
Supporting Information

A Workflow of Integrated Resources to Catalyze Network-

Pharmacology Driven COVID-19 Research

Gergely Zahoránszky-Kőhalmi *,1, Vishal B. Siramshetty1, Praveen Kumar2,3, Manideep Gurumurthy1,

Busola Grillo1, Biju Mathew1, Dimitrios Metaxatos1, Mark Backus1, Tim Mierzwa1, Reid Simon1, Ivan

Grishagin1,4, Laura Brovold4, Ewy A. Mathé1, Matthew D. Hall1, Samuel G. Michael1, Alexander G.

Godfrey1, Jordi Mestres5, Lars J. Jensen6, Tudor I. Oprea*,2, 6, 7, 8

1National Center for Advancing Translational Sciences, Rockville, MD, USA

2Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA

3Department of Computer Science, University of New Mexico, Albuquerque, New Mexico, USA

4 Rancho BioSciences LLC., San Diego, CA USA

5Research Group on Systems Pharmacology, Research Program on Biomedical Informatics (GRIB), IMIM Hospital del Mar

Medical Research Institute and University Pompeu Fabra, Barcelona, Catalonia, Spain.

6Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen,
Copenhagen, Denmark

7UNM Comprehensive Cancer Center, Albuquerque, NM, USA

8Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of
Gothenburg, Gothenburg, Sweden

*Corresponding authors:

Tudor I. Oprea, MD, PhD: toprea@salud.unm.edu

Gergely Zahoranszky-Kohalmi, PhD: gzahoranszky@gmail.com

Sample Python Code Snippet to Access Neo4COVID19 Database
via API

Details on how to install the “py2neo” Python library [1], [2] are provided at

https://py2neo.org/v4/.

Sample Python code snippet to connect to the Neo4j database and retrieve the result of the

CYPHER query [3].

from py2neo import *

graph = Graph(host="neo4covid19.ncats.io", bolt_port=7687, user='', password = '', secure = True)

graph.run("MATCH (t:Target) RETURN t LIMIT 5").data()

Furthermore, a script distributed as part of the https://github.com/ncats/neo4covid19 source code

repository [4] provides specific examples to query the Neo4COVID19 database. The file is

located under neo4covid19/code/generate_stats.py where the “neo4covid19/” part of the

path is the root of the repository.

Pseudo-Code of the Data Integration Workflow

Here we provide the pseudo-code of the data integration workflow conceptualized by Fig 1. The

name of the variables associated with input data sources is identical to the label of the respective

data track.

Algorithm

Input: data frame A // HPIs
Input: data frame B // HPIs
Input: data frame C // host proteins
Input: data frame D // host proteins
Input: data frame E // DTIs
Input: data frame F // DTIs
Input: data frame G // host proteins
Input: data frame H // host proteins
Input: data frame K // HHIs
Input: data frame L // TDLs

Variable: map (String, Int) priorityMap{}
Variable: data frame allHPIs
Variable: data frame allHHIs
Variable: data frame allDTIs
Variable: data frame uniqueHostProteins
Variable: data frame uniqueVirusProteins
Variable: data frame uniqueDrugs
Variable: data frame proteins
Variable: data frame I_forward // HHIs from SmartGraph (forward direction)
Variable: data frame I_reverse // HHIs from SmartGraph (reverse direction)
Variable: data frame I // HHIs from SmartGraph
Variable: data frame J // HHIs from STRING

priorityMap = assignPriorityValues ([A, B, C, D, E, F, G, H, I, J])

[A, B] = harmonizeVirusProteinIdentifiers ([A, B])

[A, B] = harmonizeHPIDataStructure ([A, B])

[C, D, G, H] = harmonizeHostProteinDataStructure ([C, D, G, H])

[E, F] = harmonizeDTIDataStructure ([E, F])

[A, B, C, D, E, F, G, H] = recordDataProvenance ([A, B, C, D, E, F, G, H])

[A, B, C, D, E, F, G, H] = annotateDataSourcePriority (priorityMap, [A, B, C, D, E, F, G, H])

allHPIs = appendByRows([A, B])

allHPIs = deduplicateByPriority (allHPIs)

uniqueHostProteins = extractUniqueHostProteins ([allHPIs, C, F, G, H])

uniqueVirusProteins = extractUniqueVirusProteins ([allHPIs])

allDTIs = appendByRow ([E, F])

allDTIs = deduplicateByPriority (allDTIs)

uniqueDrugs = extractUniqueDrugs (allDTIs)

J = extendHHIsByStringApp (uniqueHostProteins, species_ncbi = 9606, limit_of_mapped_genes = 1,

max_interactor = 100, score_cutoff = 0, alpha = 0.5)

I_forward = expandHHIsBySmartGraph (D, uniqueHostProteins, maxDistance = 3, minConfidence = 0)

I_reverse = expandHHIsBySmartGraph (uniqueHostProteins, D, maxDistance = 3, minConfidence = 0)

I = appendByRow (I_forward, I_reverse)

[I, J, K] = harmonizeHHIDataStructure ([I, J, K])

[I, J, K] = recordDataProvenance ([I, J, K])

[I, J] = annotateDataSourcePriority (priorityMap, I, J)

allHHIs = appendByRow ([I, J])

allHHIs = deduplicateByPriority (allHHIs)

allHHIs = overlayReferenceHHIData (allHHIs, K)

proteins = extractUniqueHostProteins ([I, J])

uniqueHostProteins = appendByRows([uniqueHostProteins, proteins])

uniqueHostProteins = appendByRows([uniqueHostProteins, proteins])

uniqueHostProteins = annotateTDL (uniqueHostProteins, L)

populateNeo4jDatabase (uniqueHostProteins, uniqueVirusProteins,

uniqueDrugs, allHHIs, allHPIs, allDTIs)

Reproducing the Integration Workflow

In order to reproduce the workflow, provided the required Python [1] environment has been set

up, a local copy of the neo4covid19 repository needs to be created as follows.

git clone https://github.com/ncats/neo4covid19

Note, that paths referring to files in this manuscript start with “neo4covid19”. In this context,

neo4covid19 points to the root directory of the local copy of the cloned repository.

The first stage of the workflow is executed as:

python prepare.py

In case an error occurs due to an API call, try this command instead:

python prepare.py test

This is followed by assembling the SmartGraph subnetwork. For details, please refer to section

“Assembly of the SmartGraph Subnetwork”.

The last stage of the workflow is executed as:

python compile.py

Or, in the case of an API call error:

python compile.py test

Assembly of the SmartGraph Subnetwork

In order to reveal potential connection between histone acetyltransferases (HATs) and SARS-

CoV-2 virus implicated host proteins (VIHPs), we performed network analysis with the help of

the SmartGraph platform [5]. Since a set of VIHPs is compiled in the integration workflow, it

was necessary to implement a breakpoint in the workflow. Upon completion of the first part of

the workflow, SmartGraph analysis is performed, and the results are subsequently fed to the

second stage of the workflow to finish the integration. While this scenario is not ideal, at the time

of the workflow creation, the SmartGraph platform did not provide API access.

The gene names of VIHPs were mapped to UniProt IDs [6], [7] to comply with the SmartGraph

input requirements. First, VIHPs present in the file chembl_uniprot_mapping.txt (distributed as part

of ChEMBL database, version 27 [8]) were identified. Next, with the help of UniProt (API) [7],

[9] the UniProt IDs of these genes were retrieved.

These are the detailed step to assemble the SmartGraph subnetwork. Assuming you have created

a local copy of the neo4covid19 repository (see above), perform the following steps:

1. Go to SmartGraph (https://smartgraph.ncats.io).

2. Clear the fields "Start Nodes" and "End Nodes" then click on "clear graph".

3. Copy the IDs in column ‘uniprot_id’ of file neo4covid19/data/input/HATs.tsv (note that the

“neo4covid19” points to the root of the neo4covid19 repository). Insert this set of UniProt IDs as "Start

Nodes" in SmartGraph (https://smartgraph.ncats.io).

4. Copy the UniProt IDs from the output of Step 1 located

at neo4covid19/data/output/unique_host_proteins_prestring.txt . Copy the UniProt IDs and insert

them as "End Nodes" in SmartGraph.

5. Set the "Max Distance" parameter to 3.

6. Leave the "PPI Confidence Level" to its default value, i.e. 0.00.

7. Click on "find shortest path".

8. Once the network is assembled in SmartGraph, click on "Download graph", select "Cytoscape

JSON", then rename the downloaded file to SG_HATs_dist_3_conf_0.00.json and place the file

into neo4covid19/data/input/.

9. Repeat steps 2-7 but this time use the HATs as “End Nodes” and the UniProt IDs in

neo4covid19/data/output/unique_host_proteins_prestring.txt as “Start Nodes”.

10. Save the resultant network in "Cytoscape JSON" format and save it

as SG_HATs_reverse_dist_3_conf_0.00.json and place the file into neo4covid19/data/input/.

Expansion of HHIs via StringApp API

Expanding the HHIs present in a preliminary Neo4COVID-19 network was performed in a two-

step procedure employing the STRING [10] and stringApp APIs [11].

In the first step, the gene symbols of human proteins in pre-expanded Neo4COVID-19 network

were translated into the STRING database identifiers with the STRING API. We utilized the

following URL for this API call: https://string-db.org/api/tsv-no-header/get_string_ids . Gene

symbols were passed to parameter identifiers as a newline “\n” separated string (without

quotation marks). Mapping of gene identifiers was forced to a one-to-one mapping by selecting

the “best” STRING ID for a given gene symbol by setting limit to 1. In addition, we limited the

mapping to human genes only by setting species to 9606; we included the original IDs in the

results by setting echo_query to 1; and we provided a string to our liking for caller_identity.

Next, with the returned STRING database IDs we made a second API call to URL

https://api.jensenlab.org/network . The STRING database IDs were passed to the

entities parameter as a newline “\n” separated string. The additional parameter was set to

100, which defines the maximal number of proteins the original network can be extended with.

Parameter alpha was set to its default value of 0.5.

The basis of the expansion is the computation of a connectivity score for proteins not in the

query network. The connectivity score is a ratio of the total connectivity score of a given protein

to the query proteins versus its total connectivity score to all proteins in STRING database [Ref].

For more details, please refer to the section “Network Expansion” in the study of Doncheva et al.

[11].

Of note, the following genes present in the pre-extension network were excluded from the

STRING extension process as they produced errors when included into the API call: ELOC,

EP300, SLC25A5, TUBA1A, STAT1, ELOB, RBX1, CREBBP, SKP1.

Applying Custom Visual Style to the Imported Network in
Cytoscape

The file containing the custom Cytoscape [12] visual style (style_Neo4COVID19.xml) is

distributed as part of the Neo4COVID19 code repository (neo4covid19/code/

style_Neo4COVID19.xml) [4]. The process of importing and applying the custom style is shown

on Fig S2.

Mapping of Viral Gene Names

We have established a mapping between the viral gene names predicted by P-HIPSTer [13], [14]

and those reported in the interactome study by [15], [16] The mapping is provided on sheets

“ID_Mapping” and “Sheet1_MappedIDs” in the file data/output/Merged.xlsx in the neo4covid19

repository [4].

Reproducing the Use Cases

1. Network assembly

• Establish network connection:

Apps > Cypher Queries > Connect to Neo4j Instance

Provide aspire.covid19.ncats.io:7687 as Hostname, leave rest of the form empty, then click on

Connect.

• Import bipartite HPI network

Apps > Cypher Queries > Import Cypher Query

Enter this Cypher Query:

match (n)-[r:INTERACTS]->(m) WHERE r.interaction_type="HPI" return n,r,m

Click on Execute Query.

2. Apply visual style

• Please refer to “Applying Custom Visual Style to the Imported Network in Cytoscape” section in SI.

3. Topology analysis

• Tools -> NetworkAnalyzer -> Network Analysis -> Analyze Network ...

Select Treat the network as directed. , click on OK

4. Adjust node size as a function of “EdgeCount”

• Click on Style on the left panel and select Neo4COVID19 in the drop-down box.

• Click on Node on the bottom of the visualization panel.

• Select Size, set Column to EdgeCount, then set Mapping to Continuous Mapping.

• Adjust the gradient as shown on the small panel until there is a good separation between low and high

degree nodes.

Figures

Figure S1. Process of importing the COVID-19 focused network from Neo4j into

Cytoscape. A) Installing the “Cytoscape Neo4j Plugin” [17] by navigating to “Apps -> App

Manager…”, typing “Cytoscape Neo4j Plugin” in the search bar, selecting the plugin from the

results and finally clicking “Install”. B) Establishing Neo4j database connection (“Apps > Cypher

Queries > Connect to Neo4j Instance”). Note, that neither username nor password is required.

Host: aspire.covid19.ncats.io:7687 . C) Cypher query to import the entire Neo4COVID19

network into Cytoscape (“Apps > Cypher Queries > Import Cypher Query”, query: match (n)-[r]->(m)

return n,r,m) . D) Resultant network (after applying the custom visual settings). Nodes

representing host and viral proteins, and drugs are denoted by circle, “V”, and diamond shaped

nodes. Where applicable, the target development category (TDL) [18], [19] of proteins are color-

coded according to legend. Screenshots were made from the Cytoscape application.

Figure S2. Customizing network visualization. A) Importing the “style_Neo4COVID19.xml”

file that contains the custom visual style definition. B) Applying the custom visual style

“Neo4COVID19”.

Tables

Target Compound

attribute type attribute type
gene_symbol string drug_name string
target_type string smiles string
tdl string inchi string
uniprot string inchi_key string
is_in_preprint boolean ns_inchi_key string
is_in_phipster boolean CAS_RN string
is_in_taiml boolean struct_id string
is_in_jdti boolean is_in_drugcentral boolean
is_in_string boolean is_in_jdti boolean
is_in_hats boolean is_in_hcq boolean
is_in_natdt boolean is_in_nhc boolean
is_in_drugcentral boolean is_in_cam boolean
is_in_crispr boolean is_in_drugs boolean
metadata string metadata string
uuid string uuid string

Table S1. Node attributes of the Neo4COVID19 graph database.

Interacts DTI

attribute type attribute type
source_node string edge_label string
target_node string drug_name string
interaction_type string source_node string
interaction string target_node string
mechanism string action_type string
reactome_mechanism string p_chembl numeric
reactome_regdir string is_activity_known boolean
reactome_score numeric priority integer
metadata string source string
comment string relationship string
pmids string comment string
priority integer pmids string
source string metadata string
data_origin string is_in_drugcentral boolean
relationship string is_in_jdti boolean
source_specific_score numeric source_node_uuid string
is_in_preprint boolean target_node_uuid string
is_in_phipster boolean uuid string
is_in_string boolean
is_in_hats boolean
is_in_reactome boolean
source_node_uuid string
target_node_uuid string
uuid string

Table S2. Edge attributes of the Neo4COVID19 graph database.

References

[1] “Python Core Team. Python: A dynamic, open source programming language. Python

Software Foundation.” https://www.python.org/.

[2] “Python Library ‘py2neo’ v4.” .

[3] “Neo4j Graph Database.” https://neo4j.com/.

[4] “Code Repository ‘neo4covid19.’” https://github.com/ncats/neo4covid19.git.

[5] G. Zahoránszky-Kőhalmi, T. Sheils, and T. I. Oprea, “SmartGraph: a network

pharmacology investigation platform,” J. Cheminform., vol. 12, no. 1, p. 5, Dec. 2020,

doi: 10.1186/s13321-020-0409-9.

[6] “UniProt: a worldwide hub of protein knowledge,” Nucleic Acids Res., vol. 47, no. D1, pp.

D506–D515, Jan. 2019, doi: 10.1093/nar/gky1049.

[7] T. U. Consortium, “UniProt: the universal protein knowledgebase,” Nucleic Acids Res.,

vol. 45, no. D1, pp. D158–D169, 2016, doi: 10.1093/nar/gkw1099.

[8] A. Gaulton et al., “ChEMBL: a large-scale bioactivity database for drug discovery,”

Nucleic Acids Res., vol. 40, no. D1, pp. D1100–D1107, Jan. 2012, doi:

10.1093/nar/gkr777.

[9] S. Patient, D. Wieser, M. Kleen, E. Kretschmann, M. Jesus Martin, and R. Apweiler,

“UniProtJAPI: a remote API for accessing UniProt data,” Bioinformatics, vol. 24, no. 10,

pp. 1321–1322, May 2008, doi: 10.1093/bioinformatics/btn122.

[10] D. Szklarczyk et al., “STRING v11: protein–protein association networks with increased

coverage, supporting functional discovery in genome-wide experimental datasets,”

Nucleic Acids Res., vol. 47, no. D1, pp. D607–D613, Jan. 2019, doi:

10.1093/nar/gky1131.

[11] N. T. Doncheva, J. H. Morris, J. Gorodkin, and L. J. Jensen, “Cytoscape StringApp:

Network Analysis and Visualization of Proteomics Data,” J. Proteome Res., vol. 18, no. 2,

pp. 623–632, Feb. 2019, doi: 10.1021/acs.jproteome.8b00702.

[12] P. Shannon et al., “Cytoscape: a software environment for integrated models of

biomolecular interaction networks.,” Genome Res., vol. 13, no. 11, pp. 2498–504, Nov.

2003, doi: 10.1101/gr.1239303.

[13] G. Lasso et al., “A Structure-Informed Atlas of Human-Virus Interactions,” Cell, vol. 178,

no. 6, pp. 1526-1541.e16, Sep. 2019, doi: 10.1016/j.cell.2019.08.005.

[14] “P-HIPSTer.” http://phipster.org/.

[15] D. E. Gordon et al., “A SARS-CoV-2 protein interaction map reveals targets for drug

repurposing,” Nature, vol. 583, no. 7816, pp. 459–468, Jul. 2020, doi: 10.1038/s41586-

020-2286-9.

[16] Krogan, “A SARS-CoV-2 protein interaction map reveals targets for drug repurposing,”

[Online]. Available: https://www.biorxiv.org/content/10.1101/2020.03.22.002386v3.

[17] S. Warris, S. Dijkxhoorn, T. van Sloten, and B. van de Vossenberg, “Mining functional

annotations across species,” bioRxiv, 2018, doi: 10.1101/369785.

[18] D.-T. Nguyen et al., “Pharos: Collating protein information to shed light on the druggable

genome,” Nucleic Acids Res., vol. 45, no. D1, pp. D995–D1002, Nov. 2016, doi:

10.1093/nar/gkw1072.

[19] T. I. Oprea et al., “Unexplored therapeutic opportunities in the human genome,” Nat. Rev.

Drug Discov., vol. 17, p. 317, Mar. 2018, [Online]. Available:

https://doi.org/10.1038/nrd.2018.14.

