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Abstract42

In the light of unprecedented change in global biodiversity, real-43

time and accurate ecosystem and biodiversity assessments are becom-44

ing increasingly essential. Nevertheless, estimation of biodiversity us-45

ing ecological field data can be difficult for several reasons. For in-46

stance, for very large areas, it is challenging to collect data that pro-47

vide reliable information. Some of these restrictions in Earth obser-48

vation can be avoided through the use of remote sensing approaches.49

Various studies have estimated biodiversity on the basis of the Spec-50

tral Variation Hypothesis (SVH). According to this hypothesis, spec-51

tral heterogeneity over the different pixel units of a spatial grid reflects52

a higher niche heterogeneity, allowing more organisms to coexist. Re-53

cently, the spectral species concept has been derived, following the54

consideration that spectral heterogeneity at a landscape scale corre-55

sponds to a combination of subspaces sharing a similar spectral signa-56

ture. With the use of high resolution remote sensing data, on a local57

scale, these subspaces can be identified as separate spectral entities,58

the so called “spectral species”. Our approach extends this concept59

over wide spatial extents and to a higher level of biological organiza-60

tion. We applied this method to MODIS imagery data across Europe.61

Obviously, in this case, a spectral species identified by MODIS is not62

associated to a single plant species in the field but rather to a species63
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assemblage, habitat, or ecosystem. Based on such spectral informa-64

tion, we propose a straightforward method to derive α- (local relative65

abundance and richness of spectral species) and β-diversity (turnover66

of spectral species) maps over wide geographical areas.67

Keywords: biodiversity; ecological informatics; modelling; remote sens-68

ing; satellite imagery.69

1 Introduction70

1.1 A quest for robust and reproducible α- and β-71

diversity measurement72

The variability of life on Earth is heterogeneously distributed across the73

planet; in fact, ecologists and biogeographers have long questioned the po-74

tential causes of biodiversity distribution. Recently, the speed of change and75

the uncertainty about possible consequences on biodiversity is concerning to76

the global scientific community. The perception of these processes trans-77

lates into the need to use standardized methods for biodiversity assessment78

and monitoring in order to gain a better understanding and identify general79

trends.80

There is open debate as to the most reliable metrics for assessing biodiver-81

sity (see Jurasinski et al. (2009); Tuomisto (2010)). Until now, no consistent82

definition exists. Even the definition according to the Convention on Bi-83

ological Diversity (CBD, 1992, https://www.cbd.int/convention/text/)84

is more confusing than clear: “Biological Diversity means the variability85

among living organisms from all sources, including, inter alia, terrestrial,86

marine and other aquatic ecosystems and the ecological complexes of which87

they are part; this includes diversity within species, between species and of88

ecosystems.” Biodiversity obviously includes quantitative (number of species,89

alpha-diversity, gamma-diversity), qualitative (turnover, composition, beta-90

diversity) and functional (complexity, trophic levels, ecosystem services) as-91

pects. To sum up our understanding on the term biodiversity (i.e. biological92

diversity) and to base our study on a more general and consistent concept,93

“biodiversity characterizes qualitative, quantitative and functional aspects of94

biotic units at various levels of organization in a concrete or abstract con-95

text, and at a given temporal or/and spatial scale” (Beierkuhnlein, 2003). In96

consequence, species richness and metrics that are based on it are important,97

but they represent just one aspect of biodiversity. In fact, the total number98

of species co-occurring in a given community (α-diversity) is nested within99

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 5, 2020. ; https://doi.org/10.1101/2020.11.04.367995doi: bioRxiv preprint 

https://www.cbd.int/convention/text/
https://doi.org/10.1101/2020.11.04.367995
http://creativecommons.org/licenses/by-nc-nd/4.0/


the total number of a species pools occurring for instance at the landscape100

level (γ-diversity). But the reduction of biodiversity to the perspective of101

inventory and proportion would not cover spatial gradients in composition102

and species turnover (differentiation, β-diversity) (Jurasinski et al., 2009;103

Baselga, 2012) and also ignores functional diversity (e.g. functional traits),104

which is the main driver of ecosystem functioning.105

In general, β-diversity is a crucial measure, since, given the same lo-106

cal richness of different sites (α-diversity), it directly considers the turnover107

among them. As an example, let A and B be two sampling sites with 10108

different species each. If all 10 species are fully shared, the total γ-diversity109

would equal 10 species, while if all 10 species are completely different from110

one site to the other (high turnover, high β-diversity) the total diversity of111

the whole area based on the two focal sites would double.112

Therefore, it becomes particularly interesting to understand how β-diversity113

originates, investigating how species composition differs among sites. In114

fact, species composition could be related to environmental conditions, or115

it could randomly fluctuate. A generally accepted hypothesis suggests that116

β-diversity might change as a function of species types living in a certain117

community. For instance, β-diversity should be small when communities are118

dominated by a limited number of competitive species; this is recognized as119

the null hypothesis and it entails a uniform distribution in species composi-120

tion (Legendre et al., 2005).121

The β-diversity concept reflects the environmental heterogeneity between122

sites and thus within a given larger area that contains several of the focal123

study sites. Heterogeneity is in fact highly associated with a high degree124

of biological diversity since heterogeneous sites offer a diversity of ecological125

niches (sensu Elton (1958)) that can be occupied if the species pool offers the126

respective ecological diversity to address these niches (Gaston, 2000; Rocchini127

et al., 2010). Furthermore, since β-diversity can be described as the spatial128

turnover among sites within a given region, it captures a fundamental feature129

of the spatial pattern of biodiversity.130

In some cases, spatial turnover can result from local extinction processes131

that affect certain species more than others and enhance the dissimilarity132

between sites without dispersal (Steinitz et al., 2006). This is the case in133

highly fragmented landscapes where dispersal is limited (Hobbs et al., 2006).134

Even stochastic processes (sensu Moran (1950) and Clark (2008)) may en-135

hance β-diversity in previously homogeneous ecosystems. For instance, sud-136

den fragmentation (Alados et al., 2009) can lead to disfunctional source-sink137

metapopulations with intrinsic influences on the degree of spatial (and ge-138

netic) connectivity of organisms (Waples and Gaggiotti, 2006), resulting in139

the local loss of sink populations. However, in most situations, the spatial140
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turnover and therefore the dispersal of species between sites (metapopula-141

tion and metacommunity dynamics) is linked to the distance among sites.142

Strictly speaking, the similarity between two sites decays with increasing dis-143

tance between them (Rocchini, 2007), a process also known as the distance144

decay in similarity or the Tobler’s first law of geography (Tobler, 1970).145

Hence, modelling the distribution of β-diversity in space is based on146

softening the role of individual species, which are not even completely de-147

scribed at wide geographical scales, for the sake of estimating a more ef-148

ficient proxy for ecosystem patterns and processes. When these esti-149

mates are available from remote sensing data, this process can lead to rapid,150

large-scale monitoring and support management intervention aimed at pre-151

serving entire ecosystems, as stipulated by the Aichi Biodiversity Targets152

(https://www.cbd.int/sp/).153

Field-based studies require an enormous investment in time in order154

to collect reliable biodiversity data. A pioneering example is the public155

database of the Global Biodiversity Information Facility (GBIF, https:156

//www.gbif.org/). GBIF is a network funded by the world’s governments157

which contains almost 41,000 databases of species occurrences spread out158

across the world. The large amount of publically accessible data and the159

available techniques to analyze them will certainly facilitate biodiversity as-160

sessment for the areas that it covers. Unfortunately, however, although it161

would be possible in principle to use these data to make reasonable assump-162

tions about biodiversity over larger areas, there are several limitations due163

to their quality (Maldonado et al., 2015). The errors that usually arise from164

field data are due to: (i) lack of or erroneous geographic coordinates of the165

sampling sites; (ii) incorrect taxonomic identification with poor quality con-166

trol; and (iii) difficulties in proving a reliable random sampling with large167

areas being poorly covered. Furthermore, these data often appear as point168

data, while grids are usually used in order to synthesize diversity metrics.169

In addition, these data are mainly collected from presence-only data with-170

out any link to relative abundance, dominance, biomass or cover, which in-171

stead, is reflected in remote sensing. Finally, GBIF data are inadequate for172

local estimates of biodiversity as they do not consider co-occurrence data.173

Indeed, and contrary to recent databases at the community level such as174

the European Vegetation Archive (EVA) (Chytry et al., 2016) or the sPlot175

initiative (Bruelheide et al., 2019), GBIF does not provide information on176

species co-occurrence which is very problematic for biodiversity assessment177

and monitoring. Despite the disadvantages that come from the use of public178

databases, there is some benefits in the use of such data. First of all, there179

is a huge amount of data collected and provided by citizens and research180

institutions available in the GBIF database when compared to the data that181
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could be collected locally, resulting in a huge saving of time and costs. More-182

over, GBIF data are standardized to the same format and therefore ready to183

use.184

To overcome the issues due to the collection and availability of in situ185

ecological data, remote sensing imagery has become more and more impor-186

tant and is now considered a reliable tool to assess and monitor biodiversity187

(Tuanmu and Jetz, 2015).188

1.2 The spectral species concept189

Remote sensing based approaches have proven to be useful modelling tech-190

niques to detect the variability of biodiversity in space and time across scales191

of biological organisation, at different grains (spatial resolutions) and extents192

(Rocchini et al., 2013). Airborne sensors have even been used to detect and193

map single species distributions (Skorownek et al., 2017a), even the most194

tiny and inconspicuous ones such as Campylopus introflexus, a moss species195

which is highly invasive in Europe (Skorownek et al., 2017b).196

Remote sensing techniques have been used to study the impact of land-197

scape and environment on biodiversity, and to explore and visualize spatial198

data and biodiversity change. Therefore, remote sensing data have become199

among the most time and cost effective tools, allowing to make relevant con-200

servation actions in a relatively short period of time. Furthermore, remote201

sensing demonstrated the impact of biodiversity (including non-native inva-202

sive species) on ecosystem functioning (Ewald et al., 2018).203

In general, vegetation absorbs the blue and the red light, for photosyn-204

thesis, while it reflects near infrared (hereafter, NIR) radiation due to the205

physical structure of the cells composing the leaf mesophyllum (Wegmann206

et al., 2016). The bands relative to RED and NIR are used as proxies for207

photosynthetic activity of the vegetation. These bands are usually incor-208

porated in a widely used index, the normalized difference vegetation index209

(NDVI), which is calculated as NDVI=(NIR-RED)/(NIR+RED). The higher210

the relative abundance of photosynthetic vegetation, the higher would be the211

reflectance in the NIR band and the absorption in the RED band. NDVI212

ranges from -1 to 1, with 0 values usually associated with non vegetated213

areas and negative values associated with water surfaces or snow.214

This index has widely been used to discriminate different vegetation types215

over an area. In fact, in several studies, NDVI is positively correlated to the216

net primary productivity (NPP, e.g. Gillespie et al. (2008)). Therefore, it217

can be used as a proxy to quantify species richness and diversity, based on the218

species-energy theory, proposed by Currie (1991), namely a relation between219

species richness and energy, that would depend mainly on annual potential220
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evapotranspiration and actual evapotranspiration. Another hypothesis re-221

lated to the variability in space of the spectral signal has been proposed222

by Palmer at al. (2002). The so called spectral variation hypothesis (SVH)223

states that the higher the environmental heterogeneity the higher would be224

the species diversity of an area, due to a higher number of available ecological225

niches.226

Hence, based on the SVH, spectral variability can effectively be related to227

environmental heterogeneity and therefore it could be used to assess species228

biodiversity of an area. In this sense, since the spectral variability is derived229

from the information present in the pixels of an acquired image, it is im-230

portant that the pixels, describing the area of study, would have a spatial231

resolution coherent with the ecological assumptions taken into account and232

such that predictions on biodiversity can be made.233

Among the most novel methods to estimate diversity by remote sensing,234

described in Rocchini et al. (2018), the spectral species concept (Féret and235

Asner, 2014) is one of the most powerful, since it allows to couple k-means236

approaches to the gridded data obtained from remote sensing technologies237

as a mean to derive α- and β-diversity 2D-matrices. The spectral species al-238

gorithm allows the separation of the spectral space in subunits identified as239

spectral species. Its root theory is built upon two major founding principles.240

The first is the aforementioned Spectral Variation Hypothesis, relating spec-241

tral to environmental heterogeneity. The second is based on the plant optical242

types proposed by Ustin and Gamon (2010). This concept is mainly related243

to the use of particular sensors providing high spatial resolution images and244

able to measure different signals about the phenology, the biochemistry and245

the structure of vegetation. Such sensors can obtain information at the in-246

dividual plant scale level.247

The method is based on an unsupervised clustering algorithm, first rely-248

ing on dimensionality reduction obtained after running a principal component249

analysis (PCA) and then on the actual clustering of the pixels, with the sub-250

sequent assignment to spectral species, based on a k-means approach. PCA251

and similar clustering methods have already been shown to reliably reduce252

the multidimensional spectral sets for models on species and biodiversity253

distribution (Rocchini et al., 2010). Furthermore, the method provides an254

interesting visual inspection of diversity building α- and β-diversity maps.255

As far as we know, the spectral species concept has been applied so far256

only at the local scale (Féret and Asner, 2014). Hence, the aim of this257

manuscript is to extend this concept over wider spatial extents passing to a258

spectral community concept, by generating a heterogeneity map at a wide259

geographical scale to estimate α- and β-diversity across Europe.260
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2 The algorithm261

The spectral species algorithm was originally developed to map tropical forest262

canopy diversity using imaging spectroscopy with a spatial resolution up to263

2 meters (Féret and Asner (2014), Figure 1). Following the hypothesis that264

species are spectrally separable (Asner and Martin, 2009), the approach is265

based on the segmentation of the spectral space defined by the remote sensing266

data. In fact the spectral space is assumed to be a combination of several267

subspaces, reflecting the “signature” of one or several species. Therefore268

these subspaces would be the expression of a more general “spectral species”.269

From the resultant “spectral community”, it would be possible to derive the270

diversity of an area. Therefore, the output of this algorithm is not a list of271

the actual species of an area, but rather a map of the distribution of the272

spectral communities available within the area that may be used to calculate273

several diversity indices. In particular we focused here on α- and β-diversity274

metrics. Both introduced by Whittaker (1972), the first reflects the mean275

species diversity in sites at a local scale whereas the second is an indicator276

of the spatial (or temporal) heterogeneity at a relatively larger scale. In the277

algorithm, α-diversity is calculated in a neighbourhood (plot) of n×n pixels278

by the Shannon diversity index (Shannon, 1948) calculated as follow:279

H ′ = −
N∑
s=1

ps ln ps (1)

where ps is the proportion of each spectral species s in each plot.280

The β-diversity indicator is instead computed by the Bray-Curtis (here-281

after BC) dissimilarity metric (Bray and Curtis, 1957):282

BC ij =

∑N
s=1|xis − xjs|∑N
s=1(xis + xjs)

(2)

where BC ij is the dissimilarity between plots i and j and xis and xjs are the283

abundances of spectral species s in plots i and j.284

In the spectral species algorithm, once the BC dissimilarity matrix be-285

tween all pairs of plots is computed, a multidimensional scaling is performed286

in order to translate information about the pairwise dissimilarity among P287

plots into a configuration of P points mapped in a 3-dimensional Cartesian288

space such as NMDS or PCoA (Mead, 1992). This simplified translation of289

the BC dissimilarity matrix can then be displayed as a colored map. More290

details can be found in Féret and de Boissieu (in press).291

While the Shannon index has a theoretical maximum limit corresponding292

to the ln(richness), the Bray-Curtis index ranges from 0 to 1, where 0 is293
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indicating that the two sites are identical whereas 1 indicates that the two294

sites do not share species. Hence, BC can be considered as an estimate of295

the heterogeneity of a certain area. The final aim of the method was to gen-296

erate an heterogeneity map across the study region. Strictly speaking, the297

method is a clustering approach which (i) divides the subspaces in spectral298

units and (ii) assigns it to spectral species from which (iii) different diver-299

sity maps can be obtained. Box 1 focuses in detail on the main steps of300

the algorithm, while the dedicated R package biodivMapR is now available301

(https://github.com/jbferet/biodivMapR) and fully described in Féret and302

de Boissieu (in press).303

2.1 Application of the algorithm304

Remote sensing data are usually provided as raster objects with a geographic305

coordinate system information, namely regular grids (matrices) or stacks of306

raster layers (e.g. one raster layer per band for multispectral or hyperspectral307

data), in which each cell represents a pixel with the corresponding reflectance308

value associated to a specific band. Such data have been manipulated with309

the Software R Development Core Team (2019). R can be used for remote310

sensing data analysis since it includes spatial functionalities throughout a311

suite of R packages like the rgdal and raster packages (see Box 2 for more312

information).313

Our main purpose was to apply the spectral species algorithm to a continental-314

scale geographical region such as Europe. Hence, Moderate Resolution Imag-315

ing Spectroradiometer (MODIS) data, with a spatial resolution of 500m cov-316

ering Europe, were downloaded from the United States Geological Survey317

(USGS) site (https://lpdaac.usgs.gov/products/mod09a1v006/). After318

a visual check of the images, in order to guarantee i) the coverage of a com-319

plete phenological period and to ii) avoid noise related to clouds, we referred320

to the RED and NIR bands from 2018 from January to December (one im-321

age per month), to calculate NDVI, by generating a sample set of 12 NDVI322

images (Figure 2).323

Due to the coarse spatial resolution of MODIS images (500m), the re-324

flectance related to a single plant species is averaged and mixed with the325

reflectance of other species within a single pixel. In other words, the direct326

relationship between spectral species detected in the spectral space versus327

the number of plant species does not hold true. However, in any case, from a328

diversity measurement perspective, this is just a matter of terms being used,329

with spectral species being actually more related to field plant communities,330

habitats or other ecological entities.331

For the derivation of spectral species, in order to define the number of332
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clusters, we relied on the highest number of clusters with stable results after333

a trial and error procedure, reaching 200 clusters, i.e. spectral species. Once334

pixels with similar NDVI values in 12 dimensions were clumped together,335

Shannon’s H ′ was calculated with a window size of 10x10 pixels and an out-336

put resolution of 5km. The attained α-diversity map quantitatively showed337

the local spectral diversity distribution over Europe (Figure 3), with a higher338

heterogeneity found in i) more topographically complex regions, mainly due339

to strong local differences induced by elevation gradients (passing from forests340

to grasslands, to rocks and snow), and/or differences in terms of seasonal-341

ity in relation with elevation, as in Rocchini et al. (2019), and in ii) more342

contrasted agricultural areas in both the spatial and temporal dimensions343

(Hobbs et al., 2006; Vihervaara et al., 2017). Concerning topographical com-344

plexity, the higher variability in areas with a marked topographical gradient345

might be related to shadows. Local field work in such areas will be needed346

to validate the measurements in such areas.347

β-diversity (Figure 3) showed a clear differentiation among different areas348

over Europe. The attained map was in line with the European Environmental349

Agency (EEA) map of ecoregions (Figure 4, see Mucher et al. (2009)). The350

correspondence of the achieved patterns in the two maps was apparent, with351

a similar contour of the major ecoregions such as the mediterranean, the352

atlantic, the continental, the boreal and the alpin regions. This demonstrates353

an intrinsic ability of the spectral species approach to capture differences354

in the physiological and functional properties of vegetation even at wide355

spatial scales, starting from spectral reflectance or spectral indices. Minor356

differences were mainly related to the biogegraphical (i.e., purely spatial)357

differentiation of ecoregions in the EEA map. As an example, north and358

south alpine ecoregions could not be distinguished by the spectral species359

approach, since they both have very similar conifer species composition, with360

the same physiological, phenological and thus spectral pattern.361

3 Discussion362

In this paper, for the first time, the spectral species concept has been ex-363

tended from the consideration of a single species to an entire community.364

We demonstrated that the combined use of the novel unsupervised cluster-365

ing method proposed by Féret and Asner (2014) with NDVI time series at366

European scale, allows the derivation of local (α) diversity and turnover (β)367

relying on free to use and operationally available satellite data.368

With regards to a potential validation with in-situ data, the uncertainty369

of wide-scale datasets hampers a spatial overlap. In this case, in-situ datasets370
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meet all five major concerns recently raised by Hobohm et al. (2019), i.e.:371

i) there is insufficient data coverage across Europe to make an unbiased372

comparison between predicted and actual distributions, ii) taxonomic stan-373

dards differ across sampled regions, iii) there are generally different shapes374

of areas being sampled, iv) political borders often define sampling areas and375

aggregated sampling areas, and v) data are not aggregated in the same way376

in all areas. Furthermore, spatial information has an intrinsic varying de-377

gree of relevance mainly due to the fact that, rather than species lists, it is378

composed of geometrical precision, attributes robustness and temporal con-379

sistency (Hobona et al., 2006). Finally, different models and approaches to380

measuring diversity inevitably provide different outputs, as pointed out in the381

generalised entropy theory put forward by Rényi (1961). Given the above382

validation difficulties, we decided to qualitatively compare our generated out-383

put, in particular the β-diversity map, with existing ecoregion maps, which384

are expected to discriminate different spatial areas based on natural bor-385

ders defined by biological diversity (https://ecoregions2017.appspot.com/)386

and thus are intrinsically related to differences in the species and spectral387

turnover of communities.388

Since the output of the algorithm represents the variation of the pixel389

values in space and time, the most diverse pixels were those with the highest390

turnover among the neighborhood areas and most affected by seasonality.391

The importance of accounting for turnover instead of simple richness has392

been widely discussed in the ecological literature (Tuomisto, 2010), since393

environmental variability over spatial gradients is one of the major drivers394

of the structure and composition of diversity (Legendre et al., 2005). In this395

view, the use of the “spectral species concept”, defined as the variation of396

clustered pixel values, represents a powerful approach for the investigation397

of gradient variation of diversity in space and, potentially, in time.398

In general, the measure of variability in space has been demonstrated399

to follow scale-based differentiation. In other words, results are expected400

to change with spatial scale in terms of both grain (spatial resolution) and401

extent (extent of geographical area of interest, Palmer at al. (2002)). Re-402

garding extent, one of the major weaknesses of the proposed algorithm in403

β-diversity quantification (although this applies in general to all measure-404

ments of turnover) is that by increasing the extent of an observation area,405

the estimated values for an individual comparison between sites are modified406

by the increasing spectral species pool.407

Additional drawbacks at the current stage of the algorithm include: i)408

the use of remotely sensed data which are not necessarily related to the main409

drivers of species distributions and of diversity, ii) the general multicollinear-410

ity found in most of the remotely sensed sets, iii) the unsupervised clustering411
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process being adopted.412

Concerning climate, a solution might be found in the use of remotely413

sensed derived climate data adding climate change as an additional layer414

of complexity as in Rocchini et al. (2015a) and in (Zellweger et al., 2019).415

Also in this case multicollinearity of climate variables should be seriously416

taken into account, as we did for the original remote sensing data, by ap-417

plying a PCA to reduce the noise in the data and detect potential artifacts;418

consequently, PCA components might also be visualized to find potential419

congruence between spectral species and real species patterns. Finally, the420

process for grouping pixels in spectral species is based on an unsupervised421

clustering, where the definition of the number of clusters should be done a-422

priori. In this case, we hypothesized that the diversity of types of landscapes423

and gradient of climates across Europe may require a large number of clusters424

to correctly differentiate among them, relying on a fuzzy view of ecosystems425

(Rocchini and Ricotta, 2007). Hence, we decided to adopt a trial and error426

procedure until a threshold was reached in which no significant changes were427

found. Such a threshold resulted in 200 clusters. In the near future, it would428

be interesting to make a sensitivity analysis to demonstrate the impact of429

the number of clusters on the final analysis.430

Considering the use of remote sensing for species diversity estimates, cor-431

relation and determination coefficients are generally statistically significant432

but low, hampering the direct use of remotely sensed diversity in simple uni-433

variate models (Rocchini et al., 2018). In fact, the relationship between α-434

or β-diversity and habitat heterogeneity, which is the founding principle for435

the use of remote sensing data for these analyses, is rarely linear (Ferrier et436

al., 2007), mainly because of variation in the rate of species turnover along437

an environmental gradient. However, remotely sensed variables are generally438

well suited in more complex multivariate models accounting for part of the439

diversity explained for species communities (Rocchini et al., 2018). This is es-440

pecially true considering that environmental turnover generally explains more441

variation in species diversity rather than mere spatial structure (Hernandez-442

Stefanoni et al., 2012). Moreover, based on their high temporal resolution,443

remote sensing data might be useful to detect drastic changes of diversity444

in space and time, e.g. related to catastrophic events, overall considering445

the intrinsic difficulties in relying on in-situ data for wide geographical scales446

(Cord and Rödder, 2011; Hobohm et al., 2019).447

From an ecological perspective, remote sensing imagery bands (dimen-448

sions) show a high affinity with the hypervolume axes proposed by Hutchin-449

son (1957) for modelling species niches. In the Hutchinson’s theory, an hy-450

pervolume is represented by a space defined by a set of n independent axes451

which could be related to the final variables driving the realised niche of a452
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species (see also Blonder (2017) and Ricotta et al. (2010) on the niche dif-453

ferentiation concept). In our case, such axes would be the original satellite454

sensor bands being strictly related to the identification of a spectral species455

and the resulting spectral community in a site, instead of a niche. From this456

point of view, spectral species and communities are in line with joint species457

distribution models (JSDMs), which explicitly take into account biotic inter-458

actions among species in a community, while in our model the “interaction”459

among pixel values is ruled out in general by their proximity both from a460

spatial and from a spectral point of view. In this paper, the final aim was461

not to model single spectral species or spectral communities but rather to462

estimate diversity and its change over space and time, following the mathe-463

matical principles described in Liu et al. (2014) and Rocchini et al. (2015b),464

for which the distribution of diversity over space is actually a particular case465

of the so-called switched systems, i.e. hybrid systems resulting from both466

continuous and discrete dynamics with a high number of different poten-467

tial variables acting as main drivers of diversity response. In our view we468

succeeded here to fill a previous gap in spatio-ecological analysis, i.e. the469

translation of what in remote sensing science is known as “spectral mixture470

modeling” (Jensen, 2015) into an ecological diversity theory approach. In471

spectral mixture modeling the measured spectral reflectance is decomposed472

as a mixture of endmembers. In our case, such a mixture was used to di-473

rectly compute alpha- and beta-diversity over wide spatial areas in a very474

short time.475

4 Conclusion476

Predicting and mapping α- and β-diversity using remotely sensed images ac-477

quired over large areas is currently a key topic in ecology, and could provide478

landscape managers with rapid and effective tools to estimate and monitor479

global change. In this paper, we proposed a novel method based on prelimi-480

nary unsupervised clustering of spectral data (NDVI time series derived from481

MODIS data), assigning each pixel to a “spectral species” and then calculat-482

ing diversity based on a dissimilarity metric. At the scale of this study, the483

one-to-one relationship between spectral species and in-situ plant species is484

not achieved, but the spectral species concept still holds true once consid-485

ering that the detected spectral species in the spectral space are related to486

higher-order plant hierarchies (assemblages, entire habitats, etc.). That is,487

from an algorithmic point of view, the bulk of the calculations are unaltered.488

Based on the results presented here, the use of the spectral species and489

communities concept would appear to promote more effective planning and490
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policies related to the conservation of wild species, by improving our under-491

standing of the dynamics of local and global biodiversity at various spatial492

and temporal scales.493
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Figure 1: Diagrammatic representation of the steps of the algorithm used to
achieve α- and β-diversities, redrawn from (Féret and Asner, 2014). Pixels
are clumped in a spectral species and spectral community diversity is calcu-
lated. We refer to the main text and to Box 1 for additional information.
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Figure 2: An input set of n images can be handled to create a time series
and use the stack to further calculate the spectral community diversity. In
our paper, a stack of 12 NDVI images of 2018 from the MODIS sensor was
processed by the spectral species algorithm, by producing α- and β-diversity
maps.
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(a)

(b)

Figure 3: α- (a) and β-diversity (b) maps obtained by the spectral species
algorithm. (a) The α-diversity map, based on Shannon’s H ′ index (ranging
from blue [low values] to light green [high values]) calculated in a 10x10
pixels local neighbourhood, corresponds to the local entropy of clusters, so
that each location is independent from the others; (b) The β-diversity map
- Bray-Curtis dissimilarity reduced to 3 dimensions with NMDS - provides
information about the dissimilarity among any location in the image. Here,
the distance between pairs of spatial units is expressed as a 3 colour code.
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Figure 4: European Environmental Agency ecoregions map redrawn by
Mucher et al. (2009). Similar maps at a coarser grain are provided by
Mouchet et al. (2015) and Dinerstein et al. (2017).
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Box 1 - Steps composing the spectral species771

algorithm772

1. A Principal Component Analysis (PCA) is applied to the spectral data.773

PCA is not performed on the whole image, but only on a large subset774

of pixels randomly selected from the image. Due to the high dimen-775

sionality of the data, the reduction of the dataset is not altering the776

result. Those principal components explaining most of the variance of777

the original set are then retained for further steps.778

2. A subset of pixels is then randomly selected across the entire map and779

the spectral space containing such a subset is partitioned into spectral780

species using k-means clustering with the number of k clusters being781

decided a priori. Then the centroids defining the spectral species are782

located.783

3. The spectral dataset is divided into final mapping units. Each pixel784

is assigned to a given spectral species based on the minimal Euclidean785

distance between pixels (Peuquet, 1992) and the previously defined786

centroids.787

4. A spectral species distribution is obtained for each mapping unit from788

which the α- and β-diversity indices are computed as previously stated.789

5. Since the spectral species distribution is obtained by a subset of pixels,790

in order to avoid under-representation of some small-scaled ecological791

classes (e.g. small scale vegetation patterns), steps 4 and 5 are repeated792

100 times, and the indicators obtained for each repetition are averaged.793

In particular the Bray-Curtis dissimilarity matrix is computed for each794

pair of spatial units, based on their spectral species distribution at each795

iteration; then the final matrix corresponds to the BC dissimilarity796

averaged over all the iterations.797

6. Non metric Multidimensional Scaling (NMDS) (e.g. Borg and Groenen798

(2005)) is applied to the matrices in order to obtain a visual representa-799

tion of the results. NMDS is an ordination technique usually applied in800

ecology that differs from other ordination techniques as PCA, since in801

NMDS a small number of axes are chosen prior to the analysis and then802

the data are fitted into the chosen dimensions. Furthermore, NMDS803
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is not an analytical but numerical technique, seeking for the right so-804

lution (convergence) iteratively. Finally, NMDS is not an eigenvector-805

eigenvalue technique, hence a NMDS ordination can be rotated among806

the axes. NMDS is mostly used in ecology for its versatility since it807

accepts any distance measure of the samples. In this case the Bray-808

Curtis matrix was used. In the applied NMDS approach, the first step809

is generally to decide the number of reduced dimensions; in this case810

3 dimensions were chosen. The algorithm starts with the construction811

of initial random arrangements of the pixels. Then the Euclidean dis-812

tances among the samples is calculated in this first configuration; those813

distances are regressed against the original distance matrix, and the814

predicted ordination distances are calculated. Finally, the regression is815

fitted by the least-squares method. The goodness of fit is measured by816

the sum of squared differences between ordination-based distances and817

the predicted distances. The goodness of fit is calculated through the818

Kruskal’s Stress index:819

Stress =

√√√√ [r]
∑

h,i(dhi − d̂hi)2

[r]
∑

h,id
2
hi

(3)

where dhi is the ordinated distance between pixels h and i, and d̂hi is the820

distance predicted from the regression. Then, a new configuration is821

computed moving in the direction in which stress changes most rapidly.822

The entire procedure is repeated until convergence. A Stress value823

that provides an excellent representation in the reduced dimensions is824

considered to be lower than 0.05; nevertheless a value of Stress < 0.2825

is still considered a good representation Borg and Groenen (2005).826

Basically, the algorithm provides both single spectral species maps and827

the α- and β-diversity maps. The algorithm input file needs to be in ENVI828

binary format with the corresponding header file. The file should be in Band829

Interleave by Line (BIL) format and 2-byte signed integer, and should not830

have extension. A further masking file in the same format is necessary in831

order to mask clouds and water surfaces.832
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Box 2 - Packages used in this manuscript to833

handle and analyse spatial data in R834

• raster: It provides classes and functions to manipulate geographic835

data in raster format. Raster data divides space into cells (as pixels) of836

equal size (in units of the coordinate reference system). Along with the837

raster package, the sp package is also loaded, which provides spatial838

object classes and methods to retrieve coordinates.839

• rgdal: It provides functions to import ad export spatial data in differ-840

ent formats.841

• RStoolbox: A toolbox for remote sensing image processing and analy-842

sis.843

• rasterdiv: It provides algorithms for measuring diversity from spatial844

matrices.845
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