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Subclasses of lymphocytes carry different functional roles to work together to produce an immune
response and lasting immunity. Additionally to these functional roles, T and B-cell lymphocytes rely
on the diversity of their receptor chains to recognize different pathogens. The lymphocyte subclasses
emerge from common ancestors generated with the same diversity of receptors during selection
processes. Here we leverage biophysical models of receptor generation with machine learning models
of selection to identify specific sequence features characteristic of functional lymphocyte repertoires
and subrepertoires. Specifically using only repertoire level sequence information, we classify CD4+

and CD8+ T-cells, find correlations between receptor chains arising during selection and identify
T-cells subsets that are targets of pathogenic epitopes. We also show examples of when simple linear
classifiers do as well as more complex machine learning methods.

I. INTRODUCTION

The adaptive immune system in vertebrates con-
sists of highly diverse B- and T-cells whose unique re-
ceptors mount specific responses against a multitude
of pathogens. These diverse receptors are generated
through genomic rearrangement and sequence insertions
and deletions, a process known as V(D)J recombination
[4, 5]. Recognition of a pathogen by a T- or B-cell recep-
tor is mediated through molecular interactions between
an immune receptor protein and a pathogenic epitope.
T-cell receptor proteins interact with short protein frag-
ments (peptide antigens) from the pathogen that are pre-
sented by specialized pathogen presenting Major Histo-
compatibility Complexes (MHC) on cell surface. B-cell
receptors interact directly with epitopes on pathogenic
surfaces. Upon an infection, cells carrying those spe-
cific receptors that recognize the infecting pathogen be-
come activated and proliferate to control and neutralize
the infection. A fraction of these selected responding
cells later contribute to the memory repertoire that re-
acts more readily in future encounters. Unsorted immune
receptors sampled from an individual reflect both the his-
tory of infections and the ongoing responses to infecting
pathogens.

Before entering the periphery where their role is to rec-
ognize foreign antigens, the generated receptors undergo
a two-fold selection process based on their potential to
bind to the organism’s own self-proteins. On one-hand,
they are tested to not be strongly self-reactive (Fig. 1 A)
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On the other hand, they must be able to bind to some of
the presented molecules, to assure minimal binding ca-
pabilities. This pathogen-unspecific selection, known as
thymic selection for T-cells [6] and the process of central
tolerance in B-cells [7], can prohibit over 90% of gener-
ated receptors from entering the periphery [6, 8, 9].

Additionally to receptor diversity, T and B cell-
subtypes are specialized to perform different functions.
B- and T-cells in the adaptive immune system are differ-
entiated from a common cell-type, known as lymphoid
progenitor. T-cells differentiate into cell subtypes iden-
tified by their surface markers, including helper T-cells
(CD4+), killer T-cells (CD8+) [6], and regulatory T-cells
or T-regs (CD4+ FOXP3+) [10], each of which can be
found in the non-antigen primed naive or memory com-
partment. The memory compartment can be further di-
vided into subtypes, such as effector, central or stem cell-
like memory cells, characterized by different lifetimes and
roles. B-cells develop into, among other subtypes, plas-
mablasts and plasma cells, which are antibody factories,
and memory cells that can be used against future infec-
tions. These cell types perform distinct functions, react
with different targets, and hence, experience different se-
lection pressures. Here we ask whether these different
functions and selection pressures are reflected in their re-
ceptors’ sequence compositions.

Recent progress in high-throughput immune repertoire
sequencing (RepSeq) both for single-chain [11–14] and
paired-chain [15–18] B- and T-cell receptor has brought
significant insight into the composition of immune reper-
toires. Based on such data, statistical inference tech-
niques have been developed to infer biophysically in-
formed sequence-based models for the underlying pro-
cesses involved in generation and selection of immune
receptors [1–3, 19–21]. Machine learning techniques have
also been used to infer deep generative models to charac-
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FIG. 1: Inference of functional selection models for immune receptor repertoires. (A) T cell receptor α and β
chains are stochastically rearranged through a process called V(D)J recombination. Successfully rearranged receptors undergo
selection for binding to self-pMHCs. Receptors that bind too weakly or too strongly are rejected, while intermediately binding
ones exit the thymus and enter peripheral circulation. Development of B-cell receptors follows similar stages of stochastic
recombination and selection.(B) We model these two processes independently. The statistics of the V(D)J recombination
process described by the probability of generating a given receptor sequence σ, Pgen(σ), are inferred using the IGOR software
[1]. Pgen(σ) acts as a baseline for the selection model. We then infer selection factors Q, which act as weights that modulate
the initial distribution Pgen(σ). We infer two types of selection weights: linear in log space (using the SONIA software [2]) and
non-linear weights using a deep neural network, in the soNNia software presented here. Non-linear selection weights are more
flexible than linear ones. (C) Pipeline of the algorithm: Pgen is inferred from unproductive sequences using IGOR. Selection
factors for both the linear and non-linear models are inferred from productive sequences by maximizing their log-likelihood L,
which involves a normalization term calculated by sampling unselected sequences generated by the OLGA software [3]. (D)
In both selection models the amino acid composition of the CDR3 is encoded by its relative distance from the left and right
borders (left-right encoding). (E) After inferring repertoire specific selection factors, repertoires are compared by computing
e.g. log likelihood ratios r(x).

terize the T-cell repertoire composition as a whole [22],
as well as discriminate between public and private B-cell
clones based on Complementarity Determining Region 3
(CDR3) sequence [23, 24]. While biophysically informed
models can still match and even outperform machine-
learning techniques (see e.g. [25]), deep learning mod-
els can be extremely powerful in describing functional

subsets of immune repertoires, for which we lack a full
biophysical understanding of the selection process.

Here, we introduce a framework that uses the strengths
of both biophysical models and machine learning ap-
proaches to characterize signatures of differential selec-
tion acting on receptor sequences from subsets associ-
ated with specific function. Specifically, we leverage bio-
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physical tools to model what we know (e.g. receptor
generation) and exploit the powerful machinery of deep
neural networks (DNN) to model what we do not know
(e.g. functional selection). Using the non-linear and flex-
ible structure of the deep neural networks, we character-
ize the sequence properties that encode selection of the
specificity of the combined chains during receptor matu-
ration in α andβ chains in T-cells, and heavy and light
(κ and λ) chains in B-cells. We identify informative se-
quence features that differentiate CD4+ helper T-cells,
CD8+ killer T-cells and regulatory T-cells. Finally, we
demonstrate that that biophysical selection models can
be used as simple classifiers to successfully identify T-
cells specific to distinct targets of pathogenic epitopes—
a problem that is of significant interest for clinical appli-
cations [26–30].

II. RESULTS

Neural network models of TCR and BCR selection

Previous work has inferred biophysically informed
models of V(D)J recombination underlying the genera-
tion of TCRs and BCRs [1, 31]. We infer the parameters
of these models using the IGOR software [1] from un-
productive receptor sequences, which are generated, but
due to a frameshift or insertion of stop codons are not
expressed, and hence, are not subject to functional se-
lection. The inferred models are used to characterize the
generation probability of a receptor sequence Pgen, and
to synthetically generate an ensemble of pre-selection re-
ceptors [3]. These generated receptors define a baseline
G for statistics of repertoires prior to any functional se-
lection.

To identify sequence properties that are linked to func-
tion, we compare the statistics of sequence features f (e.g.
V-, D-, J- gene usage and CDR3 amino acid composition)
present in a given B- or T- cell functional repertoire to
the expected baseline of receptor generation (Fig. 1 C).
To do so, we encode a receptor sequence σ as a binary
vector x whose elements xf ∈ {0, 1} specify whether the
feature f is present in a sequence σ. The probability
P θpost(x) for a given receptor x to belong to a functional
repertoire is described by modulating the receptor’s gen-
eration probability Pgen(x) by a selection factor Qθ(x),

P θpost(x) = Pgen(x)Qθ(x) ≡ 1

Zθ
Pgen(x)Qθ(x), (1)

where θ denotes the parameters of the selection model
and Zθ ensures normalization of P θpost. Previous work [2,
32, 33] inferred selection models for functional reper-
toires by assuming a multiplicative form of selection
Qθ(x) = exp(

∑
f θ

fxf ), where feature-specific factors

θf contribute independently to selection. We refer to
these models as linear SONIA (Fig. 1B). Selection can
in general be a highly complex and non-linear function
of the underlying sequence features. Here, we introduce

soNNia, a method to infer generic non-linear selection
functions, using deep neural networks (DNN). To infer
a selection model that best describes sequence determi-
nants of function in a data sample D, soNNia maximizes
the mean log-likelihood of the data L(θ) = 〈logP θpost〉D,

where the probability P θpost is defined by Eq. (1), and
〈·〉D denotes expectation over the set of sequences D.
This likelihood can be rewritten as (see Methods),

L(θ) = 〈logP θpost〉D = 〈logQθ〉D − log〈Qθ〉G + const,

(2)

where 〈·〉G is the expectation over the baseline G, which
was generated from Pgen. Note that this expression be-
comes exact as the number of generated sequences ap-
proaches infinity.

We divide the sequence features f into three categories:
(i) (V,J) usage, (ii) CDR3 length, and (iii) CDR3 amino
acid composition encoded by a 20×50 binary matrix that
specifies the identity of an amino acid and its relative po-
sition within a 25 amino acid range from both the 5’ and
the 3’ ends of the CDR3, equivalent to the left-right en-
coding of the SONIA model [2] (Fig. 1D). Input from each
of the three categories are first propagated through their
own network. Outputs from these three networks are
then combined and transformed through a dense layer.
This choice of architecture reduces the number of pa-
rameters in the DNN and makes the contributions of the
three categories (which have different dimensions) com-
parable; see Methods and Figs. S1-S3 for details on the
architecture of the DNN.

The baseline ensemble G, which we have described as
being generated from the Pgen model (Fig. 1 C), can in
principle be replaced by any dataset, including empiri-
cal ones, at no additional computational cost. We will
use this functionality of soNNia to learn selection coef-
ficients of subsets relative to a generic functional reper-
toire. In that case, the inferred selection factors Q only
reflect differential selection relative to the generic base-
line. Once two soNNia models have been learned from
two distinct datasets, their statistics may be compared
by computing a sequence-dependence log-likelihood ratio
r(x) = logQ1(x)/Q2(x) predicting the preference of a se-
quence for a subset over the other. This log-likelihood
ratio can be used as a functional classifier for receptor
repertoires (Fig. 1 E).

Deep non-linear selection model best describes
functional TCR repertoire

First, we systematically compare the accuracy of
the (non-linear) soNNia model with linear SONIA [2]
(Fig. 1 B) by inferring selection on TCRβ repertoires
from a large cohort of 743 individuals from Ref. [34]. Our
goal is to characterize selection on functional receptors ir-
respective of their phenotype. To avoid biases caused by
expansions of particular receptors in different individu-
als, we pool the unique nucleotide sequences of receptors
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⇢2 DKL[bits]
Pgen 0.43 ± 0.01 3.03 ± 0.01
linear 0.48 ± 0.01 1.58 ± 0.01
deep 0.61 ± 0.01 1.01 ± 0.01
noise 0.791 ± 0.001 0.402 ± 0.001

1

FIG. 2: Performance of selection models on TCR repertoires. Scatter plot of observed frequency, Pdata, versus predicted
probability Ppost for (A) linear SONIA and (B) deep neural network soNNia models trained on the TCRβ repertoires of 743
individuals from ref. [34]. Color indicates number of sequences. (C) The soNNia model performs significantly better, as
quantified by both the Kullback-Leibler divergence DKL and the Pearson correlation coefficient ρ2.

from all individuals and construct a universal donor to-
talling 9 × 107 sequences. Multiplicity of an amino-acid
sequence in this universal donor indicates the number of
independent recombination events that have led to that
receptor (in different individuals, or in the same individ-
ual by convergent recombination).

We randomly split the pooled dataset into a train-
ing and a test set of equal sizes. We then subsampled
the training set to 107 to reduce the computational cost
of inference. We trained both a SONIA and a soNNia
model on the training set, using 107 sequences sampled
from Pgen (learned from the nonproductive sequences of
the same dataset) as the baseline G (Fig. 1 C). To as-
sess the performance of our selection models, we compare
their inferred probabilities Ppost(x) with the observed fre-
quencies of the receptor sequences Pdata(x) in the test
set (Fig. 2A and B). Prediction accuracy can be quan-
tified through the Pearson correlation between the two
log-frequencies, or through their Kullback-Leibler diver-
gence (Fig. 2C)

DKL(Pdata|Ppost) =

〈
log2

Pdata

Ppost

〉
Pdata

. (3)

We estimate the Kullback-Leibler divergence using 105

receptors in the test set with multiplicity larger than two.
A smaller Kullback-Leibler divergence indicates a higher
accuracy of the inferred model in predicting the data.
The estimated accuracy of an inferred model is limited
by the correlation between the test and the training set,
which provides a lower bound on the Kullback-Leibler
divergence DKL ' 0.4 bits, and an upper bound on the
Pearson correlation ρ2 ' 0.8.

We observe a substantial improvement of selection in-
ference for the generalized selection model soNNia with
DKL ' 1.0 bits (and Pearson correlation ρ2 ' 0.61) com-
pared to the linear SONIA model with DKL ' 1.6 bits
(and Pearson correlation ρ2 ' 0.48); see Fig. 2. Both
models show a strong effect of selection, reducing the

DKL from 3.03 bits (and increasing the correlation ρ2

from 0.43) for the comparison of data to the Pgen model
alone (Fig. 2). This result highlights the role of com-
plex nonlinear selection factors acting on receptor fea-
tures that shape a functional T-cell repertoire. The fea-
tures that are still inaccessible to the soNNia selection
factors are likely due to the sampling of rare features.

Intra- and inter-chain interactions in TCRs and
BCRs

T-cell receptors are disulfide-linked membrane-bound
proteins made of variable α and β chains, and expressed
as part of a complex that interact with pathogens. Sim-
ilarly, B-cell receptors and antibodies are made up of a
heavy and two major groups (κ and λ) of light chains.
Previous work has identified low but consistent correla-
tions between features of αβ chain pairs in T-cell recep-
tors, with the largest contributions between Vα, Vβ and
Jα, Vβ [35–37]. In B-cells, preferences for receptor fea-
tures within heavy and light chains have been studied
separately [38, 39] but inter-chain correlations have not
been systematically investigated.

We first aimed to quantify dependencies between
chains by re-analyzing recently published single-cell
datasets: TCR αβ pairs of unfractionated repertoires
from ref. [40] (totalling 5 × 105 receptors), and BCR of
naive cells from ref. [41] (totalling 22× 103 and 28× 103

receptors for the Hλ and Hκ repertoires, respectively).
The blue bars of Fig. 3 show the mutual information
between the V and J choices and CDR3 length of each
chain, for TCR αβ (Fig. 3A), Ig Hλ (Fig. 3B), and Ig
Hκ (Fig. 3C) repertoires. Mutual information is a non-
parametric measure of correlation between pairs of vari-
ables (see Methods).

Both TCR and BCR have intra- and inter chain cor-
relations of sequence features, with a stronger empirical
mutual dependencies present within chains. The largest
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FIG. 3: Inference of selection on intra- and inter-chain receptor features. Mutual information between pairs of major
intra- and inter- chain features (V and J gene choice and L =CDR3 length for each chain) for (A) TCR αβ, (B) Ig Hλ, and
(C) Ig Hκ paired chains are shown. Mutual information is estimated directly from data (blue), and from receptors generated
based on inferred models: generative baseline (green), linear SONIA (pink), deep-indep (red), and deep-joint (yellow). For
both TCRs and BCRs, only the deep-joint model (yellow), which correlates the features of both chains through a deep neural
network, is able to recover inter-chain correlations. Mutual informations are corrected for finite-size bias and error bars are
obtained by subsampling (see Methods).

inter-chain dependencies is associated with the V-gene
usages of the two chains, for both T-cells and B-cells, con-
sistent with previous observations in T-cells [36, 40, 42].

To account for these dependencies between chains, we
generalize the selection model of eq. 1 to pairs, x =
(xa,xb), where (a, b) = (α, β) in TCRs or (H, κ) or (H, λ)
in BCRs:

Ppost(x) =
1

Zθ
P agen(xa)P bgen(xb)Q(x),

where we have dropped the dependence on parameters θ
for ease of notation.

Analogously to single chains, we first define a linear se-
lection model specified by Q(x) = exp(

∑
f θfxf ), where

the sum now runs over features of both chains a and b.
Because of its multiplicative form, selection can then be
decomposed as the product of selection factors for each

chain: Q(x) = Qa(xa)Qb(xb), where Qa and Qb are lin-
ear models. We also define a deep independent model
(deep-indep), which has the multiplicative form Q(x) =
Qa(xa)Qb(xb), but where Qa and Qb are each described
by deep neural networks that can account for complex
correlations between features of the same chain, similar
to the single-chain case (Fig. S2). The resulting post-
selection distributions for both the linear and the deep-
indep model factorize, Ppost(x) = P apost(x

a)P bpost(x
b),

making the two chains independent. Thus, by construc-
tion neither the linear nor the deep-indep model can ac-
count for correlations between chains. Finally, we define
a full soNNia model (deep-joint) where Q(x) is a neural
network combining and correlating the features of both
chains (Fig. S3).

We trained these three classes of models on each of the
TCR αβ, and BCR Hκ and Hλ paired repertoire data
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described earlier. We then used these models to generate
synthetic data with a depth similar to the real data, and
calculated mutual informations between pairs of features
(Fig. 3). The pre-selection generation model (Q(x) = 1,
green bars) explains part but not all of the intra-chain
feature dependencies, for both T- and B-cells, while the
linear (purple), deep-indep (red), and deep-joint (yellow)
models explain them very well. Notably, the increase
in correlations (difference between green and other bars)
due to selection is larger in naive B-cells than in unsorted
(memory and naive) T-cells. By construction, the gen-
eration, linear, and deep-indep models do not allow for
inter-chain correlations. Only the deep-joint model (yel-
low) is able to recover part of the inter-chain dependen-
cies observed in the data. It even overestimates some cor-
relations in BCRs, specifically between the CDR3 length
distributions of the two chains, and between the heavy-
chain J and the light-chain CDR3 length. Thus, the
deep structure of soNNia recapitulates both intra-chain
and inter-chain dependencies of feature forming immune
receptors.

Cell type and tissue-specific selection on T-cells

During maturation in the thymus, T-cells differenti-
ate into two major cell-types: cytotoxic (CD8+) and
helper (CD4+) T-cells. CD8+ cells bind peptides pre-
sented on major histocompatibility complex (MHC) class
I molecules that are expressed by all cells, whereas CD4+

cells bind peptides presented on MHC-class II molecules,
which are only expressed on specialized antigen present-
ing cells. Differences in sequence features of CD8+ and
CD4+ T-cells should reflect the distinct recognition tar-
gets of these receptors. Although these differences have
already been investigated in refs. [42, 43], we still lack
an understanding as how selection contributes to the dif-
ferences between CD8+ and CD4+ TCRs. In addition
to functional differentiation at the cell-type level, T-cells
also migrate and reside in different tissues, where they
encounter different environments and are prone to infec-
tions by different pathogens. As a result, we expect to
detect tissue-specific TCR preferences that reflect tissue-
specific T-cell signatures.

To characterize differential sequence features of TCRs
between cell types in different tissues, we pool unique
TCRs from 9 individuals (from Ref. [43]) sorted into three
cell-types (CD4+ conventional T cells (Tconv), CD4+

regulatory T cells (Treg) and CD8+ T cells), and har-
vested from 3 tissues (pancreatic draining lymph nodes
(pLN), “irrelevant” non-pancreatic draining lymph nodes
(iLN), and spleen).

Training a deep soNNia model (see Fig. 1 C) for each
subset leads to overfitting issues due to limited data. To
solve this problem, we use the technique of transfer learn-
ing, which consists of learning a shared deep soNNia
model for all subsets, and then add an additional lin-
ear layer for each sub-repertoire (see Fig. S4). However,

an equivalent but simpler way is to train linear SONIA
models atop a common baseline set G made of the em-
pirical unfractionated repertoire from ref. [44] , so that
the inferred Q factors only reflect selection relative to the
generic set. Alternatively, we used the generative model
Pgen (trained earlier for Fig. 2) as baseline, in which
case the selection factors include selection effects that
are shared among the sub-repertoires. Distribution of
selection factors obtained by both approaches are shown
in Fig. S5. We evaluate the Jensen-Shannon divergence
DJS(r, r′) between the distribution of pairs (r, r′) of these

sub-repertoires, P rpost and P r
′

post,

DJS(r, r′) =
1

2

〈
log2

2Qr
Qr +Qr′

〉
r

+
1

2

〈
log2

2Qr′

Qr +Qr′
〉
r′

(4)
where 〈·〉r denotes averages over P rpost (see Methods for
evaluation details). This divergence is symmetric and
only depends on the relative differences of selection fac-
tors between functional sub-repertoires, and not on the
baseline model.

Clustering of cell types based on Jensen-Shannon di-
vergence shows strong differential selection preferences
between the CD4+ and CD8+ receptors, with an average
DJS ' 0.08± 0.01 bits across respective tissues and sub-
repertoires (Fig. 4A; see also Fig. S6A for similar results
where Pgen is used as baseline). We identify differen-
tial selection between Tconv and Treg receptors within
CD4+ cells with DJS ' 0.015 ± 0.004. We also detect
moderate tissue specificity for CD8+ and Treg receptors,
but no such signal can be detected for CD4+ Tconv cells
across different tissues.

Examining the linear selection factors θf of the SO-
NIA model trained with Pgen as a baseline reveals the
VJ (Fig. S7) and amino-acid usage features (Fig. S8)
that are differentially selected in the Tconv CD4+ and
CD8+ subsets (in spleen). Linear selection models are
organised according to a hierarchy from the least to the
most constrained model. As one adds selection factors
for each feature, the Kullback-Leibler divergence between
the repertoire and the baseline increases (see Methods).
Decomposing in this way the divergence between CD4+

Tconv and CD8+ repertoires, we find that contributions
to the total divergence are evenly split between amino-
acid features and VJ gene usage, with only a minor con-
tribution from CDR3 length (Fig. S9).

Decomposing unsorted repertoires using selection
models

Knowing specific P rpost models specific to sub-
repertoires enables us to infer the fraction of each class
r in unsorted data. Estimating the relative fraction of
CD4+ and CD8+ sub-types in a repertoire can be infor-
mative for clinical purposes, e.g. as a probe for Tumor In-
filtrating Lymphocytes (TIL), where over-abundance of
CD8+ cells in the sample has been associated with posi-
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FIG. 4: Cell type and tissue-specific selection on TCRs. (A) Jensen-Shannon divergences (DJS , see eq. 4) computed
from models trained on different sub-repertoires are shown. (B) Maximum-likelihood inference of the fraction of CD8+ TCRs
in mixed repertoires of conventional CD4+ T cells (Tconvs) and CD8+ cells from spleen (Eq 5) is shown. Each repertoire
comprises 5 × 103 unique TCRs. (C) Same as (B) but for a mixture of Tconv and Treg TCRs. (D) Mean squared error of
the inferred sample fraction from (B) as a function of sample size N , averaged over all fractions, using models of increasing
complexity: “QV JL” is a linear model with only features for CDR3 length and VJ usage, “linear” is linear SONIA model,
“deep” is the full soNNia model (see Fig. 1 C). (E) Receiving-Operating Curve (ROC) for classifying individual sequences
coming from CD8+ cells or from CD4+ Tconvs from spleen, using the log-likelihood ratios. Curves are generated by varying
the threshold in eq. 6. The accuracy of the classifier is compared to a traditional logistic classifier inferred on the same set of
features as our selection models. The training set for the logistic classifier has N = 3 × 105 Tconv CD4+, and N = 8.7 × 104

CD8+ TCRs, and the test set has N = 2× 104 CD4+, and N = 2× 104 CD8+ TCR sequences.

tive prognosis in ovarian cancer [45]. Given a repertoire
composed of the mixture of two sub-repertoires r and r′

in unknown proportions, we maximize the log-likelihood
function L(f) based on our selection models to find the
fraction f of a sub-repertoire r within the mixture:

L(f) = 〈log(fP rpost(σ) + (1− f)P r
′

post(σ))〉D (5)

= 〈log(fQr(σ) + (1− f)Qr′(σ))〉D + const,

where 〈·〉D is the empirical mean over sequences in the
mixture. Previous work has used differential V- and J-
usage, and CDR3 length to characterize the relative frac-
tion of CD4+ and CD8+ cells in an unfractionated reper-
toire [46]. The log-likelihood function in eq. 5 provides
a principled approach for inferring cell-type composition
using selection factors that capture the differential re-
ceptor features of each sub-repertoire, including but not
limited to their V- and J- usage and CDR3 length and
amino acid preferences.

To test the accuracy of our method, we formed a syn-
thetic mixture of previously sorted CD4+ (Tconv from
spleen [43]) and CD8+ (from spleen [43]) receptors with

different proportions, and show that our selection-based
inference can accurately recover the relative fraction of
CD8+ in the mix (Fig 4 B). Our method can also infer
the proportion of Treg cells in a mixture of Tconv and
Treg CD4+ cells from spleen (Fig. 4C), which is a much
harder task since these subsets are very similar (Fig. 4A).
The accuracy of the inference depends on the size of the
unfractionated data, with a mean expected error that
falls below 1% for datasets with size 104 or larger for the
CD8+/CD4+ mixture (red and orange lines in Fig. 4D).

Our method uses a theoretically grounded maximum
likelihood approach, which includes all the features cap-
tured by the soNNia model. Nonetheless, a simple lin-
ear selection model with only V- and J- gene usage and
CDR3 length information (blue line in Fig. 4D), anal-
ogous to the method used in ref. [46], reliably infers
the composition of the mixture repertoire. Additional
information about amino acid usage in the linear SO-
NIA model results in moderate but significant improve-
ment (orange line). The accuracy of the inference is
insensitive to the choice of the baseline model for re-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2020. ; https://doi.org/10.1101/2020.11.05.370346doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.05.370346
http://creativecommons.org/licenses/by-nc-nd/4.0/


8

ceptor repertoires: using the empirical baseline from
ref. [44] (Fig. 4D) or Pgen (Fig. S6D) does not substan-
tially change the results.

The method can be extended to the decomposition of
3 or more sub-repertoires. To illustrate this, we inferred
the fractions of Tconv, Treg, and CD8+ cells in syn-
thetic unfractionated repertoires from spleen, showing an
accuracy of 3 ± 1% in reconstructing all three fractions
(Fig. S10) in a mixture of size 5× 103.

Computational sorting of CD4+ and CD8+ TCR

Selection models are powerful in characterizing the
broad statistical differences between distinct functional
classes of immune receptors, including the CD4+ and
CD8+ T-cells (Fig. 4A). A more difficult task, which we
call computational sorting, is to classify individual re-
ceptors into functional classes based on their sequence
features. We use selection models inferred for distinct
sub-repertoires r and r′ to estimate a log-likelihood ratio
R(x) for a given receptor x to belong to either of the
sub-repertoires,

R(x) = log
P rpost(x)

P r
′

post(x)
= log

Qr(x)

Qr′(x)
. (6)

A larger log-likelihood ratio R(x) indicates that the re-
ceptor is more likely to be associated with the sub-
repertoire r than r′. We set a threshold Rc, to assign
a receptor to r if R(x) ≥ Rc and to r′ otherwise. The
sensitivity and specificity of this classification depends
on the threshold value. We evaluate the accuracy of our
log-likelihood classifier between sets of CD8+ and Tconv
CD4+ receptors harvested from spleen [43]. The Receiver
Operating Characteristic (ROC) curve in Fig. 4E shows
that our selection-based method can classify receptors as
CD8+ or CD4+ cells, with an area under the curve AUC
= 0.68. Performance does not depend on the choice of the
baseline model (Pemp in Fig. 4E and Pgen in Fig. S6E).
Applying this classification method to all the possible
pairs of sub-repertoires in Fig. 4A, we find that CD4+

vs CD8+ discrimination generally achieves AUC≈ 0.7,
while discriminating sub-repertoires within the CD4+ or
CD8+ classes yields much poorer performance (Fig. S11).

For comparison, we also used a common approach for
categorical classification and optimized a linear logistic
classifier that takes receptor features (similar to the selec-
tion model) as input, and classifies receptors into CD8+

or CD4+ cells. The model predicts the probability that
sequence x belongs to sub-repertoire r (rather than r′)
as ŷ(x) = ζ(Rlog(x)), with Rlog(x) =

∑
f wfxf + b and

ζ(x) = ex/(1 + ex). We learn the model parameters wf
and b by maximizing the log-likelihood of the training
set:

Lc(w, b) =
N∑
i=1

[
yi log ŷ(x) + (1− yi) log(1− ŷ(xi))

]
(7)

where yi labels each TCR by their sub-repertoire, e.g.
yi = 1 for CD8+, and yi = 0 for CD4+. Note that when
selection models are linear, the log-likelihood ratio (eq. 6)
also reduces to a linear form—the only difference being
how the linear coefficients are learned. This optimized
logistic classifier (eq. 7) performs equally well compared
to the selection-based classifier (eq. 4), with the same
AUC=0.68 (points in Fig. 4E). These AUCs are compa-
rable to those found in ref. [42], which has addressed the
same issue using black-box machine learning approaches.

It should be emphasized that despite comparable per-
formances, our fully linear selection-based method pro-
vides a biologically interpretable basis for subtype classi-
fication, in contrast to black box approaches [42]. Specif-
ically, selection factors offer the possibility to interpret
differences between cell types in terms of amino acid fre-
quencies (Fig. S8 A and B) or V- and J- gene usage
(Fig. S7). CD4+ TCRs are more adverse to having a
cysteine in the middle of their CDR3 relative to CD8+

sequences. CD4+ TCRs were reported to be more of-
ten associated with positively charged (lysine and argi-
nine) amino acid, whereas CD8+ TCRs with negatively
charged (aspartic acid) amino acids [47, 48]. We cal-
culated selection factors for positively and negatively
charged amino acids and see no such correlation between
selection factors and charge (Fig. S8C).

Classification of TCRs targeting distinct antigenic
epitopes

Recognition of a pathogenic epitope by a TCR is me-
diated through molecular interactions between the two
proteins. The strength of this interaction depends on the
complementarity of a TCR against an antigen presented
by a MHC molecule on the T-cell surface. Recent growth
of data on paired TCRs and their target epitopes [27, 49]
has led to the development of machine learning meth-
ods for TCR-epitope mapping [26–30]. A TCR-epitope
map is a classification problem that determines whether
a TCR binds to a specific epitope. We use our selection-
based classifier (eq. 6) to address this problem. We de-
termine the target ensemble P rpost from the training set
of TCRs associated with a given epitope (positive data),

and the alternative ensemble P r
′

post from a set of generic
unfractionated TCRs (negative data). For comparison,
we also perform the classification task using the linear
logistic regression approach (eq. 7), and the state of the
art TCRex algorithm [29], which uses a random forest
model for classification.

We performed classification for the following CD8+-
specific epitopes, presented on HLA-A*02 molecules: (i)
the influenza GILGFVFTL epitope (with N = 3107 as-
sociated TCRs), (ii) the Cytomegalovirus (CMV) NLVP-
MVATV epitope (N = 4812), and (iii) the SARS-CoV-2
YLQPRTFLL epitope (N = 315). The first two epi-
topes have the most abundant associated TCR sets in
VDJdb [27, 49], and the latter is relevant for the ongoing
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D E F

G H I

FIG. 5: Selection-based prediction of epitope specificity for TCR. TCRs are classified based on their reactivity to
three pathogenic epitopes (columns), using three classification methods: TCRex, log-likelihood ratio (Eq. 6), and linear logistic
regression (Eq. 7). (A-C) ROC curves, and (D-F) precision-recall curves for (A,D) influenza epitope GILGFVFTL (N = 3107
TCR), (B,E) CMV epitope NLVPMVATV (N = 4812), and (C,F) SARS-CoV-2 epitope YLQPRTFLL (N = 315) are shown.
(G-I) Comparison between log-likelihood scores R(x) and logistic regression scores Rlog(x), for the three epitopes. Red points
are TCRs that bind the specific epitope (positive set), black points are TCRs from bulk sequencing (negative set). r is Pearson’s
correlation. For all panels we used pooled data from Ref. [44] as the negative set. We used 10 times more negative data than
positive data for training. Performance was quantified using 5-fold cross-validation.

COVD-19 pandemic. For consistency with TCRex [29],
we used the pooled data from ref. [44] as the negative
set, and used 10 times more negative data than positive
data for training. To quantify performance of each clas-
sifier, we performed a 5-fold cross validation procedure.
Due to the scarcity of data, we limit our selection infer-
ence to the linear SONIA model (see Fig. 1C). The ROC
curves show comparable performances for the three clas-
sification methods on the three epitope-specific TCR sets

(Fig. 5A-C).

The TCR-epitope mapping is a highly unbalanced clas-
sification problem, where reactive receptors against a spe-
cific epitope comprise a very small fraction of the reper-
toire (less than 10−5 [6]). Precision-recall curves are best
suited to evaluate the performance of classification for
imbalanced problems. In this case, a classifier should
show a large precision (fraction of true predicted posi-
tives among all predicted positives) for a broad range of
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recall or sensitivity (fraction of true predicted positives
among positives = true positives + false negatives). The
precision-recall curves in Fig. 5D-F show that TCRex and
the logistic classifier can equally well classify the data,
and moderately outperform the selection-based classifier.
While both the logistic classifier and TCRex are opti-
mized for classification tasks, the selection-based classi-
fier is a generative model trained to infer the receptor dis-
tribution of interest (positive set) and identify its distin-
guishing features from the baseline (negative set). As a
result, selection-based classification underperforms in the
low-data regime, for which fitting a reliable distribution
is difficult (e.g. for the SARS-CoV-2 epitope model, with
only N = 315 positive examples). By contrast, the logis-
tic classifier finds a hyperplane that best separates the
two sets, and therefore, is better suited for classification
tasks, and may be trained on smaller datasets. Nonethe-
less, we see a strong correlation between the selection-
based log-likelihood ratio R(x) (eq. 6) and the estima-
tor of the logistic classifier ŷ (eq. 7), shown for positive
set (red points) and the negative set (black points) in
Fig. 5G-I for the three epitopes. This result indicates
that the separation hyperplane identified by the logis-
tic classifier aligns well along the effective coordinates
of selection that represent sequence features relevant for
function in each epitope class.

III. DISCUSSION

Previous work has developed linear selection models to
characterize the distribution of productive T cell recep-
tors [2]. Here, we generalized on these methods by using
deep neural networks implemented in the soNNia algo-
rithm to account for nonlinearities in feature space, and
have improved the statistical characterization of TCR
repertoires in a large cohort of individuals [34].

Using this method, we modelled the selective pres-
sure on paired chains of T- and B- cell receptors, and
found that the observed cross-chain correlations, even if
limited, could be partially reproduced with our model.
These observed inter-chain correlations are consistent
with previous analyses in TCRs [42, 50] and are likely
due to the synergy of the two chains interacting with self-
antigens presented during thymic development for TCRs
and pre-peripheral selection (including central tolerance)
for BCRs, or later when recognizing antigens in the pe-
riphery.

Our results show that the process of selection in BCRs
is restrictive, in agreement with previous findings [7], sig-
nificantly increasing inter-chain feature correlations. The
selection strengths inferred by our models should not be
directly compared to estimates of the percentage of cells
passing pre-peripheral selection, ∼ 10% for B cells ver-
sus 3 − 5% for T cells [6]. Our models identify features
under selection without making reference to the number
of cells carrying these features. Since the T-cell pool in
our analysis is a mixture of naive and memory cells, we

can expect stronger selection pressure in the T-cell data
than in the purely naive T cells. However, previous work
analysing naive and memory TCRs separately using lin-
ear selection models did not report substantial differences
between the two subsets [32].

We systematically compared T cell subsets and showed
that our method identifies differential selection on CD8+

T-cells, CD4+ conventional T-cells, and CD4+ regulatory
T-cells. TCRs belonging to families with more closely
related developmental paths (i.e., CD4+ regulatory or
conventional cells) have more similar selection features,
which differentiate them from cells that diverged earlier
(CD8+). Cells with similar functions in different tissues
are in general similar, with the exception of spleen CD8+

that stands out from lymph node CD8+.

One application of the soNNia method is to utilize our
selection models to infer ratios of cell subsets in unsorted
mixtures, following the proposal of Emerson et al. [46].
Consistently with previous results, we find that the es-
timated ratio of CD4+/CD8+ cells in unsorted mixtures
achieves precision of the order of 1% with as few as 104

unique receptors. Emerson et al. validated their compu-
tational sorting based on sequence identity on data from
in-vitro assays and flow cytometry, which gives us confi-
dence that our results would also pass an experimental
validation procedure.

As a harder task, we were also able to decompose the
fraction of regulatory versus conventional CD4+ T-cells,
showing that receptor composition encodes not just sig-
natures of shared developmental history— receptors of
these two CD4+ subtypes are still much more similar
to each other than to CD8+ receptors— but also func-
tion: Tregs down-regulate effector T-cells and curb an
immune response creating tolerance to self-antigens and
preventing autoimmune diseases [10], whereas Tconvs as-
sist other lymphocytes including activation of differen-
tiation of B-cells. Since our analysis is performed on
fully differentiated peripheral cells, we cannot say at what
point in their development these CD4+ T-cells are differ-
entially selected. Data from regulatory and conventional
T-cells at different stages of thymic development could
identify how their receptor composition is shaped over
time.

During thymic selection cells first rearrange a β re-
ceptor and then an α receptor is added concurrently
with positive selection. Negative selection follows pos-
itive selection and overlaps with CD4/CD8 differentia-
tion. We found that the Jensen-Shannon divergence be-
tween CD8+ and CD4+ cells to be very small (0.1 bit)
compared to the divergence between functional and gen-
erated repertoires (ranging from 0.8 to 0.9 bits). This
result suggests that the selection factors captured by
our model mainly act during positive selection, which is
partly shared between CD4+ and CD8+ cells, rather than
during cell type differentiation and negative selection,
which is distinct for each type. Additionally to showing
statistical differences in sub-repertoires, we classified cells
into CD4+ and CD8+ subclasses with likelihood ratios of
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selection models and recovered similar results achieved
using pure machine learning approaches [42], but in a
fully linear and interpretable setting.

In recent years multiple machine learning methods
have been proposed in order to predict antigen specificity
of TCRs: TCRex [29, 51], DeepTCR [52], netTCR [53],
ERGO [54], TCRGP [55] and TcellMatch [56]. All these
methods have explored the question in slightly different
ways, and made comparisons with each other. However,
with the sole exception of TcellMatch [56], none of the
above methods compared their performance to a simple
linear classifier. TcellMatch [56] does not explicitly com-
pare to other existing methods, but implicitly compares
various neural network architectures. We thus directly
compared a representative of the above group of machine
learning models, TCRex, to a linear logistic classifier, and
to the log-likelihood ratio obtained by training two SO-
NIA models on the same set of features. We found that
the three models performed similarly (Fig. 5), consistent
with the view that amino acids from the CDR3 loop in-
teract with the antigenic peptide in an additive way. This
result complements similar results in Ref. [56], where a
linear classifier gave comparable results to deep neural
network architectures.

The linear classifier based on likelihood ratios achieves
state-of-the art performance both in discriminating
CD4+ from CD8+ cells (Fig. 4 D), and in predicting
epitope specificity (Fig. 5). But unlike other classifiers,
its engine can be used to generate positive and negative
samples. Thus characterizing the distributions of posi-
tive and negative examples is more data demanding than
mere classification. For this reason pure classifiers are
generally expected to perform better, but lack the abil-
ity to sample new data. Our analysis complements the
collection of proposed classifiers by adding a generative
alternative that is grounded on the biophysical process
of T-cell generation and selection. This model is simple
and interpretable, and performs well with large amounts
of data.

The epitope discrimination task discussed here and in
previous work focuses on predicting TCR specificity to
one specific epitope. A long-term goal would be to pre-
dict the affinity of any TCR-epitope pair. However, cur-
rently available databases [27, 49] do not contain suffi-
ciently diverse epitopes to train models that would gen-
eralize to unseen epitopes [56]. A further complication is
that multiple TCR specificity motifs may co-exist even
for a single epitope [30, 57], which cannot be captured
by linear models [58]. Progress will be made possible
by a combination of high-throughput experiments assay-
ing many TCR-epitope pairs [59], and machine learning
based techniques such as soNNia.

In summary, we show that nonlinear features cap-
tured by soNNia capture more information about the ini-
tial and peripheral selection process than linear models.
However, deep neural network methods such as soNNia
suffer from the drawback of being data hungry, and show
their limitations in practical applications where data are

scarce. In a more general context, soNNia is a way to
integrate more basic but interpretable knowledge-based
models and more flexible but less interpretable deep-
learning approaches within the same framework.

IV. METHODS

SoNNia

SoNNia is python software which extends the function-
ality of the SONIA package. It expands the choice of
selection models to infer, by adding non linear single-
chain models and (non-)linear paired-chain models. The
pre-processing pipeline implemented in this paper is also
included in the package as a separate class. The soft-
ware is available on GitHub at https://github.com/
statbiophys/soNNia.

Pre-processing steps

The standard pre-processing pipeline, which is im-
plemented in the soNNia package and is applied to all
datasets, consists of the following steps:

1. Select species and chain type

2. Verify sequences are written as V gene, CDR3 se-
quence, J gene and remove sequences with unknown
genes and pseudogenes

3. Filter productive CDR3 sequences (lack of stop
codons and nucleotide sequence length is a multiple
of 3)

4. Filter sequences starting with a cysteine

5. Filter sequences with CDR3 amino acid length
smaller than a maximum value (set to 30 in this
paper)

6. Remove sequences with small read counts (op-
tional).

For the analysis of Fig. 2 we analysed data from [34].
We first applied the standard pipeline. In addtion we
excluded TCRs with gene TRBJ2-5 which is badly anno-
tated by the Adaptive pipeline [22] and removed a clus-
ter of artefact sequences, which was previously identified
in [60] and corresponds to the consensus sequence CF-
FKQKTAYEQYF.

For the analysis of Fig. 3 we analysed data from [40]
and [41]. Dataset from [40] was obtained already pre-
processed directly from the authors, while pre-processed
dataset from [41] is part of the supplementary material of
the corresponding paper. The soNNia standard pipeline
is then applied to both datasets, independently for each
chain, and a pair is accepted only if it passes both filter-
ing steps. For α TCR datasets, sequences carrying the
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following rare genes were removed due to their rarity in
the out-of-frame dataset: TRAJ33, TRAJ38, TRAJ24,
TRAV19.

For the analysis of Figs. 4 and 5 we analysed data
from [43] and [44], to which we applied our standard pre-
processing pipeline.

Generation model

The generation model relies on previously published
models described in [1, 3, 31]. Briefly, the model is
defined by the probability distributions of the various
events involved in the VDJ recombination process: V,
D, and J gene usage, and number of deletions and inser-
tions at each junction. The model is learned from non-
productive sequences using the IGoR software [1]. For
BCR, only a few nonproductive sequences were available,
and so we instead started from the default IGoR models
learned elsewhere [1], and re-inferred only the V gene us-
age distribution for the heavy chain, and VJ joint gene
distribution for light chains, keeping all other parameters
fixed.

Amino-acid sequence probability computation and
generation is done with the OLGA software, which re-
lies on a dynamic programming approach. The process
is applied to all α, β, IgH and Igκ/λ chains. We focus on
naive B cells and ignore somatic hypermutations. Since
it was shown that individual variability in generation was
only small [2], for each locus we used a single universal
model.

Neural network architectures

We describe the architecture of the soNNia neural net-
work. The input of our network is a vector x where
xf = 1 (otherwise 0) if sequence x has feature f . A
dense layer is a map L(x) = tanh(Wx + b) with x the
input vector, W the matrix of weights, b the vector bias,
and where the tanh function is applied to each element of
the input vector. The model architecture of the neural
network is shown in Supplementary Fig. S1.The input
is first subdivided into 3 sub-vectors: the xL subset of
features associated with CDR3 length, the xA subset of
features associated with the CDR3 amino acid compo-
sition and the xV J subset of features associated with V
and J gene usage. We applied a dense layer individu-
ally to xL and xV J . In parallel we performed an amino
acid embedding of xA: we first reshape the vector to a
2K × 20 matrix A (the set of features associated with
amino acid usage is 2×K × 20 long, where K = 25 the
maximum distance from the left and right ends that we
encode, and 20 is the number of amino acids) and apply a
linear embedding troughM(A) = AM with M a 20×n
matrix with n the size of the amino acid encoding. We
then flatten the matrix to an array and apply a dense
layer. We merged the three transformed subsets into a

vector and then applied a dense layer. We finally applied
a last dense layer without non-linearity to produce the
output value, logQ(see Fig S1).

The model for paired chains focuses on combining the
xL and xV J inputs of the two chains. First the xL and
xV J inputs within each chain are merged and processed
with a dense layer. Subsequently a Batch Normalizing
Transform is applied to each encoded vector to enforce a
comparable contribution of each chain once the vectors
are merged and processed through a dense layer (this last
step is skipped in the deep-indep model). A Batch Nor-
malizing Transform [61] is a differentiable operator which
is normally used to improve performance, speed and sta-
bility of a Neural Network. Given a batch of data, it
normalizes the input of a layer such that it will have
mean output activation 0 and standard deviation of 1.
In parallel the aminoacid inputs are embedded as de-
scribed before. Finally all the vectors are merged to-
gether and a dense layer without activation outputs the
logQ (see Fig S2-3).

soNNia model inference

Given a sample of data sequences D = {xi}ND
i=1 and a

baseline G = {x′i}NG
i=1 we want to maximize the average

log-likelihood:

L(θ) = 〈logP θpost〉D =
1

ND

ND∑
i=1

logP θpost(x
i)

=
1

ND

ND∑
i=1

[logQθ(xi) + logPgen(xi)]− logZθ

= 〈logQθ〉D + 〈logPgen〉D − log〈Qθ〉G,

(8)

where Zθ = 〈Qθ〉G = N−1G
∑NG

i=1Q
θ(x′i). The Pgen

term in the last equation is parameter independent and
can thus be discarded in the inference. When an em-
pirical baseline is used, Pgen is replaced by Pemp(x) =

N−1G
∑NG

i=1 δx,x′
i
.

The above likelihood is implemented in the soNNia in-
ference procedure (linear and non-linear case) with the
Keras [62] package. The model is invariant with respect
to the transformation Q(x) → cQ(x) and Z → Z/c,
where c is an arbitrary constant, so we fix dynami-
cally the gauge Z = 1. We lift this degeneracy by
adding the penalty Γ(θ) = (Zθ − 1)2, and minimize
−Lsonia(θ) + γΓ(θ) with γ = 1 as a loss function.

In our implementation batch sizes between 103 − 104

sequences produced a reliable inference. L2 and L1 reg-
ularization on kernel weights are also applied. Hyperpa-
rameters were chosen using a validation dataset of size
10 % of training data.

To learn the QVJL model of Fig. 4, we used a lin-
ear SONIA model where features f where restricted to
V, J and CDR3 length features. One major difference
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with the approach of Ref. [46] is that, unlike the likeli-
hood they use, we do not double-count the distribution
of length (through P (L|V )P (L|J)). However, our results
show that that error does not affect model performance
substantially.

Hierarchy of models in linear SONIA

The linear SONIA model,

Qθ(x) = e
∑

f θfxf , (9)

may be rationalized using the principle of minimum dis-
criminatory information. In this scheme, we look for the
distribution Ppost that is most similar to our prior, de-
scribed by the baseline set Pgen (or empirical set G, re-

placing Pgen by Pemp(x) = N−1G
∑NG

i=1 δx,xi), but that
still reproduces the marginal probabilities in the data.
This translates to the minimization of the functional:

F(Ppost) = DKL(Ppost‖Pgen)− η0
(∑

x

Ppost(x)− 1
)

−
∑
f

θf

(
Ppost(f)− Pdata(f)

)
,

(10)

where

DKL(Ppost‖Pgen)
.
=
∑
x

Ppost(x) log
Ppost(x)

Pgen(x)
. (11)

The second term on the right-hand side imposes the nor-
malization of Ppost and the last term imposes the con-
straint that the marginal probabilities of the selected set
of features f should match those in the data through
the set of Lagrange multipliers θf . This scheme reduces
to the maximum entropy principle when G is uniformly
distributed. Minimization of Eq. 10 results in:

Ppost(x) =
e
∑

f θfxf

Zθ
Pgen(x), (12)

where Zθ = e1−η0 , which is equivalent to Eq. 9.
Because of the principle of Kullback-Leibler divergence

minimization, adding new constraints on the features to
the optimization necessary increases DKL. This allows us
to define a hiearchy of models as we add new constraints.

To evaluate the relative contributions of each feature
to the difference between CD4 and CD8 TCR, we define

different models based on a baseline set G defined as em-
pirical sequences, with (1) only CDR3 length features; (2)
CDR3 length and amino acid features; (3) CDR3 length
and VJ features; and (4) all features. We denote the cor-
responding KL divergences (Eq. 11) Dr

KL(L), Dr
KL(A),

Dr
KL(V J), and Dr

KL(full) for each subrepertoire r =CD4
or CD8, with Dr

KL(full) ≥ Dr
KL(A), Dr

KL(V J) ≥ Dr
KL(L).

In Fig. S11 each of these divergences are then com-
bined to get a “fractional Jensen-Shannon” divergence

Df
JS = fDCD4

KL + (1− f)DCD8
KL , where f is the fraction of

CD4 cells.
Estimation of information theoretic quantities

Given two random variables X and Y with joint dis-
tribution p(x, y), the mutual information is:

I(X,Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
, (13)

and P (x) and P (y) are the respective marginal distribu-
tions of p(x, y). I(X,Y ) can be naively estimated from
data through the empirical histogram (x, y). The esti-

mated mutual information Î on a finite sample of data
is affected by a systematic error [63]. We estimated
the finite sample systematic error I0(X,Y ) by destroying
the correlations in the data through randomization. We
implemented the randomization by mismatching CDR3-
length, V and J assignment within the set. This mis-
matching procedure leads to the same marginals, P (V ) or
P (J), but destroys correlations, P (V, J)−P (V )P (J) ' 0.
Errors on the Kullback divergences DKL and Jensen-
Shannon divergences, defined as

DJS(P,Q) =
1

2
DKL(P‖(P+Q)/2)+

1

2
DKL(Q‖(P+Q)/2),

(14)
are evaluated by computing the standard deviation of
the above quantities using subsampled datasets of size
one fifth of the original data.
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[24] Miho E, Roškar R, Greiff V, Reddy ST (2019) Large-scale
network analysis reveals the sequence space architecture

of antibody repertoires. Nat. Commun. 10:1321.
[25] Isacchini G, et al. (2020) Generative models of t-cell

receptor sequences. Phys. Rev. E 101:062414.
[26] Glanville J, et al. (2017) Identifying specificity groups in

the T cell receptor repertoire. Nature 547:94–98.
[27] Shugay M, et al. (2018) VDJdb: A curated database of

T-cell receptor sequences with known antigen specificity.
Nucleic Acids Res. 46:D419–D427.

[28] Jokinen E, Heinonen M, Huuhtanen J, Mustjoki S, Harri
L (2019) TCRGP : Determining epitope specificity of T
cell receptors. Bioarchive pp 4–12.

[29] Gielis S, et al. (2019) Detection of enriched t cell epi-
tope specificity in full t cell receptor sequence repertoires.
Front. Immunol. 10:2820.

[30] Dash P, et al. (2017) Quantifiable predictive features
define epitope-specific T cell receptor repertoires. Nature
547:89–93.

[31] Murugan A, Mora T, Walczak AM, Callan CG (2012)
Statistical inference of the generation probability of T-
cell receptors from sequence repertoires. Proc. Natl.
Acad. Sci. 109:16161–16166.

[32] Elhanati Y, Murugan A, Callan CG, Mora T, Walczak
AM (2014) Quantifying selection in immune receptor
repertoires. Proc. Natl. Acad. Sci. 111:9875–9880.

[33] Elhanati Y, et al. (2015) Inferring processes underlying
B-cell repertoire diversity. Philos Trans R Soc Lond, B,
Biol Sci 370:20140243.

[34] Emerson RO, et al. (2017) Immunosequencing identifies
signatures of cytomegalovirus exposure history and HLA-
mediated effects on the T cell repertoire. Nat. Genet.
49:659–665.

[35] Grigaityte K, et al. (2017) Single-cell sequencing re-
veals αβ chain pairing shapes the t cell repertoire.
bioRxiv:213462.

[36] Dupic T, Marcou Q, Walczak AM, Mora T (2019) Gene-
sis of the αβ t-cell receptor. PLoS Comput. Biol 15:1–19.

[37] Shcherbinin DS, Belousov VA, Shugay M (2020) Com-
prehensive analysis of structural and sequencing data re-
veals almost unconstrained chain pairing in tcrαβ com-
plex. PLoS Comput. Biol 16:1–17.

[38] Larimore K, McCormick MW, Robins HS, Greenberg PD
(2012) Shaping of human germline IgH repertoires re-
vealed by deep sequencing. J. Immunol. 189:3221–30.

[39] Glanville J, et al. (2009) Precise determination of the
diversity of a combinatorial antibody library gives insight
into the human immunoglobulin repertoire. Proc. Natl.
Acad. Sci. 106:20216–20221.

[40] Tanno H, et al. (2020) Determinants governing t cell re-
ceptor α/β-chain pairing in repertoire formation of iden-
tical twins. Proc. Natl. Acad. Sci. 117:532–540.

[41] DeKosky BJ, et al. (2016) Large-scale sequence and
structural comparisons of human naive and antigen-
experienced antibody repertoires. Proc. Natl. Acad. Sci.
113:E2636–E2645.

[42] Carter JA, et al. (2019) Single t cell sequencing demon-
strates the functional role of αβ tcr pairing in cell lineage
and antigen specificity. Front. Immunol. 10:1516.

[43] Seay HR, et al. (2016) Tissue distribution and clonal
diversity of the T and B cell repertoire in type 1 diabetes.
JCI Insight 1:1–19.

[44] Dean J, et al. (2015) Annotation of pseudogenic gene
segments by massively parallel sequencing of rearranged
lymphocyte receptor loci. Genome Medicine 7:123.

[45] Sato E, et al. (2005) Intraepithelial cd8+ tumor-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2020. ; https://doi.org/10.1101/2020.11.05.370346doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.05.370346
http://creativecommons.org/licenses/by-nc-nd/4.0/


15

infiltrating lymphocytes and a high cd8+/regulatory t
cell ratio are associated with favorable prognosis in ovar-
ian cancer. Proc. Natl. Acad. Sci. 102:18538–18543.

[46] Emerson R, et al. (2013) Estimating the ratio of cd4+ to
cd8+ t cells using high-throughput sequence data. Jour-
nal of Immunological Methods 391:14 – 21.

[47] Li B, et al. (2016) Landscape of tumor-infiltrating T cell
repertoire of human cancers. Nat. Genet. 48:725–732.

[48] Li HM, et al. (2016) Tcrβ repertoire of cd4+ and cd8+ t
cells is distinct in richness, distribution, and cdr3 amino
acid composition. Journal of leukocyte biology 99:505–
513 26394815[pmid].

[49] Bagaev DV, et al. (2019) VDJdb in 2019: database ex-
tension, new analysis infrastructure and a T-cell receptor
motif compendium. Nucleic Acids Res. pp 1–6.

[50] Dupic T, Marcou Q, Walczak AM, Mora T (2019) Gen-
esis of the αβ T-cell receptor. PLoS Comput. Biol.
15:e1006874.

[51] De Neuter N, et al. (2018) On the feasibility of mining
cd8+ t cell receptor patterns underlying immunogenic
peptide recognition. Immunogenetics 70:159–168.

[52] Sidhom JW, et al. (2019) Deeptcr: a deep learning frame-
work for understanding t-cell receptor sequence signa-
tures within complex t-cell repertoires. bioRxiv:464107.

[53] Jurtz VI, et al. (2018) Nettcr: sequence-based prediction
of tcr binding to peptide-mhc complexes using convolu-
tional neural networks. bioRxiv:433706.

[54] Springer I, Besser H, Tickotsky-Moskovitz N, Dvorkin S,
Louzoun Y (2020) Prediction of specific tcr-peptide bind-
ing from large dictionaries of tcr-peptide pairs. Front.

Immunol. 11:1803.
[55] Jokinen E, Heinonen M, Huuhtanen J, Mustjoki S,
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FIG. S1: Neural network structure of the deep soNNia model for the single chain case. There are three inputs, from left to
right: first the encoded aminoacid composition of the CDR3 using the left-right encoding scheme, then the length of the CDR3,
finally the independent V and J gene usage information. The aminoacid input is encoded using an embedding layer, called
EmbedViaMatrix and then processed by a tanh non-linearity, called Activation layer. The Flatten layer turns the encoded
matrix in the corresponding flattened array where each row of the matrix is concatenated to the successive one. A dense layer is
then applied to reduce its dimensionality. The other two inputs are also processed through a dense feed-forward layer to reduce
their corresponding dimensionality. The three groups of encoded inputs are then concatenated and two dense feed forward
layers are applied to output logQ. Finally logQ is clipped to avoid diverging values using the Lambda layer.
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FIG. S2: Neural Network structure of the deep-indep model for paired chains. See Fig. S1 for details on what each layer does.
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FIG. S3: Neural Network structure of the deep-joint model for paired chains. See Fig. S1 for details on what each layer does.
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Pgen

Pemp

Ppost

QNN(x)Pgen(x)

Qtrans(x)QNN(x)Pgen(x)Qlin(x)Pemp(x)

FIG. S4: Transfer learning consists generally in a 2-step inference: in the first step we infer a deep neural network on a bigger
data set G, in the second second step we re-infer a subsection of the network, or an additional layer on a smaller dataset, which
is the real target. In our specific application, the big data G is unfractionated repertoire from [44] (Pemp(x) = N−1

G

∑NG
i=1 δx,x′

i
),

and the real targets are the cells subsets harvested from different tissues [43]. We can infer a deep selection model to characterize
well Pemp and then correct with one additional linear model. This procedure is equivalent to using Pemp as null distribution
in the inference of a linear selection factor, as it can be seen by the high correlation between selection factors inferred with the
two different methodologies. In this work we do not use transfer learning but instead work directly with the empirical baseline
G.
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A B

FIG. S5: (A) Distribution of logQ of inferred models starting from a empirical baseline G and (B) Distribution of logQ of
inferred models starting from Pgen as a baseline.
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A

E

B C

D

FIG. S6: Analogous to Fig 4 in main text but with Pgen as null model. (A) Jensen-Shannon divergences (DJS , see Eq. 4)
computed from models trained on different subrepertoires. (B) Maximum-likelihood inference of the fraction of CD8 TCR in
mixed repertoires of Tconv and CD8 from spleen (Eq 5). Each repertoires comprises 5 × 103 unique TCR. (C) Same as (B)
but for a mixture of Tconv and Treg TCR. (D) Mean squared error of the inferred sample fraction from (B) as a function of
sample size N , averaged over all fractions, using models of increasing complexity: ‘QV JL’ is a linear model with only features
for CDR3 length and VJ usage, ‘linear’ is linear SONIA model, ‘deep’ is the full soNNia model (see Fig. 1C). (E) Receiving-
Operating Curve (ROC) for classifying individual sequences as coming from CD8 cells or from CD4+ conventional T cells from
spleen, using the log-likelihood ratios. Curves are generated by varying the threshold in Eq. 6. The accuracy of the classifier is
compared to a traditional logistic classifier inferred on the same set of features as our selection models. The training set for the
logistic classifier has N = 3× 105 Tconv CD4, N = 8.7× 104 CD8 TCRs, and the test set has N = 2× 104 CD4, N = 2× 104

CD8 TCR sequences.
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FIG. S7: Differential selection in V and J gene usage between CD4+ and CD8+ models
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FIG. S8: Sequence motifs of selection factors associated to aminoacid composition for (A) CD4+ and (B) CD8+ cells. Logo plots
produced with the code developed in [64] (C) Average selection factor for specific charged aminoacids (K–lysine, R–arginine,
D–aspartate, E–glutamate), in CD4+ and CD8+ models. QK = exp(θf )f∼K corresponds to selection factor associated to
features that involve the presence of lysine (K) at any position, and likewise for R, D, and E aminoacids.
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FIG. S9: Decomposition of contribution from different features to the fractional Jensen Shannon divergence between the CD4
and CD8 subpertoire statistics, Df

JS(L) ≤ Df
JS(A), Df

JS(V J) ≤ Df
JS(full). The blue bar is the contribution of CDR3 length;

orange and green bars are the relative contributions from the amino-acid composition and VJ usage, respectively. Red bar
is the fraction that’s redundant between VJ and amino acid usage. Contributions are balanced between amino acid and VJ
usage, with moderate redundancy between the two.
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FIG. S10: Joint Inference of fraction of TCR belonging to different subclasses in a mixture of 3 repertoires: CD8+,CD4+
Tconv and CD4+ Treg cells. We optimize the likelihood L(f1, f2) =

∑
i(f1Qconv(xi) + f2Qreg(xi) + (1 − f1 − f2)QCD8(xi))

to infer jointly the two fractions f1 and f2 in a chosen mixture of 3× 104 TCRs xi, built by combining repertoires of purified
subsets harvested from spleen [43]. Each point corresponds to a mixture with f1 and f2 sampled uniformly 2000 times in the
simplex f1 ≥ 0, f2 ≥ 0, f1 + f2 ≤ 1.
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FIG. S11: ROC curve between all subsets based on the log ratio R(x) defined on main text, where the selection factors are

inferred starting from the empirical baseline G (Pemp(x) = N−1
G

∑NG
i=1 δx,x′

i
, above diagonal) or Pgen (below diagonal).
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