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Sample Python Code Snippet to Access Neo4COVID19 Database 
via API 
 

 

Details on how to install the “py2neo” Python library [1], [2] are provided at 

https://py2neo.org/v4/. 

  

Sample Python code snippet to connect to the Neo4j database and retrieve the result of the 

CYPHER query [3]. 

 

from py2neo import * 

graph = Graph(host="neo4covid19.ncats.io", bolt_port=7687, user='', password = '', secure = True) 

graph.run("MATCH (t:Target) RETURN t LIMIT 5").data() 

 

Furthermore, a script distributed as part of the https://github.com/ncats/neo4covid19 source code 

repository [4] provides specific examples to query the Neo4COVID19 database. The file is 

located under neo4covid19/code/generate_stats.py  where the “neo4covid19/” part of the 

path is the root of the repository.  

  



Pseudo-Code of the Data Integration Workflow 
 

Here we provide the pseudo-code of the data integration workflow conceptualized by Fig 1. The 

name of the variables associated with input data sources is identical to the label of the respective 

data track.  

 

Algorithm 

Input: data frame A    // HPIs 
Input: data frame B    // HPIs 
Input: data frame C    // host proteins 
Input: data frame D    // host proteins 
Input: data frame E    // DTIs 
Input: data frame F    // DTIs 
Input: data frame G    // host proteins 
Input: data frame H    // host proteins 
Input: data frame K    // HHIs 
Input: data frame L    // TDLs 
 
 
Variable: map (String, Int) priorityMap{} 
Variable: data frame allHPIs 
Variable: data frame allHHIs 
Variable: data frame allDTIs 
Variable: data frame uniqueHostProteins 
Variable: data frame uniqueVirusProteins 
Variable: data frame uniqueDrugs 
Variable: data frame proteins 
Variable: data frame I_forward  // HHIs from SmartGraph (forward direction) 
Variable: data frame I_reverse  // HHIs from SmartGraph (reverse direction) 
Variable: data frame I    // HHIs from SmartGraph 
Variable: data frame J    // HHIs from STRING 
 
 
priorityMap = assignPriorityValues ([A, B, C, D, E, F, G, H, I, J]) 
 
[A, B] = harmonizeVirusProteinIdentifiers ([A, B]) 
 
[A, B] = harmonizeHPIDataStructure ([A, B]) 
 
[C, D, G, H] = harmonizeHostProteinDataStructure ([C, D, G, H]) 
 



[E, F] = harmonizeDTIDataStructure ([E, F]) 
 
[A, B, C, D, E, F, G, H] = recordDataProvenance ([A, B, C, D, E, F, G, H]) 
 
[A, B, C, D, E, F, G, H]  = annotateDataSourcePriority (priorityMap, [A, B, C, D, E, F, G, H]) 
 
 
allHPIs = appendByRows([A, B]) 
 
allHPIs = deduplicateByPriority (allHPIs) 
 
 
uniqueHostProteins = extractUniqueHostProteins ([allHPIs, C, F, G, H]) 

 
 
uniqueVirusProteins = extractUniqueVirusProteins ([allHPIs]) 

 
 
 
allDTIs = appendByRow ([E, F]) 
 
allDTIs = deduplicateByPriority (allDTIs) 
 
uniqueDrugs = extractUniqueDrugs (allDTIs) 
 
 
 
J = extendHHIsByStringApp (uniqueHostProteins, species_ncbi = 9606, limit_of_mapped_genes = 1, 

max_interactor = 100, score_cutoff = 0, alpha = 0.5) 
 
 
I_forward = expandHHIsBySmartGraph (D, uniqueHostProteins, maxDistance = 3, minConfidence = 0) 
 
I_reverse = expandHHIsBySmartGraph (uniqueHostProteins, D, maxDistance = 3, minConfidence = 0) 
 
I = appendByRow (I_forward, I_reverse) 
 
 
 
[I, J, K] = harmonizeHHIDataStructure ([I, J, K]) 
 
[I, J, K] = recordDataProvenance ([I, J, K]) 
 
[I, J] = annotateDataSourcePriority (priorityMap, I, J) 
 
allHHIs = appendByRow ([I, J]) 
 
allHHIs = deduplicateByPriority (allHHIs) 
 



allHHIs = overlayReferenceHHIData (allHHIs, K) 
 
 
 
proteins = extractUniqueHostProteins ([I, J]) 
 
uniqueHostProteins = appendByRows([uniqueHostProteins, proteins]) 
 
uniqueHostProteins = appendByRows([uniqueHostProteins, proteins]) 
 
uniqueHostProteins = annotateTDL (uniqueHostProteins, L) 
 
populateNeo4jDatabase (uniqueHostProteins, uniqueVirusProteins, 

uniqueDrugs, allHHIs, allHPIs, allDTIs)  



Reproducing the Integration Workflow 
 
In order to reproduce the workflow, provided the required Python [1] environment has been set 

up, a local copy of the neo4covid19 repository needs to be created as follows. 

git clone https://github.com/ncats/neo4covid19 

 

Note, that paths referring to files in this manuscript start with “neo4covid19”. In this context, 

neo4covid19 points to the root directory of the local copy of the cloned repository.  

 

The first stage of the workflow is executed as: 

python prepare.py 

 

In case an error occurs due to an API call, try this command instead: 

python prepare.py test 

 

This is followed by assembling the SmartGraph subnetwork. For details, please refer to section 

“Assembly of the SmartGraph Subnetwork”. 

 

The last stage of the workflow is executed as: 

python compile.py 

 

Or, in the case of an API call error: 

python compile.py test 

 

 



Assembly of the SmartGraph Subnetwork 
 
 
In order to reveal potential connection between histone acetyltransferases (HATs) and SARS-

CoV-2 virus implicated host proteins (VIHPs), we performed network analysis with the help of 

the SmartGraph platform [5]. Since a set of VIHPs is compiled in the integration workflow, it 

was necessary to implement a breakpoint in the workflow. Upon completion of the first part of 

the workflow, SmartGraph analysis is performed, and the results are subsequently fed to the 

second stage of the workflow to finish the integration. While this scenario is not ideal, at the time 

of the workflow creation, the SmartGraph platform did not provide API access. 

 

The gene names of VIHPs were mapped to UniProt IDs [6], [7] to comply with the SmartGraph 

input requirements. First, VIHPs present in the file chembl_uniprot_mapping.txt (distributed as part 

of ChEMBL database, version 27 [8]) were identified. Next, with the help of UniProt (API) [7], 

[9] the UniProt IDs of these genes were retrieved. 

 

These are the detailed step to assemble the SmartGraph subnetwork. Assuming you have created 

a local copy of the neo4covid19 repository (see above), perform the following steps: 

 

1. Go to SmartGraph (https://smartgraph.ncats.io). 

2. Clear the fields "Start Nodes" and "End Nodes" then click on "clear graph". 

3. Copy the IDs in column ‘uniprot_id’ of file neo4covid19/data/input/HATs.tsv (note that the 

“neo4covid19” points to the root of the neo4covid19 repository). Insert this set of UniProt IDs as "Start 

Nodes" in SmartGraph (https://smartgraph.ncats.io). 

 



4. Copy the UniProt IDs from the output of Step 1 located 

at neo4covid19/data/output/unique_host_proteins_prestring.txt . Copy the UniProt IDs and insert 

them as "End Nodes" in SmartGraph. 

5. Set the "Max Distance" parameter to 3. 

6. Leave the "PPI Confidence Level" to its default value, i.e. 0.00. 

7. Click on "find shortest path". 

8. Once the network is assembled in SmartGraph, click on "Download graph", select "Cytoscape 

JSON", then rename the downloaded file to SG_HATs_dist_3_conf_0.00.json and place the file 

into neo4covid19/data/input/. 

9. Repeat steps 2-7 but this time use the HATs as “End Nodes” and the UniProt IDs in 

neo4covid19/data/output/unique_host_proteins_prestring.txt as “Start Nodes”. 

10. Save the resultant network in "Cytoscape JSON" format and save it 

as SG_HATs_reverse_dist_3_conf_0.00.json and place the file into neo4covid19/data/input/. 

 
  



Expansion of HHIs via StringApp API 
 
 

Expanding the HHIs present in a preliminary Neo4COVID-19 network was performed in a two-

step procedure employing the STRING [10] and stringApp APIs [11]. 

 

In the first step, the gene symbols of human proteins in pre-expanded Neo4COVID-19 network 

were translated into the STRING database identifiers with the STRING API. We utilized the 

following URL for this API call: https://string-db.org/api/tsv-no-header/get_string_ids . Gene 

symbols were passed to parameter identifiers as a newline “\n” separated string (without 

quotation marks). Mapping of gene identifiers was forced to a one-to-one mapping by selecting 

the “best” STRING ID for a given gene symbol by setting limit to 1. In addition, we limited the 

mapping to human genes only by setting species to 9606; we included the original IDs in the 

results by setting echo_query to 1; and we provided a string to our liking for caller_identity. 

 

Next, with the returned STRING database IDs we made a second API call to URL 

https://api.jensenlab.org/network . The STRING database IDs were passed to the 

entities parameter as a newline “\n” separated string. The additional parameter was set to 

100, which defines the maximal number of proteins the original network can be extended with. 

Parameter alpha was set to its default value of 0.5.  

 

The basis of the expansion is the computation of a connectivity score for proteins not in the 

query network. The connectivity score is a ratio of the total connectivity score of a given protein 

to the query proteins versus its total connectivity score to all proteins in STRING database [Ref]. 



For more details, please refer to the section “Network Expansion” in the study of Doncheva et al. 

[11]. 

 

Of note, the following genes present in the pre-extension network were excluded from the 

STRING extension process as they produced errors when included into the API call: ELOC, 

EP300, SLC25A5, TUBA1A, STAT1, ELOB, RBX1, CREBBP, SKP1. 

 

Applying Custom Visual Style to the Imported Network in 
Cytoscape 

 
 
The file containing the custom Cytoscape [12] visual style (style_Neo4COVID19.xml) is 

distributed as part of the Neo4COVID19 code repository (neo4covid19/code/ 

style_Neo4COVID19.xml) [4]. The process of importing and applying the custom style is shown 

on Fig S2. 

 
 

Mapping of Viral Gene Names 

 

We have established a mapping between the viral gene names predicted by P-HIPSTer [13], [14] 

and those reported in the interactome study by [15], [16] The mapping is provided on sheets  

“ID_Mapping” and “Sheet1_MappedIDs” in the file data/output/Merged.xlsx in the neo4covid19 

repository [4]. 

  



Reproducing the Use Cases 
 

1. Network assembly 

• Establish network connection: 

Apps > Cypher Queries > Connect to Neo4j Instance 

Provide aspire.covid19.ncats.io:7687 as Hostname, leave rest of the form empty, then click on 

Connect. 

• Import bipartite HPI network 

Apps > Cypher Queries > Import Cypher Query 

Enter this Cypher Query: 

match (n)-[r:INTERACTS]->(m) WHERE r.interaction_type="HPI" return n,r,m 

Click on Execute Query. 

 

2. Apply visual style 

• Please refer to “Applying Custom Visual Style to the Imported Network in Cytoscape” section in SI.  

3. Topology analysis 

• Tools -> NetworkAnalyzer -> Network Analysis -> Analyze Network ... 

Select Treat the network as directed. , click on OK  

4. Adjust node size as a function of “EdgeCount” 

• Click on Style on the left panel and select Neo4COVID19 in the drop-down box. 

• Click on Node on the bottom of the visualization panel. 

• Select Size, set Column to EdgeCount, then set Mapping to Continuous Mapping. 

• Adjust the gradient as shown on the small panel until there is a good separation between low and high 

degree nodes.  

 
  



Figures 

 
 
Figure S1. Process of importing the COVID-19 focused network from Neo4j into 

Cytoscape. A) Installing the “Cytoscape Neo4j Plugin” [17] by navigating to “Apps -> App 

Manager…”, typing “Cytoscape Neo4j Plugin” in the search bar, selecting the plugin from the 

results and finally clicking “Install”. B) Establishing Neo4j database connection (“Apps > Cypher 

Queries > Connect to Neo4j Instance”). Note, that neither username nor password is required. 

Host: aspire.covid19.ncats.io:7687 . C) Cypher query to import the entire Neo4COVID19 

network into Cytoscape (“Apps > Cypher Queries > Import Cypher Query”, query: match (n)-[r]->(m) 

return n,r,m ) . D) Resultant network (after applying the custom visual settings). Nodes 

representing host and viral proteins, and drugs are denoted by circle, “V”, and diamond shaped 

nodes. Where applicable, the target development category (TDL) [18], [19] of proteins are color-

coded according to legend. Screenshots were made from the Cytoscape application.  



 
 
 
Figure S2. Customizing network visualization. A) Importing the “style_Neo4COVID19.xml” 

file that contains the custom visual style definition. B) Applying the custom visual style 

“Neo4COVID19”. 

  



Tables 
 

Target Compound 

attribute type attribute type 
gene_symbol string drug_name string 
target_type string smiles string 
tdl string inchi string 
uniprot string inchi_key string 
is_in_preprint boolean ns_inchi_key string 
is_in_phipster boolean CAS_RN string 
is_in_taiml boolean struct_id string 
is_in_jdti boolean is_in_drugcentral boolean 
is_in_string boolean is_in_jdti boolean 
is_in_hats boolean is_in_hcq boolean 
is_in_natdt boolean is_in_nhc boolean 
is_in_drugcentral boolean is_in_cam boolean 
is_in_crispr boolean is_in_drugs boolean 
metadata string metadata string 
uuid string uuid string 
      

 

Table S1. Node attributes of the Neo4COVID19 graph database. 
 
  



Interacts DTI 

attribute type attribute type 
source_node string edge_label string 
target_node string drug_name string 
interaction_type string source_node string 
interaction string target_node string 
mechanism string action_type string 
reactome_mechanism string p_chembl numeric 
reactome_regdir string is_activity_known boolean 
reactome_score numeric priority integer 
metadata string source string 
comment string relationship string 
pmids string comment string 
priority integer pmids string 
source string metadata string 
data_origin string is_in_drugcentral boolean 
relationship string is_in_jdti boolean 
source_specific_score numeric source_node_uuid string 
is_in_preprint boolean target_node_uuid string 
is_in_phipster boolean uuid string 
is_in_string boolean   
is_in_hats boolean     
is_in_reactome boolean     
source_node_uuid string     
target_node_uuid string     
uuid string     

 

Table S2. Edge attributes of the Neo4COVID19 graph database. 
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