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Abstract 
There are only a few platforms that integrate multiple omics data types, bioinformatics tools, 

and interfaces for integrative analyses and visualization that do not require programming skills. 
Among these, iLINCS is unique in scope and versatility of the data provided and the analytics 
facilitated. iLINCS (http://ilincs.org) is an integrative web-based platform for analysis of omics 
data and signatures of cellular perturbations. The platform facilitates analysis of user-submitted 
omics signatures of diseases and cellular perturbations in the context of a large compendium of 
pre-computed signatures (>200,000), as well as mining and re-analysis of the large collection of 
omics datasets (>12,000), pre-computed signatures, and their connections. Analytics workflows 
driven by user-friendly interfaces enable users with only conceptual understanding of the 
analysis strategy to execute sophisticated analyses of omics signatures, such as systems biology 
analyses and interpretation of signatures, mechanism of action analysis, and signature-driven 
drug repositioning. In summary, iLINCS workflows integrate vast omics data resources and a 
range of analytics and interactive visualization tools into a comprehensive platform for analysis 
of omics signatures.  

Keywords: LINCS program, omics data, data analytics, connectivity mapping, cellular 
signatures, transcriptomics, proteomics, RNA-seq, P100, GCP, systems biology 

 
Background 
Transcriptomics and proteomics (omics) signatures in response to cellular perturbations 

consist of changes in gene or protein expression levels after the perturbation. An omics signature 
is a high-dimensional readout of cellular state change that provides information about the 
biological processes affected by the perturbation lead to the post-perturbation phenotype of the 
cell. The signature on its own provides information, although not always directly discernable, 
about the molecular mechanisms by which the perturbation causes observed changes. If we 
consider a disease to be a perturbation of the homeostatic biological system under normal 
physiology, then the omics signature of a disease are the differences in gene/protein expression 
levels between disease and non-diseased tissue samples. 

The low cost and effectiveness of transcriptomics assays1-4 has resulted in an abundance of 
transcriptomics datasets and signatures. Recent advances in the field of high throughput 
proteomics made generation of large numbers of proteomics signatures a reality5,6. Several 
recent efforts were directed at systematic generation of omics signatures of cellular 
perturbations7 and at generating libraries of signatures by re-analyzing public domain omics 
datasets8,9. The recently released library of integrated network-based cellular signatures (LINCS)7 
L1000 dataset generated transcriptomic signatures at unprecedented scale2. The availability of 
resulting libraries of signatures open exciting new avenues for learning about the mechanisms of 
diseases and the search for effective therapeutics10.  

The analysis and interpretation of omics signatures has been intensely researched. Numerous 
methods and tools have been developed for identifying changes in molecular phenotypes 
implicated by transcriptional signatures based on gene set enrichment, pathway, and network 
analyses approaches11-13. Directly matching transcriptional signatures of a disease with 
negatively correlated transcriptional signatures of chemical perturbations (CP) underlies the 
Connectivity Map (CMap) approach to identifying potential drug candidates10,14,15. Similarly, 
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correlating signatures of chemical perturbagens with genetic perturbations of specific genes has 
been used to identify putative targets of drugs and  chemical perturbagens 2.  

To fully exploit the information contained within omics signature libraries and within countless 
omics signatures generated every day by investigators around the world, new user-friendly 
integrative tools are needed that bring this data together, and are accessible to a large segment 

Fig 1. Integrative omics signature analysis in iLINCS. A) A signature can be selected by querying 
the iILINCS database, submitted by the user, or constructed by analyzing an iLINCS omics 
dataset. B) The signature can be analyzed using a range of systems biology methods (gene set 
enrichment, pathway and network analyses). C) Signature “connectivity” analyses can be 
applied to identify cellular perturbations and biological states of similar signatures. D) The 
analysis of connected signatures, as well as the identity of the perturbed genes and proteins 
leading to the connected signatures, can be used to elucidate mechanisms of action. E) 
Ultimately, the results of the analyses lead to insights and hypotheses about potential 
therapeutic targets and therapeutic agents. 
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of biomedical research community. The integrative LINCS (iLINCS) portal brings together libraries 
of precomputed signatures, formatted datasets, connections between signatures, and integrates 
them with a bioinformatics analysis engine into a coherent system for omics signature analysis. 

Results 
iLINCS (available http://ilincs.org) is an integrative user-friendly web platform for the analysis 

of omics (transcriptomic and proteomic) datasets and signatures of cellular perturbations. The 
key components of iLINCS are: Interactive and interconnected analytical workflows for creation 
and analysis of omics signatures; The large collection of datasets, pre-computed signatures and 
their connections; and user-friendly graphical interfaces for executing analytical tasks and 
workflows.  The central concept in iLINCS is the omics signature which can be retrieved from the 
pre-computed signature libraries within the iLINCS database, submitted by the user, or 
constructed using one of the iLINCS datasets (Fig 1A). The signatures in iLINCS consist of 
differential gene or protein expression levels and associated p-values between perturbed and 
baseline samples for all, or any subset of measured genes/proteins. Signatures submitted by the 
user can also be in the form of a list of genes/proteins, or a list of up- and down-regulated 
genes/proteins. Analytical workflows facilitate systems biology interpretation of the signature 
(Fig 1B) and the connectivity analysis of the signature with all iLINCS pre-computed signatures 
(Fig 1C). Connected signatures can further be analyzed in terms of the patterns of gene/protein 
expression level changes that underlie the connectivity with the query signature, or through the 
analysis of gene/protein targets of connected perturbagens (Fig 1D). Ultimately, the multi-
layered systems biology analyses, and the connectivity analyses lead to biological insights, and 
identification of therapeutic targets and putative therapeutic agents (Fig 1E). Below we provide 
an overview of the key data and analytic components of iLINCS, and then we present three use 
cases to demonstrate iLINCS’ capacity to generate impactful results.  

 Interconnected workflows for constructing and analyzing omics signatures 
Interactive analytical workflows in iLINCS facilitate signature construction through differential 

expression analysis as well as clustering, dimensionality reduction, functional enrichment, 
signature connectivity analysis, pathway and network analysis, and integrative interactive 
visualization. Visualizations include interactive scatter plots, volcano and GSEA plots, heatmaps, 
and pathway and network node and stick diagram (Supplemental Figure 1). Users can download 
raw data and signatures, analysis results and publication-ready graphics. iLINCS internal analysis 
and visualization engine uses R 16, Bioconductor packages17, the Shiny framework18, interactive 
graphics created with ggplot 19and plotly 20, and integration of open-source visualization tools 
such as FTreeView21 and Morpheous 22. iLINCS also facilitates seamless integration with a wide 
range of task-specific online bioinformatics and systems biology tools and resources including 
Enrichr23, DAVID24, ToppGene25, Reactome26, KEGG27, GeneMania28, X2K Web29, L1000FWD30, 
STITCH31, Clustergrammer32, piNET 33, LINCS Data Portal34, ScrubChem35, PubChem36, GEO37, 
ArrayExpress38 and GREIN39. Programmatic access to iLINCS data, workflows and visualizations 
are facilitated by embedding the calls to iLINCS API which are documented with the Swagger 
community standard. Examples of utilizing the iLINCS API within data analysis scripts are provided 
on GitHub (https://github.com/uc-bd2k/ilincsAPI). The iLINCS software architecture is described 
in Supplemental Figure 2.  

iLINCS libraries of datasets, signatures and connections 
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iLINCS backend Databases contain >10,000 processed omics datasets, >220,000 omics 
signatures and >109 statistically significant “connections” between signatures. Omics datasets 
available for analysis and signatures creation include transcriptomic (RNA-seq and microarray) 
and proteomic (Reverse Phase Protein Arrays 40 and LINCS targeted mass spectrometry 
proteomics5) datasets. Dataset collections include transcriptomic and proteomics data generated 
by The Cancer Genome Atlas (TCGA) project, GEO GDS datasets, and the complete collection of 
GEO RNA-seq datasets. Omics signatures include: LINCS chemical and genetic perturbation 
signatures consisting of genome-wide transcriptional response after genetic loss of function 
perturbation of more than 3,500 genes, or a perturbation by one of more than 4,000 chemical 
perturbagens based on LINCS L1000 assay data 2, DrugMatrix Chemogenomic database of 5,200 
transcriptomic profiles of chemical toxicity 41, Disease Related Signatures consisting of 9,000 
transcriptional signatures constructed by comparing sample groups within the collection of 
curated transcriptomics datasets from GEO42, EBI Expression Atlas8 signatures, and 5,000 
pharmacogenomics signatures constructed from public domain datasets4,43.  

Use case 1: Identifying chemical perturbagens emulating genetic perturbation of the mTOR 
gene 

Aberrant activation of mTOR signaling underlies multiple human diseases and numerous 
efforts in designing drugs that modulate activity of mTOR signaling are under way44. Here we use 
the signature of genetic perturbation (via CRISPR knock-down) of the mTOR genes to identify 
chemical perturbagens mimicking the perturbation of the mTOR genes. First, we search through 
iLINCS libraries for Consensus Genes Signatures (CGSes) of mTOR knock-down and use the CRISPR 
CGS in MCF-7 cell line as the query signature. The connectivity analysis identifies 258 LINCS CGSes 
and 831 CP Signatures with statistically significant correlation with the query signature. Top 100 
most connected CGSes are dominated by the signatures of genetic perturbations of mTOR and 
PIK3CA genes (Fig 2A), whereas all top 5 most frequent inhibition targets of CPs among top 100 
most connected CP signatures are mTOR and PIK3 proteins (Fig 2B).  Results clearly indicate that 
the query mTOR CGS is highly specific and sensitive to perturbation of the mTOR pathway and 
effectively identifies chemical perturbagens capable of inhibiting mTOR signaling. The full list of 
connected signatures is shown in Supplemental Table ST1. The connected CP signatures also 
include several chemical perturbagens with highly connected signatures that have not been 
known to target mTOR signaling providing additional candidate inhibitors. Step by step 
instructions for performing this analysis in iLINCS are provided in Supplemental Workflow SW1. 

Use case 2: Mechanism of action analysis via connection to genetic perturbation signatures 
Identifying small molecules (i.e. chemical perturbagens) that can modulate activity of disease-

related proteins or pathways is the cornerstone of intelligent drug design. Transcriptional 
signature of chemical perturbagens often carry only an echo of such effects since the proteins 
directly targeted by a chemical and the interacting signaling proteins are not transcriptionally 
changed. iLINCS offers the solution for this problem by connecting the CP signatures to LINCS 
CGSes, and facilitating a follow-up systems biology analysis of genes whose CGSes are highly 
correlated with the CP signature. This strategy is illustrated by the analysis of the signature of the 
24 hour, 0.04µM treatment of the MCF-7 cell line with the mTOR inhibitor everolimus (Fig 2CDE).  
Step by step instructions for performing this analysis in iLINCS are provided in Supplemental 
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Workflow SW2. Traditional pathway enrichment analysis of this CP signature via iLINCS  
connection to Enrichr (Fig 2C) fails to identify the mTOR pathway as being affected. In the next 
step, we first connect the CP signature to LINCS CGSes and then perform pathway enrichment 
analysis of genes with correlated CGSes. This analysis correctly identifies mTOR signaling pathway 
as the top affected pathway (Fig 2D). Similarly, connectivity analysis with other CP signatures 
followed by the enrichment analysis of protein targets of top 100 most connected CPs again 
identifies the Pi3k-Akt signaling pathway as one of the most enriched (Fig 2E). In conclusion, both 
pathway analysis of differentially expressed genes in the everolimus signature and pathway 
analysis of connected genetic and chemical perturbagens provide us with important information 
about effects of everolimus. However, only the analyses of connected perturbagens correctly 
pinpoints the direct mechanism of action of the everolimus, which is the inhibition of mTOR 
signaling.  

 Use case 3: Proteo-genomics analysis of cancer driver events in breast cancer 
We analyzed TCGA breast cancer RNA-seq and RPPA data using the iLINCS “Datasets” 

workflow to construct the differential gene and protein expression signatures contrasting 

Fig 2. Analysis of LINCS L1000 signatures of genetic and chemical perturbations. A) Most 
frequently perturbed genes among the Consensus Genes Signatures (CGS) connected to the 
mTOR knock-down CGS; B) Most frequent inhibition targets of chemical perturbagens with 
signatures connected to the mTOR CGS signature; C) Most enriched biological pathways for the 
everolimus signature; D) Most frequently perturbed genes among CGSes connected with 
everolimus signature, and pathways most enriched by the perturbed genes; E) Most frequent 
inhibition targets of chemical perturbagens with signatures connected to the everolimus 
signature and the pathways most enriched by the genes of the targeted proteins. 
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Luminal A and Her2 enriched (Her2E) breast tumors45. The protein expression signature  
immediately implicated known driver events distinguishing the two subtypes, the Luminal A 
cancers being driven by abnormal activity of the estrogen receptor and the Her2E tumors driven 
by abnormally high activity of the Her2 protein (Fig 3A).  In addition to expected proteins, the 
increased level of phosphorylated EIF4EBP1 protein may indicate increased level of mTOR 
signaling in Her2E tumors.  

The corresponding RNA-seq signature showed similar patterns of expression of key genes (Fig 
3B). All genes were differentially expressed (Bonferroni adjusted p-value<0.01) except for EGFR, 
indicating that the difference in levels of post-translationally activated (phosphorylated) versions 
of the proteins may have come from activation of upstream kinases instead of overall increase in 
gene/protein expression. Analysis of 665 most significantly upregulated genes in Her2E tumors 
(p-value<1e-10) identified cell cycle-related KEGG pathways  to be the most significantly(Cell 
cycle, p-value=1.3e-26; DNA replication, p-value=1.4e-13) enriched according to the Enrichr 

Fig 3. Proteo-genomics analysis of cancer driver events in breast cancer. A) Most differentially 
expressed proteins in the proteomics signatures constructed by comparing RPPA profiles of Her2E 
and Luminal A BRC samples; B) Gene expression profile of the genes corresponding to proteins in 
A) based on RNA-seq data; C) Top 100 CP signatures most connected with the transcriptional 
signature constructed by comparing RNA-seq profiles of Her2E and Luminal A samples; D) Selected 
chemical perturbagens and their targets for CP signatures in C). 
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combined scores (See Supplemental Table ST2 for all results). This implicates a known increased 
proliferation of Her2E tumors in comparison to Luminal A tumors46. The connectivity analysis of 
the RNA-seq signature with LINCS CP signatures shows that treating several different cancer cell 
lines with inhibitors of PI3K, mTOR, CDK (Fig 3C) and inhibitors of some other more generic 
proliferation targets (eg. TOP21, AURKA) (see Supplemental Table ST3 for complete results) 
produces signatures that are positively correlated with RNA-seq Luminal A vs Her2E signature, 
indicating that such treatments are pushing cancer cell lines toward greater phenotypic similarity 
with Luminal A tumors.  

Group analysis of connected CP signatures (Fig 3C) indicates that results of connectivity 
analysis may be largely driven by the inhibition of proliferation as evidenced by enrichment of 
down-regulated genes by cell cycle genes and up-regulated genes by apoptosis related genes in 
connected signatures. However, the dominance of PI3K and mTOR inhibitor signatures (Fig 3D) 
suggests that the connections, to some extent, may also be driven by more specific targeting of 
PI3K-mTOR signaling, which may be more active in Her2E cancers as indicated by increased levels 
of the phosphorylated EIF4EBP1 protein.   

High positive connectivity to Cancer Therapeutic Response Signatures47 of two PI3K inhibitors 
in breast cancer cell lines also indicates that Her2E cancers may be more sensitive to mTOR 
inhibition (Supplemental Table ST3). Connectivity analysis with ENCODE transcription factor 
targets signatures recapitulated known biology (negative association with E2F4 binding 
signatures implicating higher proliferation of Her2E tumors and positive associations with ER𝛼 
binding signatures, implicating the increase ER𝛼 activity in Luminal A tumors) (Supplemental 
Table ST3).  Most connected signatures in analysis of Disease related signatures42 extracted from 
GEO data and EBI Expression Atlas8 signatures were all related to comparisons of different breast 
cancers samples (Supplemental Table ST3). Step by step instructions for performing this analysis 
in iLINCS are provided in Supplemental Workflow SW3. 

Other use cases: The three interconnected iLINCS workflows (Signatures, Datasets, Genes), 
facilitate a wide range of possible use cases. The three detailed cases above all use either pre-
computed iLINCS signatures, or iLINCS omics datasets to construct signatures. Querying iLINCS 
with user submitted external signatures, genes and gene lists allows identification of connected 
perturbations and signatures. It also allows users to answer more specific questions about 
expression patterns of genes or gene lists of interest in specific datasets or across a class of 
cellular perturbations. For example, a query with a specific gene of interest can identify sets of 
perturbations that significantly affect the expression of the gene and thus offering a set of 
chemicals, or genetic perturbations that can be used to modulate the activity of the 
corresponding protein. A query with a list of genes whose coordinated expression is known to be 
a hallmark of a specific biological state or process48 can identify a set of perturbations that can 
accordingly modify cell phenotype. Additional use cases have also been illustrated in several 
published scientific studies utilizing iLINCS: identification of putative therapeutic agents for 
schizophrenia49,50, developing new strategies for ERα degradation in breast cancers51, inhibiting 
the protective effects of stromal cells against chemotherapy in breast cancer52 and rational drug 
combination design to inhibit epithelial-mesenchymal transition53. 

 
Discussion 
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iLINCS is a unique integrated platform for analysis of omics signatures. The three use cases 
described here only scratch the surface of the wide range of possible analyses facilitated by the 
interconnected analytical workflows and the large collections of omics datasets, signatures and 
their connections. These cases also feature only a subset of all analytical tools integrated within 
the iLINCS platform. The user interfaces are streamlined and strive to be self-explanatory to most 
scientists with conceptual understanding of omics data analysis. All analyses presented here were 
performed by typing the initial queries and then using the mouse to navigate user interfaces 
without ever having to copy and/or re-submit any portions of the data and results to a separate 
analytical tool. iLINCS implements the complete systematic polypharmacology and drug 
repurposing 54 workflow, and provides new innovative workflows for harnessing the full potential 
of LINCS omics signatures. 

In addition to facilitating standard analyses, iLINCS also implements innovative workflows for 
biological interpretation of omics signatures via connectivity analysis. For example, in use case 2 
we show how connectivity analysis coupled with pathway and gene set enrichment analysis can 
implicate mechanism of action of a chemical perturbagen when standard enrichment analysis 
applied to the differentially expressed genes fails to recover targeted signaling pathways. In a 
similar vein, iLINCS has been successfully used to identify putative therapeutic agents by 
connecting changes in proteomics profiles in neurons from patients with schizophrenia; first with 
the LINCS CGSes of the corresponding genes, and then with LINCS CP signatures50. These analyses 
led to identification of PPAR agonists as promising therapeutic agents capable of reversing 
bioenergetic signature of schizophrenia, which were subsequently shown to modulate behavioral 
phenotypes in rat model of schizophrenia49. In last several months, iLINCS has also been used to 
research immune response to COVID-19 infection and new therapeutic approaches 55 56 57 58 59. 

Several online tools have been developed for the analysis and mining LINCS L1000 signature 
libraries. They facilitate online queries of L1000 signatures60,61 and construction of scripted 
pipelines for in-depth analysis of transcriptomics data and signatures62. The LINCS Transcriptomic 
Center at the Broad Institute developed the clue.io query tool deployed by the Broad Connectivity 
Map team which facilitates connectivity analysis of user submitted signatures2. iLINCS replicates 
the connectivity analysis functionality, and indeed, the equivalent queries of the two systems 
may return qualitatively similar results (see Supplemental Results for a use case comparison). 
However, the scope of iLINCS is much broader. It provides connectivity analysis with signatures 
beyond Connectivity Map datasets and provides many primary omics datasets for users to 
construct their own signatures.  Furthermore, analytical workflows in iLINCS facilitate deep 
systems biology analysis and knowledge discovery of both omics signatures and the genes and 
protein targets identified through connectivity analysis. Comparison to several other web 
resources that partially cover different aspects of iLINCS functionality are summarized in 
Supplemental Table S4. 

iLINCS removes technical roadblocks for users without programming background to re-use a 
large fraction of publicly available omics datasets and signatures. Recent effort in terms of 
standardizing 63 and indexing 64 efforts are improving findability and re-usability of public domain 
omics data. iLINCS is taking the next logical step in integrating public domain data and signatures 
with user-friendly analysis toolbox. Furthermore, all analyses steps behind the iLINCS UI’s are 
driven by API which themselves can and have been already used within computational pipelines 
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based on scripting languages65, such as R, Python and JavaScript, or to power functionality of 
other web analysis tools33,66. This makes iLINCS a natural tool for analysis and interpretation of 
omics signatures for scientists preferring point-and-click GUIs as well as data scientists using 
scripted analytical pipelines.  
 
Methods 

Perturbation signatures 
All pre-computed perturbation signatures in iLINCS, as well as signatures created using an 

iLINCS dataset, consist of two vectors: the vector of log-scale differential expressions between 
the perturbed samples and baseline samples d=(d1,…,dN), and the vector of associated p-values 
p=(p1,…,pN), where N is the number of genes or proteins in the signature. Signatures submitted 
by the user can also consist of only log-scale differential expressions without p-values, list of up- 
and down-regulated genes, and single list of genes. 

Signature connectivity analysis 
Depending on the exact type of the query signature, the connectivity analysis with libraries of 

pre-computed iLINCS signatures are computed using different connectivity metric. The choice of 
the similarity metric to be used in different contexts was driven by benchmarking six different 
methods (Supplementary Result 2).   

If the query signature is selected from iLINCS libraries of pre-computed signatures, the 
connectivity with all other iLINCS signatures is pre-computed using the extreme Pearson’s 
correlation67,68 of signed significances of all genes. The signed significance of the ith gene is 
defined as 

𝑠! = 𝑠𝑖𝑔𝑛(𝑑!) ∗ (−𝑙𝑜𝑔"#(𝑝!)), 𝑓𝑜𝑟		𝑖 = 1,… ,𝑁, 
and the signed significance signature is s=(s1,…,sN). The extreme signed signature e=(e1,…,eN) 

is then constructing by setting the signed significances of all genes other than the top 100 and 
bottom 100 to zero: 

𝑒! = 7𝑠! , 𝑖𝑓	𝑠! ≥ 𝑠"##	𝑜𝑟	𝑠! ≤ 𝑠$"##
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

> 

Where s100 is the 100th most positive si and s-100 is the 100th most negative si. The extreme 
Pearson correlation between two signatures is then calculated as the standard Pearson’s 
correlation between the extreme signed significance signatures.  

If the query signature is created from an iLINCS dataset, or directly uploaded by the user, the 
connectivity with all iLINCS signatures is calculated as the weighted correlation between the two 
vectors of log-differential expressions and the vector of weights equal to [-log10(p-value of the 
query) - log10(p-value of the iLINCS signature)]69. When the user-uploaded signature consists of 
only log differential expression levels without p-values, the weight for the correlation is based 
only on the p-values of the iLINCS signatures [-log10(p-values of the iLINCS signatures)]. 

If the query signature uploaded by the user consists of the lists of up- and down-regulated 
genes connectivity is calculated by assigning -1 to down-regulated and +1 upregulated genes and 
calculating Pearson’s correlation between such vector and iLINCS signatures. The calculated 
statistical significance of the correlation in this case is equivalent to the t-test for the difference 
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between differential expression measures of iLINCS signatures between up- and down-regulated 
genes. 

If the query signature is uploaded by the user in a form of a gene list, the connectivity with 
iLINCS signatures is calculated as the enrichment of highly significant differential expression 
levels in iLINCS signature within the submitted gene list using the Random Set analysis 70.  

Perturbagen connectivity analysis 
The connectivity between a query signature and a “perturbagen” is established using the 

enrichment analysis of individual connectivity scores between the query signature and set of all 
L1000 signatures of the perturbagen (for all cell lines, time points and concentrations). The 
analysis establishes whether the connectivity scores as a set are “unusually” high based on the 
Random Set analysis70. 

iLINCS signature libraries 
LINCS L1000 signature libraries (Consensus gene knockdown signatures (CGS), Overexpression 

gene signatures and Chemical perturbation signatures) : For all LINCS L1000 signature libraries, 
the signatures are constructed by combining the Level 4, population control signature replicates 
from two released GEO datasets (GSE92742 and GSE70138) into the Level 5 moderated Z scores 
(MODZ) by calculating weighted averages as described in the primary publication for the L1000 
Connectivity Map dataset2. Only signatures showing evidence of being reproducible by having 
the 75th quantile of pairwise spearman correlations of level 4 replicates (Broad institute 
distil_cc_q75 quality control metric2)  greater than 0.2 are included. The corresponding p-values 
were calculated by comparing MODZ of each gene to zero using the Empirical Bayes weighted t-
test with the same weights used for calculating MODZs.  The shRNA and CRISPR knock-down 
signatures targeting the same gene were further aggregated into Consensus gene signatures 
(CGSes)2 by the same procedure used to calculate MODZs and associated p-values. 

LINCS targeted proteomics signatures: Signatures of chemical perturbations assayed by the 
quantitative targeted mass spectrometry proteomics P100 assay measuring levels 96 
phosphopeptides and GCP assay against ~60 probes that monitor combinations of post-
translational modifications on histones5.  

Disease related signatures: Transcriptional signatures constructed by comparing sample 
groups within the collection of curated public domain transcriptional dataset (GEO DataSets 
collection)37. Each signature consists of differential expressions and associated p-values for all 
genes calculated using Empirical Bayes linear model implemented in the limma package. 

ENCODE transcription factor binding signatures: Genome-wide transcription factor (TF) 
binding signatures constructed by applying the TREG methodology to ENCODE ChiP-seq71. Each 
signature consists of scores and probabilities of regulation by the given TF in the specific context 
(cell line and treatment) for each gene in the genome. 

Connectivity Map Signatures: Transcriptional signatures of perturbagen activity constructed 
based on the version 2 of the original Connectivity Map dataset using Affymetrix expression 
arrays42. Each signature consists of differential expressions and associated p-values for all genes 
when comparing perturbagen treated cell lines with appropriate controls. 
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DrugMatrix signatures: Toxicogenomic signatures of over 600 different compounds41 
maintained by the National Toxicology Program72 consisting of genome-wide differential gene 
expression levels and associated p-values. 

Transcriptional signatures from EBI Expression Atlas: All mouse, rat and human differential 
expression signatures and associated p-values from manually curated comparisons in the 
Expression Atlas8. 

Cancer therapeutics response signatures: These signatures were created by combining 
transcriptional data with drug sensitivity data from the Cancer Therapeutics Response Portal 
(CTRP) project47. Signatures were created separately for each tissue/cell lineage in the dataset by 
comparing gene expression between the five cell lines of that lineage that were most and five 
that were least sensitive to a given drug area as measured by the concentration-response curve 
(AUC) using two-sample t-test.  

Pharmacogenomics transcriptional signatures: These signatures were created by calculating 
differential gene expression levels and associated p-value between cell-lines treated with anti-
cancer drugs and the corresponding controls in two separate projects: 
The NCI Transcriptional Pharmacodynamics Workbench (NCI-TPW)43 and the Plate-seq project 
dataset4. 

Constructing signatures from iLINCS datasets 
The transcriptomics or proteomics signature is constructed by comparing expression levels of 

two groups of samples (treatment group and baseline group) using Empirical Bayes linear model 
implemented in the limma package73. For the GREIN collection of GEO RNA-seq datasets74, the 
signatures are constructed using the negative-binomial generalized linear model as implemented 
in the edgeR package75.  

Analytical tools, web applications and web resources 
Signatures analytics in iLINCS is facilitated via native R, Java, JavaScript and Shiny applications, 

and via API connections to external web application and services. Brief listing of analysis and 
visualization tools is provided here. The overall structure of iLINCS is described in the 
Supplemental Results. 

Gene list enrichment analysis is facilitated by directly submitting lists of gene to any of the 
three prominent enrichment analysis web tools: Enrichr23, DAVID24, ToppGene25. The 
manipulation and selection of list of signature genes is facilitated via an interactive volcano plot 
JavaScript application (shown in Supplemental Workflow 3). 

Pathway analysis is facilitated through either general purpose enrichment tool (Enrichr, 
DAVID, ToppGene), the enrichment analysis of Reactome pathways via Reactome online tool26, 
and internal R routines for SPIA analysis76 of KEGG pathways and general visualization of 
signatures in the context of KEGG pathways using the KEGG API27. 

Network analysis is facilitated by submitting lists of genes to Genemania28 and by internal 
iLINCS Shiny Signature Network Analysis (SigNetA) application. 

Heatamap visualizations  are facilitated by native iLINCS applications: Java based FTreeView21, 
modified version of the JavaScript based Morpheus22 and a Shiny based HeatMap application and 
by connection to the web application Clustergrammer32. 
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Dimensionality reduction analysis (PCA and t-SNE77) and visualization of high-dimensional 
relationship via interactive 2D and 3D scatter plots is facilitated via internal iLINCS Shiny 
applications. 

Interactive box-plots, scatter plots, GSEA plots, bar charts and pie charts used throughout 
iLINCS are implemented using R ggplot19 and plotly20. 

Additional analysis are provided by connection X2K Web29 (inference of upstream regulatory 
networks from signature genes), L1000FWD30 (connectivity with signatures constructed using 
characteristic dimension methodology), STITCH31 (visualization of drug-target networks), piNET33 
(visualization of gene-to-pathway relationships for signature genes). 

Additional information about drugs, genes and proteins are provided by links to, LINCS Data 
Portal78, ScrubChem35, PubChem36, Harmonizome79, GeneCards80, and several other only 
databases. 

Gene and protein expression dataset collections 
iLINCS backend databases provide access to more than 11,000 pre-processed gene and 

protein expression datasets that can be used to create and analyze gene and expression protein 
signatures. Datasets are thematically organized into eight collections with some datasets 
assigned to multiple collections. User can search all datasets or browse datasets by collection.  

LINCS collection: Datasets generated by the LINCS data and signature generation centers7 
TCGA collection: Gene expression (RNASeqV2), protein expression (RPPA), and copy number 

variation data generated by TCGA project45 
GDS collection: A curated collection of GEO Gene Datasets (GDS)37 
Cancer collection: An ad-hoc collection of cancer related genomics and proteomic datasets 
Toxicogenomics collection: An ad-hoc collection of toxicogenomics datasets 
RPPA collection: An ad-hoc collection of proteomic datasets generated by Reverse Phase 

Protein Array assay81 
GREIN collection: Complete collection of preprocessed human, mouse and rat RNA-seq data 

in GEO provided by the GEO RNA-seq Experiments Interactive Navigator (GREIN)74 
Reference collection: An ad-hoc collection of important gene expression datasets. 
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