T-cells (Figure 4B, Spike-S2 panel, clonotype-1). Taken together, single-cell TCR analysis 

demonstrated that the immunogenic SARS-CoV-2 epitope engaged many unique CDR3-s not 

shared by spike-1 and spike-2 peptide pools. 

The bulk and the single-cell TCR analyses demonstrated that the SARS-CoV-2 epitope 

identified in this study engaged both cross-reactive public CDR3s and unique CDR3s not 

associated with known viral antigens and favored the usage-specific V-J genes. Further, the 

expansion of TRBV-2 and TRBJ2.1 by Pep-7 and by the Pep-mix in D225 confirmed that out of 

the 11-peptides contained in the Pep-mix, Pep-7 contributed to all of the T-cell responses 

observed in this donor.  

Antigen-specific clonal expansion and T-cell phenotype 

Next, we analyzed the clonal composition and phenotype of T-cells to investigate the dynamics 

of antigen-specific T-cell response in the treated samples. We analyzed the top-30 clones for 

their phenotype by the expression of 25 marker genes (Figure S6). In all samples, including 

DMSO, CD8 T-cell clonotypes were more frequent (Figure S6A-D). As expected, the CD4 T-cell 

compartment was expanded in Spike-S1 and S2-treated samples (20 and 25% of all clonotypes 

respectively) compared to DMSO (6.5%) (Figure S6B-C). The CD4 T-cells expressed TNFSF4 

(OX-40) suggesting activation, although they failed to express IFN- (Figure S6B-C). A few 

expanded CD4 clones in the Spike-S1 and S2 treated samples showed a high expression of 

IL17RB suggesting polarization towards a TH17 phenotype (Figure S6B-C). In the Pep-7 treated 

sample, almost all clonotypes in the top-30 were CD8 T-cells. The highly expanded clones 

expressed multiple T-cell activation markers (Figure S6D). Interestingly, in addition to the 
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activation markers, these cells expressed higher levels of IL2RA (CD25) suggesting 

differentiation towards an effector memory phenotype (Figure S6D). CD25 expression was low 

in the CD8 T-cell compartment in other samples. Taken together, the results of the 

transcriptomic analysis highlighted that the strong immunogenic CD8 T-cell epitope identified in 

this study preferentially engaged CD8 T-cells pushing them towards an effector and effector 

memory phenotype. The spike-S1 and S2 peptide pools on the other hand engaged both CD8 

and CD4 T-cells and modulated the CD4 T-cells towards a TH17 phenotype. 

Response of convalescent COVID-19 patients to predicted epitopes 

To assess whether the predicted epitopes are recognized by COVID-19 infected patient T-cells, 

we tested the All-peptide mix on seven asymptomatic, five with mild-moderate symptoms, and 

five severe convalescent patients requiring ICU admission (Table S4) and analyzed their CD4 

and CD8 T-cell response after 48h. The patients experiencing mild to moderate symptoms 

exhibited higher induction of IFN- in CD8 T-cells (Figure 5A). The IFN- induction in CD4 T-

cells was higher in the presence of the Spike-S1 peptide pool compared to the All-peptide mix 

(Figure 5C). Spike-S2 peptide pool induced stronger 4-1BB induction in CD8 and CD4 T-cells 

compared to the All-peptide mix (Figure 5B-D). Taken together, our results confirm that the 

epitopes prioritized by the algorithm were recognized by COVID-19 infected patient T-cells, and 

the IFN- response induced by the All-peptide mix was skewed towards CD8 T-cells. Spike 

peptide pools favored activation of the CD4 compartment in these convalescent subjects in line 

with our assay results and single cell transcriptome analysis showing a preferential expansion of 

the CD4 compartment by these peptide pools.  
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DISCUSSION 

A wide array of respiratory viruses induces severe pneumonia, bronchitis, and even death 

following infection. Despite the immense clinical burden, there is a lack of efficacious vaccines 

with long-term therapeutic benefit. Most current vaccination strategies employ the generation of 

broadly neutralizing antibodies, however, the mucosal antibody response to many respiratory 

viruses is short-lived and declines with age. In contrast, several studies on respiratory viruses 

have shown the presence of robust virus-specific CD8-T cell responses which has been shown 

to last for decades. Therefore, vaccine designs for emerging respiratory viruses need 

consideration and rational inclusion of CD8 epitopes to confer long term resistance (14). 

This study demonstrates the existence of strong CD8 T-cell activating epitopes in the spike 

antigen and uncovers robust pre-existing CD8 T-cell immunity in unexposed donors. Several 

studies have reported pre-existing T-cell immunity in unexposed donors and attributed these to 

infections by common cold-causing human coronaviruses (7, 8, 10). Other studies, on the 

contrary, have reported a lack of pre-existing T-cell immunity in unexposed donors (15, 16). 

These differences can arise from the composition of peptide pools used in the assay since each 

group employed different selection strategies, the number of epitopes used by different groups 

was variable, differences among donor HLAs, dominant V and J genes in donors and the assay 

method. By using a smaller number of epitopes, and donors from two different regions of the 

globe, the USA and India, our findings confirm the existence of robust T-cell immunity in 

unexposed donors. Our results differ from other studies in two important aspects.  First, 

published studies thus far have reported robust CD4 T-cell responses and a relatively weaker 

CD8 T-cell response in both unexposed and convalescent subjects, whereas we show strong 

CD8 T-cell response in both unexposed donors and convalescent patients. In fact, in our assays 

the IFN- response was significantly higher at 48 h than reported in other studies. Although, the 

assay conditions – such as the use of 15-mer peptides and the combination of cytokines used in 

the published studies could have favored a CD4 response over a CD8 response (8), however, 

we suspect that the epitope selection strategies and the use of large peptide pools by other 

groups may have masked the detection of strong CD8 T-cell epitopes. A second novel aspect of 

our study is the demonstration that the selected CD8 T-cell epitopes engaged cross-reactive 

TCRs in unexposed donors to mount a strong T-cell response. This finding has significant 

implications in COVID-19 vaccine development efforts (17) and the spread of the infection in 

different regions of the world (18). 
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To identify strong CD8 T-cell epitopes, we developed a novel TCR-binding algorithm 

OncoPeptVAC that selects epitopes favorable for TCR-binding. In all epitope screening 

methods, epitope selection is primarily based on class-I and II HLA-binding affinity, which 

predicts surface presentation of antigen in complex with HLA (19), but not the interaction of the 

peptide-HLA complex with a TCR (20). By incorporating features that predict TCR-binding of a 

peptide, our algorithm OncoPeptVAC successfully identified many CD8 T-cell epitopes in a 

small pool of 11 peptides used in T-cell activation assays. The TCR-binding algorithm is 

especially suitable for reducing the number of epitopes that need to be screened to identify 

robust CD8 T-cell activating epitopes. For example, our algorithm predicted 83 peptides from all 

SARS-CoV-2 proteins excluding ORF1, which is a much smaller number compared to the 

number of peptides screened in some of the published studies to identify pre-existing T-cell 

immunity (7, 8, 15, 21). A second factor that may have resulted in the identification of strong 

CD8 T-cell activating epitopes is the avoidance of epitope competition. Using a large pool of 

peptides to screen for T-cell responses ensures broad coverage of all HLAs, but has the 

disadvantage that strong immunogenic epitopes are not detected efficiently. Some of the 

peptides predicted by our algorithm produced >5% CD8 T-cell response in healthy donors by 

14-days. In the same donors, the response from spike-S1 and S2 peptide pools containing 157 

and 158 peptides respectively was much weaker. A similar finding was reported by Mateus et al. 

where deconvolution of peptide pools identified a single peptide that evoked 5-fold higher T-cell 

response compared to the pool (8). Also, important to note, that the strategy of using 15-mer 

peptides with overlapping 10 or 11-mer sequences may not identify immunodominant epitopes. 

For example, out of the 11-peptides tested in our assay, only three peptides were present in the 

spike peptide pools. 

By using a smaller pool of immunodominant CD8 T-cell epitope, our study uncovered a 

fundamental feature of the host immune response to SARS-CoV-2 – the existence of cross-

reactive TCRs to viruses, such as CMV and Influenza that recognizes SARS-CoV-2 antigen. An 

early and robust T cell response is driven by the size and the diversity of the TCR repertoire to a 

given antigen (22). The Pep-7 epitope derived from the RBD domain of SARS-CoV-2 spike 

antigen lacking homology to other coronaviruses expanded multiple public CDR3s recognizing 

immunodominant CMV epitope NLVPMVATV and Influenza epitope GILGFVFTL. Further, TCR 

analysis demonstrated that although a donor’s TCR repertoire contains many CMV-epitope-

specific CDR3s, only a few are expanded in the presence of the SARS-CoV-2 peptide. For 

example, donor D225 TCR repertoire has 159 CMV and 249 Influenza CDR3s of which three 

and one were expanded respectively. Similarly, donor 089 carries 103 NLVPMVATV specific 
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CDR3 of which only two expanded. These findings suggested the specificity of interaction 

between cross-reactive CDR3s and specific peptides from SARS-CoV-2. Significantly, the 

expanded CDR3s in the two donors D089 and D225 were different, even though they 

recognized the same CMV peptides. It has been documented that conserved features within 

CDR3- allow recognition of the same pHLA complex within a group of diverse CDR3s (23). A 

robust antigen-specific T cell response utilizes a broad range of TCRs and for many viral 

infections, TCR usage diversity has been positively linked to disease outcomes (24-26). A 

diverse repertoire not only allows increased structural capacity to recognize variant epitopes 

(27) but increases the chances that high-affinity TCRs may be present in an individual (28). A 

recent large-scale study mapped a few immunogenic regions in the SARS-CoV-2 proteome 

responsible for expanding many unique TCRs in a large number of convalescent COVID-19 

patients and unexposed healthy donors (21). Immunodominant epitopes reported in our study 

cover some of the “hotspot” regions identified by this large-scale study (21). Efforts to identify 

cross-reactive TCRs recognizing different antigens from diverse infectious organisms can lead 

to the development of broad-spectrum TCR-based therapeutics against infectious diseases.   

We compared the All-peptide mix with spike-1 and 2 peptide pools on a small number of 

convalescent patients and identified a slightly higher CD8/IFN- response by the peptide mix in 

mild to moderate disease, compared to patients with asymptomatic or severe disease. Many 

studies have indicated that short and long-term protection against respiratory viruses requires 

CD8 T-cell immunity and antibody response alone is not sufficient (6, 29). In line with this 

observation, low plasma titers of neutralizing antibodies are detected in a large fraction of 

convalescent patients suggesting additional immune protective mechanisms, besides viral 

neutralization (30). On the contrary, high levels of neutralizing antibodies were associated with 

severe disease and ICU visits in many COVID-19 patients suggesting an imbalanced CD4 T-cell 

response is not optimal for protection (31-33). It has been challenging to demonstrate a strong 

CD8 T-cell response in COVID-19 patients in many studies. However, our findings along with a 

recent report from Peng et al. showed that a higher CD8 T-cell response correlated with a mild 

disease compared to patients with severe disease (15). 

In conclusion, our study demonstrates strong pre-existing CD8 T-cell immunity in many 

unexposed donors contributed by the engagement of cross-reactive TCRs against common 

CMV and flu antigens. The presence of high-quality cross-reactive TCRs can protect individuals 

by mounting an early CD8 T-cell response and clearing the virus. Identifying additional 

immunodominant epitopes in SARS-CoV-2 and their cognate TCRs can become a powerful 
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immune monitoring tool for assessing protective immunity against SARS-CoV-2 in the 

population. 
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Figure 1.  Identification of immunogenic epitopes from SARS-CoV-2 by OncoPeptVAC. A. 

ROC curves of OncoPeptVAC TCR-binding and netMHCpan-4.1 HLA binding algorithms. A 

blind dataset of non-immunogenic or immunogenic HLA class-I binding T-cell epitopes from 

IEDB was used to assess the performance of OncoPeptVAC (cyan). The HLA-binding affinity of 

the epitopes expressed as percentile rank <1% was used to assess the performance of 

netMHCpan-4.1 in predicting true immunogenic epitopes (orange).  B. Separation of 

immunogenic from non-immunogenic epitopes by OncoPeptVAC score. C. Separation of 

immunogenic from non-immunogenic epitopes by HLA-binding percentile rank. D. Schematic 

showing the steps used to identify immunogenic epitopes from SARS-CoV-2 proteome. E. 

Number of immunogenic epitopes identified in different SARS-CoV-2 antigens. F. HLA-A, B and 

C-restricted epitopes from SARS-CoV-2 proteome. 

Figure 2. T-cell reactivity by SARS-CoV-2 Spike peptides. Reactivity was determined by 

intracellular IFN- staining and surface expression of 4-1BB by FACS after stimulation of 

PBMCs from unexposed donors (n=14) using separate pools of Spike-S1 and S2 peptides and 

the 11-Peptide-mix predicted by OncoPeptVAC. A. Structure of Spike – ACE2 receptor complex 

showing the location of the 11-peptides predicted by OncoPeptVAC. B. T-cell activation after 

48h incubation with the peptides. C. T-cell activation after 7-day incubation with the peptides. D. 

Kinetics and magnitude of CD8 T-cell activation in unexposed donor PBMCs. E-F. CD8 T-cell 

response of donors D167 and D089 to individual peptides from the 11-peptide-mix.  

Figure 3. Bulk TCR repertoire analysis after in vitro stimulation of PBMCs at different 

time points with the indicated peptides in unexposed donors. A-B. Expanded public CDR3-

s recognizing shared antigens in the two donors. C-D. Expanded private CDR3-s in the two 

donors. E-F. V-J gene usage in the two donors. 

Figure 4. UMAP projection of different cell types identified in unexposed donor D225 after 

14 days of in vitro stimulation assay with different antigens. A. Clusters of different cell 

types and their relative proportions present in the assay mixture (left panel). Clusters expressing 

IFN- (middle panel) and the top-3 amplified clonotypes (right panel). B. Heat map showing the 

expression of cell-type and cell-phenotype-specific markers in the top-10 amplified TCR- 

clones. C. Frequency of CDR3- recognizing public and private antigens in the top 20 

clonotypes. D. Amplified V and J-genes in the top-20 clonotypes. 
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Figure 5. T-cell reactivity to Spike-S1, S2 pools and 11-peptide-mix in asymptomatic, 

mild-moderate and severe disease after in vitro stimulation for 48 h. A. IFN- and 4-1BB 

expression in activated CD8 T-cells. B. IFN- and 4-1BB expression in activated CD4 T-cells. 

 

Supplementary Figures 

Figure S1. A-E. Kinetics and magnitude of IFN- expression by CD8 T-cells in the presence of 

individual peptides from the 11-peptide-mix in unexposed donors. 

Figure S2. A-F. Kinetics and magnitude of 4-1BB expression by CD8 T-cells in the presence of 

individual peptides from the 11-peptide-mix in unexposed donors. 

Figure S3. A-J. Kinetics and magnitude of IFN- and 4-1BB expression by CD4 T-cells in the 

presence of 11-peptide-mix or individual peptides in unexposed donors. 

Figure S4. A-D. Expression of T-cell activation and phenotype markers in different cell clusters 

from single-cell sequencing. 

Figure S5. A-D. Expression of T-cell activation and phenotype markers in top-30 clonotypes 

from single-cell sequencing. 

Figure S6. QC of cells from single cell transcriptomic analysis. The cells outside the red bars 

were excluded from the analysis (see Methods for details) 

Figure S7. Clustering of cells without and with the expression of G1, G2/M and S cell cycle 

genes. Cell-type-specific clustering was achieved by regressing out the expression of cell cycle 

genes. 
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METHODS 
 
T-cell epitope prediction 

 

Dataset 

Data on 371,865 T cell assays was collected from the IEDB (1). There were 105,673 CD8 T cell 

assays in total with 61,968 CD8 T cell assays with humans as a host. The CD8 T cell assays 

with HLA allele names and peptide lengths ranging 8-14 residues were further selected. HLA 

supertypes were replaced with their representative allele names, for example, HLA-A2 was 

replaced with HLA-A*02:01. The immunogenic peptide-HLA pairs tested on at least three 

donors with 100% response frequencies or at least tested on 5 donors with greater than 50% 

response frequencies were labelled as positive. The non-immunogenic peptide-HLA pairs tested 

on at least 3 donors with 0% response frequency were labelled as negative. 

  The final dataset contained 8,870 unique peptide-HLA pairs which were split randomly into 

80% training and 20% test datasets. The training dataset had 884 immunogenic and 6,212 non-

immunogenic peptide HLA pairs. The test dataset had 238 and 1,536 immunogenic and non-

immunogenic peptide-HLA pairs, respectively. 

Model 

A deep Convolutional Neural Network (CNN) was implemented to predict immunogenicity of the 

peptide-HLA pair (provisional patent pending). The HLA alleles were represented as pseudo-

sequences described as 34 amino acid residues (2). The peptide and HLA pseudo-sequences 

were converted to the two-dimensional (2D) feature matrices of 14x20 and 34x20 dimensions 

using BLOSUM encoding (3) respectively. Peptide sequences shorter than 14 residues were 

padded by zeroes to maintain 14x20 feature matrix dimensions. Peptide sequences were also 

encoded into 1x14 feature vector using the Kyte-Doolittle hydrophobicity scale (4). The HLA 

binding percentile ranks, and scores for each peptide-HLA pair were obtained using 

NetMHCpan-4.1 (5) and were appended to the Kyte-Doolittle hydrophobicity scale feature 

vector. 

The peptide and HLA feature vectors were each processed by multiple 2D convolutional filters 

of two different sizes followed by max-pooling layers of the same sizes serially. The peptide and 

HLA max-pooled layers were concatenated and processed again with multiple 2D convolutional 

filters followed max-pooling layers. The 2 max-pooled layers were flattened- concatenated and 

then connected to a dense layer. The output of the peptide and HLA dense layer was 

concatenated with the hydrophobicity and HLA binding feature vector and again connected to 

two dense layers. The final output of dense layer was connected to the output neuron.  
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Three different versions of the CNN models were trained to evaluate if the hydrophobicity scale 

and HLA binding scores added to the performance of BLOSUM encoding. The first version, 

called OncoPeptVAC-2.0, was trained only using the BLOSUM encoding. The second version, 

called OncoPeptVAC-2.1, was trained using BLOSUM encoding and hydrophobicity indices. 

Final model version, called OncoPeptVAC-2.2, was trained using all 3 features, namely 

BLOSUM encoding, hydrophobicity indices and HLA binding scores. The hyperparameters of 

each model version were tuned based on model performance on the blind test dataset.  

The CNN was trained using 5-fold cross validation with the training dataset exclusively. The test 

dataset was solely used for model performance evaluation. Model performance was evaluated 

using AUC (area under ROC Curve) where an AUC of 0.5 represents random predictions and 

AUC of 1.0 represents the perfect predictions. The tensorflow library from Python programming 

language was used to implement the models.  

 
Homology analysis 

Full length shortlisted peptide sequences of SARS-CoV-2 were blasted against the spike 

proteins of other coronaviruses, OC43, NL63, 229E and HKU1. An E-value cutoff of 0.01 was 

used with a minimum cutoff of 11 amino acid residues was used to identify homologous 

peptides.  

 
T cell activation assay 
 

Unexposed donor PBMCs were obtained from the US and India for this study. PBMCs from the 

US were collected between 2016 - 2018 and purchased from Stemcell Technologies, Canada. 

PBMCs from India were collected between 2015 – 2018.  COVID-19 convalescent patient blood 

from the US was purchased from PPA Research (USA) and the Indian samples were collected 

through hospitals. All participants in this study provided informed consent in accordance with 

protocols approved by the institutional review board. PBMCs were thawed, counted and 

analyzed using the diagnostic panel of antibodies (Table S5). PBMCs were rested overnight in 

RPMI containing 10% human serum (Table S5). For T-cell activation assays, 750,000 PBMCs 

were incubated either with DMSO (negative control) or with different peptide pools in 0.5 ml 

RPMI (Gibco) +10% Human AB serum (Sigma) + 10 ng/ml IL-15 and 10 IU of IL-2 (Stemcell 

Technologies, Canada). The culture media was replenished every three days with fresh media 

containing 10 IU of IL-2 and 10 ng/ml IL-15. On days 7, 14 and 21 of incubation, fresh peptides 
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were added to the culture. For intracellular cytokine staining, cells were treated with Brefeldin 

A (BD Biosciences) for 5 hours, fixed and permeabilized using BD Lysis solution and Perm2 

solutions respectively followed by staining with T-cell activation panel of antibodies (Table S5). 

Stained cells were analyzed in BD Accuri C6 Plus to detect the expression of activation markers 

IFN- and CD137 (4-1BB) on CD4 and CD8 T cells. Data was analyzed using BD Accuri C6 Plus 

software. 

 
TCR sequencing and data analysis 
 
200,000 PBMCS was removed after 48h, 7, 14 and 21 days from the T-cell activation assay and 

processed for bulk TCR sequencing.  

 
Bulk TCR sequencing  

TCR repertoire profiling was performed using the SMARTer TCR α/β Profiling Kit (Takara Bio, 

USA) according to the manufacturer’s protocol. RNA was isolated using the Qiagen RNA 

isolation kit. 10ng RNA from antigen-induced PBMCs were used as the starting material. The kit 

uses SMART technology (Switching Mechanism At 5’end of RNA Template) with 5’RACE to 

capture the entire V(D)J variable regions of TCR transcripts followed by two rounds of semi-

nested PCR to obtain TCR- and the -chain. Libraries are prepared analyzed for quality and 

quantity. Sequencing is performed using the 2*300 MiSeq Reagent Kit v3 (Illumina, Inc.).  

 
Single cell TCR sequencing and transcriptome profiling 

For each sample, raw gene expression matrices were generated by Cell Ranger(v.3.0.2) 

coupled to the human reference version GRCh38. The gene expression data was analyzed by 

R software (v.3.4.4) with the Seurat package (2.3.4). In brief, Low-quality cells were removed if 

they met one of the following criteria:  >75,000 unique molecular identifiers (UMIs); <500 or 

>7,500 genes; >10% UMIs derived from the mitochondrial genome; and >50% of transcripts 

contributed by top 50 genes (Figure S7). After removing low-quality cells, gene expression 

matrices were normalized by the NormalizeData function and features with high cell-to-cell 

variation were calculated using the FindVariableGenes function. Next, the expression of the S-

phase and the G2-M phase genes were used to calculate the cell cycle score for all the cells 

using the CellCycleScoring feature. To generate unbiased clustering of cells ScaleData function 

was used, regressing out the expression of cell cycle genes, mitochondrial % and number UMI 

from the features (Figure S8). The dimensionality of the datasets was reduced by RunPCA 
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function using variable features identified by FindVariableGenes function on linear-

transformation scaled data generated by the ScaleData function. Next, the ElbowPlot and 

DimHeatmap functions were used to identify the true dimensionality of each dataset. Finally, 

cells were clustered using the FindClusters function and nonlinear dimensional reduction with 

the RunUMAP function using the Euclidean Distance feature. All details regarding the Seurat 

analyses performed in this work can be found in the website tutorial 

(https://satijalab.org/seurat/v2.4/pbmc3k_tutorial.html). 

 
Cluster annotation and differential expression of genes 

After nonlinear dimensional reduction and projection of all cells into two-dimensional space by 

UMAP, cells were clustered together according to common features. The FindAllMarkers 

function in Seurat was used to find markers for each of the identified clusters. Clusters were 

then classified and annotated based on expressions of canonical markers of particular cell 

types. Differential gene expression was performed using the FindAllMarkers function in Seurat 

with default parameters. We selected top-25 upregulated DEGs with maximum FDR value of 

0.01 and annotated the clusters based on the expression of these upregulated genes. Next, we 

used MergeSeuratFunction to integrate the four datasets from the four treatment conditions and 

performed the steps of data normalization, feature extraction, regressing out features as 

described above. The heatmap and dot plots were generated using the DoHeatmap and DotPlot 

function in Seurat. 

 
TCR V(D)J sequencing and analysis 

Full-length TCR V(D)J segments were enriched using a Chromium Single-Cell V(D)J 

Enrichment kit according to the manufacturer’s protocol (10X Genomics). Demultiplexing, gene 

quantification and TCR clonotype assignment were performed using Cell Ranger (v.3.0.2) vdj 

pipeline with GRCh38 as reference. TCR diversity metric, containing clonotype frequency and 

barcode information, was obtained. Cells with at least one productive TCR α-chain (TRA) and 

one productive TCR β-chain (TRB) were retained for further analysis. Each unique TRA(s)-

TRB(s) pair of TRA-TRB was defined as a clonotype. The presence of identical clonotypes at 

least in two cells were considered to be clonal, and the number of cells containing the same 

TRA-TRB pairs defined clonal amplification of a clonotype. Using barcode information, TCR 

clonotypes were projected on UMAP and Dot plots. Public TCRs were mapped to the IEDB and 

VDJDB annotated databases using the TRB sequence. 
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Table-1. Peptides selected by OncoPeptVAC and used in T-cell activation assays. The 

OncoPeptVAC score was calculated for each HLA-peptide pair (see Methods). The HLA-peptide 

binding affinity percentile rank was calculated by netMHCpan4.0.Peptides. Peptides having >0.2 

OncoPeptVAC score, <1 class-I HLA-binding percentile rank, and ≤10 class-II HLA binding 

percentile rank were selected.   

Peptide 
ID 

# Class-I 
HLA 

restriction 

#Class-II 
HLA 

restriction 

OncoPeptVAC 
score for 
individual 

HLAs (range) 

Class-I binding 
percentile rank 

(range) 

Class-II 
binding 

percentile 
rank (range) 

Presence 
in spike 
peptide 
pools 

Other features 

Pep-1 3 0 0.21-0.51 0.27-0.77 NA Yes 
One contact 
residue for 

neutralizing Ab 

Pep-2 0 2 NA NA 7.6-7.8 No 

4 ACE contact 
residues and 2 

contact residues 
for neutralizing 

Ab 

Pep-3 1 3 0.27 0.83 1.5-8.5 No  

Pep-4 7 9 0.43-0.94 0.02-0.25 0.58-10.0 No  

Pep-5 2 1 0.24-0.28 0.45-0.49 3.1 Yes 
4 ACE contact 

residues 

Pep-6 6 10 0.28-0.9 0.37-0.97 0.27-9.6 No  

Pep-7 11 18 0.21-0.94 0.06-0.8 0.49-9.3 Yes  

Pep-8 14 16 0.21-0.7 0.01-0.87 0.97-10.0 No  

Pep-9 27 13 0.22-0.96 0.02-0.89 1.8-8.8 No  

Pep-10 4 9 0.23-0.83 0.19-0.71 0.45-8.8 No 

5 ACE contact 
residues and 2 

contact residues 
for neutralizing 

Ab 

Pep-11 6 2 0.22-0.88 0.44-0.9 7.2-8.0 No  
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Table-2. Selected peptides from SARS-CoV-2 and their homology to other coronaviruses. 

Sequence identity of the shortlisted 15-mer peptides against homologous peptides in other 

coronaviruses. Peptides were identified based on E-value cut-off of 0.01 and a minimum cut-off 

length of 11 amino acid residues (see Methods).  

Peptide ID Peptide MERS 229E OC43 SARS HKU1 NL63 

Pep-1 
YNYKLPDDFTGCVIA    87   

Pep-2 
TFKCYGVSPTKLNDL    93   

Pep-3 
GCVIAWNSNNLDSKV    62   

Pep-4 
YLYRLFRKSNLKPFE    53   

Pep-5 
NGVEGFNCYFPLQSY       

Pep-6 
QPYRVVVLSFELLHA    93   

Pep-7 
VFNATRFASVYAWNR    80   

Pep-8 
IPFAMQMAYRFNGIG 60  47 100 47  

Pep-9 
YVGYLQPRTFLLKYN 60   67   

Pep-10 
GGNYNYLYRLFRKSN    73   

Pep-11 
GKLQDVVNQNAQALN 71 64 71 100 73 71 
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Figure 1
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Figure 3
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