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Abstract	

Non-additive	genetic	variance	for	complex	traits	is	traditionally	estimated	from	data	on	

relatives.	It	is	notoriously	difficult	to	estimate	without	bias	in	non-laboratory	species,	

including	humans,	because	of	possible	confounding	with	environmental	covariance	among	

relatives.	In	principle,	non-additive	variance	attributable	to	common	DNA	variants	can	be	

estimated	from	a	random	sample	of	unrelated	individuals	with	genome-wide	SNP	data.	

Here,	we	jointly	estimate	the	proportion	of	variance	explained	by	additive	(ℎ!"#$ ),	

dominance	(𝛿!"#$ )	and	additive-by-additive	(𝜂!"#$ )	genetic	variance	in	a	single	analysis	

model.	We	first	show	by	simulations	that	our	model	leads	to	unbiased	estimates	and	

provide	new	theory	to	predict	standard	errors	estimated	using	either	least	squares	or	

maximum	likelihood.	We	then	apply	the	model	to	70	complex	traits	using	254,679	

unrelated	individuals	from	the	UK	Biobank	and	1.1M	genotyped	and	imputed	SNPs.	We	

found	strong	evidence	for	additive	variance	(average	across	traits	ℎ$!"#$ = 0.207).	In	

contrast,	the	average	estimate	of	𝛿!̅"#$ 	across	traits	was	0.001,	implying	negligible	

dominance	variance	at	causal	variants	tagged	by	common	SNPs.	The	average	epistatic	

variance	�̅�!"#$ 	across	the	traits	was	0.058,	not	significantly	different	from	zero	because	of	

the	large	sampling	variance.	Our	results	provide	new	evidence	that	genetic	variance	for	

complex	traits	is	predominantly	additive,	and	that	sample	sizes	of	many	millions	of	

unrelated	individuals	are	needed	to	estimate	epistatic	variance	with	sufficient	precision.	
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Introduction	

The	total	genetic	variance	of	a	trait	can	be	partitioned	into	additive,	dominance	and	

epistatic	variance	components1-5.	The	role	of	non-additive	genetic	variation	(dominance	

and	epistatic)	in	complex	traits	in	human	populations	remains	elusive,	because	it	is	difficult	

to	estimate	and	also	because	theory	predicts	it	to	be	small	relative	to	additive	variance.	

Traditionally,	non-additive	genetic	variance	has	been	estimated	from	pedigree	or	twin	

studies,	by	contrasting	the	phenotypic	covariance	for	different	kinds	of	relatives.	Non-

additive	variance	leads	to	closer	relatives	being	more	similar	than	expected	from	additive	

genetic	variance.	However,	shared	environmental	effects	may	also	be	expected	to	be	strong	

among	closer	relatives,	and	disentangling	these	and	other	sources	of	familial	resemblance	

remains	challenging.	

	

The	amount	of	non-additive	genetic	variance	disproportionally	depends	on	the	allele	

frequencies	at	causal	variants	as	compared	to	additive	variance,	and	in	general	it	is	lower	

when	such	frequency	(and	locus	heterozygosity)	is	low.	Non-additive	genetic	variance	can	

be	estimated	in	model	species,	where	both	the	environment	and	allele	frequencies	can	be	

controlled6.	Theory	and	empirical	evidence	suggest	that	genetic	variation	in	complex	traits	

is	mainly	additive7,8	and	that	higher-order	epistatic	interactions,	if	present,	are	still	mostly	

expected	to	contribute	to	additive	genetic	variance8.	For	highly	polygenic	traits	with	

evidence	of	directional	dominance	(also	known	as	inbreeding	depression),	the	expected	

dominance	variance	is	also	very	small9.	
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Variance	components	can	also	be	estimated	from	genome	wide	SNP	genotypes.	In	humans,	

Zhu	et	al.10	extended	the	model	of	Yang	et	al.11	to	estimate	the	proportion	of	phenotypic	

variance	explained	by	both	additive	(ℎ!"#$ )	and	dominance	variance	(𝛿!"#$ )	from	common	

SNPs	in	a	sample	of	unrelated	individuals	using	restricted	maximum	likelihood	(REML).	

Across	79	quantitative	traits,	in	a	sample	of	6,715	individuals,	they	reported	an	average	

dominance	variance	of	𝛿!̅"#$ = 0.03,	approximately	one-fifth	of	their	estimated	average	

narrow	sense	SNP-based	heritability	(ℎ$!"#$ ),	with	a	large	standard	error	𝑆𝐸(𝛿!̅"#$ ) = 0.031	

(computed	using	the	reported	standard	errors	of	Zhu	et	al.10	and	neglecting	the	covariance	

between	estimates).	Therefore,	these	results	are	consistent	with	a	small	to	negligible	

contribution	of	dominance	variance	across	these	traits.	

	

Epistatic	variance	attributable	to	common	DNA	variants	(𝜂!"#$ )	can,	in	principle,	also	be	

estimated	from	a	random	sample	of	unrelated	individuals	with	genome-wide	SNP	data.	

However,	pairwise	coefficients	for	epistatic	variance	between	unrelated	individuals	are	

very	small,	and	a	priori	it	is	expected	that	non-additive	variance	contributes	less	than	

additive	variance.	How	large	sample	sizes	need	to	be	to	reliably	detect	epistatic	variance	is	

currently	unknown.	Therefore,	having	a	theoretical	expectation	of	the	sampling	variance	of	

estimators	of	𝜂!"#$ 	would	allow	the	quantification	of	statistical	power	and	thus	the	required	

sample	size.	Moreover,	theory	predicts	that	imperfect	tagging	of	causal	variants	by	SNPs	

leads	to	a	larger	reduction	in	SNP-based	estimates	of	non-additive	genetic	variance	as	

compared	to	SNP-based	estimates	of	additive	genetic	variance.	For	example,	if	a	causal	

variant	is	tagged	by	a	SNP	with	an	linkage	disequilibrium	(LD)	squared	correlation	r2,	then	
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estimates	of	additive	variance	are	expected	to	be	proportional	to	r2,	whereas	it	is	r4	for	

dominance	and	additive-by-additive	variance12.	

	

Our	study	focuses	on	additive-by-additive	epistatic	variance	as	opposed	to	that	generated	

by	higher-order	interactions	such	as	dominance-by-additive	or	dominance-by-dominance	

components.	We	derive	the	theoretical	sampling	variance	of	ordinary	least	squares	using	

Haseman-Elston	(HE)	regression,	and	Restricted	maximum	likelihood	(REML)	estimators	

of	𝜂!"#$ 	in	a	sample	of	unrelated	individuals.	We	jointly	estimate	the	genome-wide	additive,	

dominance,	and	additive-by-additive	SNP-based	genetic	variances	of	70	human	complex	

traits	using	a	large	sample	of	unrelated	individuals	(𝑁 = 254,679)	from	the	UK	Biobank13	

(UKB).	

	

Results	

Overview	of	the	method	

Zhu	et	al.10	developed	a	linear	mixed	model	(LMM)	where	the	total	genetic	variance	of	a	

trait	attributable	to	SNPs	is	partitioned	into	additive	and	dominance	variance	and	where	

the	effects	of	all	genotyped	or	imputed	SNPs	are	fitted	together	as	random	effects	through	

the	use	of	additive	and	dominance	genomic	relationship	matrices	(GRM).	The	different	

variance	components	of	this	multiple-GRM	model	were	then	estimated	using	REML.	Here,	

we	extend	this	model	by	partitioning	the	total	genetic	variance	of	a	trait	that	is	attributable	
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to	SNPs	into	additive,	dominance	and	additive-by-additive	variance	components.	That	can	

be	mathematically	written	as:	

var(𝐲) = 𝚯%𝜎%$ + 𝚯&𝜎&$ + 𝚯%%𝜎%%$ + 𝕀𝜎'$ (1)	

with	y	a	vector	of	phenotypic	values	for	N	diploid	individuals	and	𝕀	an	𝑁 × 𝑁	identity	

matrix.	The	three	components	of	genetic	variance	𝜎%$,	𝜎&$	and	𝜎%%$ 	are	respectively	the	

additive,	dominance	and	additive-by-additive	variance	explained	by	SNPs,	and	𝜎'$	is	the	

residual	variance.	𝚯% = 𝐺	and	𝚯&	are	the	additive	and	dominance	GRMs	computed	from	L	

SNPs	as	previously	described	in	Yang	et	al.11	and	Zhu	et	al.10	(see	Methods	for	details),	and	

𝚯%%	is	the	additive-by-additive	genomic	relatedness	matrix,	defined	as:	

𝚯%% =
G⊙ G

𝑡𝑟(𝐺 ⊙ 𝐺) 𝑁⁄
(2)	

with	G⊙ G	the	Hadamard	product	(i.e.	coefficient-wise	matrix	product)	of	the	additive	

GRM	with	itself,	and	𝑡𝑟(𝐺 ⊙ 𝐺)	the	trace	of	the	matrix.	The	standardization	by	the	average	

of	the	diagonal	elements	ensures	that	the	mean	of	the	diagonal	elements	of	𝚯%%	is	

approximately	one	as	for	𝚯%	and	𝚯&	(Supplementary	Table	1),	leading	to	estimates	of	

genetic	variances	on	the	same	scale	as	the	residual	variance14,15.	

	

Under	Hardy-Weinberg	equilibrium,	the	model	defined	by	Equation	(1)	is	theoretically	

orthogonal	between	the	additive	and	dominance	components	(see	Methods	and	Zhu	et	

al.10).	By	orthogonality,	we	mean	that	the	estimates	of	one	of	the	genetic	variance	

components	when	fitted	as	the	only	genetic	component	would	be	unbiased	even	in	the	

presence	of	the	effects	from	the	other	components.	Moreover,	in	a	sample	of	unrelated	
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individuals	from	an	outbred	population,	the	off-diagonal	elements	of	𝚯%	are	expected	to	be	

𝚯%() ∼ 𝒩 E0, 𝑉𝑎𝑟H𝐺()IJ,	leading	to	an	expected	covariance	Cov(𝚯%() , 𝚯%%()) = 𝔼[𝜣%!"
* ] = 0.	

The	latter	property	guarantees	orthogonality	between	the	additive	and	additive-by-

additive	component.	Orthogonality	between	the	dominance	and	additive-by-additive	

components	is	more	complicated	to	prove	and	was	investigated	empirically.	

	

Equation	(1)	defines	a	typical	LMM,	which	variance	components	(𝜎%$,	𝜎&$,	𝜎%%$ 	and	𝜎'$)	can	

be	estimated	jointly	or	separately	using	REML16	as	well	as	by	HE	regression17-19.	The	

proportion	of	phenotypic	variance	explained	by	additive	(𝜎%$),	dominance	(𝜎&$)	and	

additive-by-additive	(𝜎%%$ )	variance	at	all	SNPs	are	defined	as	ℎ!"#$ = 𝜎%$/(𝜎%$ + 𝜎&$ + 𝜎%%$ +

𝜎'$),	𝛿!"#$ = 𝜎&$/(𝜎%$ + 𝜎&$ + 𝜎%%$ + 𝜎'$),	and	𝜂!"#$ = 𝜎%%$ /(𝜎%$ + 𝜎&$ + 𝜎%%$ + 𝜎'$).	We	define	the	

SNP-based	broad	sense	heritability	𝐻!"#$ = ℎ!"#$ + 𝛿!"#$ + 𝜂!"#$ .	Details	about	the	statistical	

model	and	the	computation	of	the	different	GRMs	are	provided	in	the	Methods	section.	

	

Unbiased	estimates	when	all	GRMs	are	fitted	simultaneously	

We	use	simulation	to	quantify	empirically	the	bias	and	precision	of	the	HE	and	REML	

estimators	of	genetic	variances,	as	well	as	to	assess	consistency	with	theory.	We	first	

validate	our	model	using	simulations	from	254,679	unrelated	participants	of	the	UKB	with	

1.1M	autosomal	genotyped	and	imputed	SNPs	from	the	HapMap	3	(HM3)	panel20	with	

minor	allele	frequency	(MAF)	≥ 1%.	In	our	simulations,	we	sampled	putative	causal	

variants	from	a	pool	of	100,000	pre-defined	HM3	SNPs	(Methods).	We	used	the	same	pool	
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of	causal	variants	across	all	simulation	replicates	from	which	we	randomly	sampled	1000	

causal	variants	for	each	replicate.	The	phenotypes	were	simulated	using	Equation	(5)	(in	

Methods)	where	the	additive,	dominance,	and	additive-by-additive	effects	were	generated	

from	a	standard	normal	distribution	and	adjusted	to	the	expected	variance	of	the	additive,	

dominance	and	additive-by-additive	genome-wide	effects	(simulated	ℎ!"#$ , 𝛿!"#$ 	and	𝜂!"#$ ).	

The	residuals	were	then	generated	from	a	normal	distribution	with	mean	0	and	variance	

1 − (ℎ!"#$ + 𝛿!"#$ + 𝜂!"#$ ).	The	genotype	data	were	used	to	calculate	the	three	GRMs	𝛩%,	𝛩&	

and	𝛩%%	as	defined	above	(summary	statistics	for	each	GRM	are	provided	in	

Supplementary	Table	1	and	2).		

	

We	estimated	ℎ!"#$ , 𝛿!"#$ 	and	𝜂!"#$ 	either	jointly	(hereafter	referred	to	as	ADAA	model)	or	

by	including	their	corresponding	GRM	one	at	a	time	in	the	model.	Variance	components	

were	then	estimated	using	REML	and	HE	regression,	which	are	both	implemented	in	the	

GCTA16	software.	The	full	dataset	of	254,679	individuals	was	analyzed	using	HE	regression	

with	pairwise	phenotypic	cross-products.	However,	because	of	its	heavy	computational	

burden,	REML	estimates	were	derived	from	8	sub-datasets,	each	of	≃ 32K	individuals.	We	

meta-analyzed	estimates	from	these	8	sub-datasets	using	inverse-variance	weighting	

(IVW)	(Methods),	recognizing	that	the	standard	errors	of	these	meta-analysed	estimates	

are	expected	to	be	2.8	fold	higher	than	if	analysis	of	a	single	combined	dataset	had	been	

possible	for	additive	and	dominance	variance,	and	1.3	fold	higher	for	additive-by-additive	

variance.	Unless	stated	otherwise,	simulations	results	are	shown	for	analyses	including	the	

causal	variants.	
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From	REML	analysis,	the	model	shows	good	orthogonal	properties	(fitting	all	the	three	

GRMs	together	or	only	one	at	a	time	does	not	change	the	estimates)	for	ℎ]!"#$ 	and	�̂�!"#$ .	

However,	we	found	a	significant	deviation	from	regressing	�̂�!"#$ 	estimates	from	the	ADAA	

model	and	that	from	a	univariate	model	fitting	𝛩%%	only	(intercept	=	0.65,	see	Figure	1-A).	

The	same	conclusion	applies	to	HE	analysis	where	�̂�!"#$ 	from	the	univariate	model	show	an	

even	stronger	deviation	(intercept	=	1.20)	from	the	joint	estimates	(Figure	1-B),	as	

compared	to	REML.	A	lack	of	orthogonality	is	expected	when	using	linked	markers	as	

orthogonal	estimates	of	epistatic	variance	are	not	possible21.	However,	we	observed	a	lack	

of	orthogonality	in	simulations	using	simulated	unlinked	markers	and	unrelated	

individuals	(Supplementary	Figure	1).	Although	this	observation	was	initially	surprising,	

we	derived	theoretically	why	this	occurs,	and	reflects	induced	collinearity	between	the	

GRM	because	allele	frequencies	are	estimated	with	error	from	finite	sample	sizes	

(Supplementary	Note	1	and	Supplementary	Figure	9).	The	main	and	practical	

conclusion	from	these	simulations	is	that	𝛩%	and	𝛩& ,	the	additive	and	dominance	GRMs,	

should	always	be	fitted	when	estimating	additive-by-additive	variance	using	𝛩%%.	

	

After	assessing	the	orthogonality	properties	of	the	model,	we	evaluated	its	performance	

with	respect	to	loss	of	information	due	to	tagging	and	its	sampling	variance.	Consistent	

with	Yang	et	al.22,	we	define	unbiasedness	as	when	the	average	estimates	across	simulation	

replicates	is	not	statistically	different	from	the	true	expected	value	(t-test	P-value>0.05).	

Figure	2	shows	that	REML	analysis	performed	with	all	observed	HM3	SNPs	including	
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causal	variants	yields	nearly	unbiased	estimates	of	the	three	variance	components	(ℎ]!"#$ =

0.30,	𝛿!"#$ = 0.30,	�̂�!"#$ = 0.29).	A	slight	downward	bias	is	expected	when	dealing	with	

missing	genotypes	that	are	imputed	during	the	simulation	process.	Using	simulation	of	

unrelated	individuals	and	unlinked	markers,	we	can	show	that	ℎ]!"#$ ≃ (1 − 𝑟)ℎ!"#$ ,	with	r	

the	missing	genotype	rate	(Supplementary	Figure	4).	When	the	pool	of	causal	variants	

was	excluded	from	the	analysis,	ℎ]!"#$ 	and	�̂�!"#$ 	both	showed	a	downward	bias	with	

respective	mean	estimates	of	0.28	and	0.26	whereas	�̂�!"#$ = 0.30	did	not	appear	deflated.	

However,	we	lacked	power	to	detect	a	small	bias	because	of	the	large	sampling	variance	of	

�̂�!"#$ .	To	verify	that	the	biases	for	ℎ]!"#$ 	and	�̂�!"#$ 	are	consistent	with	loss	of	tagging,	we	

estimated	the	adjusted	multiple	correlation	𝑅$	computed	for	the	first	10K	causal	SNPs	with	

nearby	SNPs	in	1Mb	windows	(Methods).	We	found	values	of	0.96	and	0.86,	for	additive	

and	dominance	effects,	respectively,	leading	to	expected	values	ℎ]!"#$ = 0.29	and	�̂�!"#$ =

0.26,	consistent	with	the	estimated	variance	components.	These	results	show	that	despite	

incomplete	LD	we	are	still	able	to	detect	additive	and	dominance	variation	due	to	common	

causal	variants	in	the	UKB	data.	Results	from	HE	analysis	imply	the	same	conclusion	

(Figure	2).	Finally,	we	found	the	standard	deviation	(SD)	of	�̂�!"#$ 	across	simulation	

replicates	to	be	one	order	of	magnitude	larger	than	that	of	ℎ]!"#$ 	and	�̂�!"#$ .	More	specifically,	

𝑆𝐷Hℎ]!"#$ I = 0.008, 𝑆𝐷H�̂�!"#$ I = 0.014	and	𝑆𝐷(�̂�!"#$ ) = 0.16,	in	agreement	with	theoretical	

expectations	presented	below.	
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Standard	error	of	the	estimate	of	additive-by-additive	variance	

We	next	sought	to	derive	the	theoretical	sampling	variance	of	estimators	of	𝜂!"#$ .	Assuming	

a	sample	of	N	unrelated	individuals	from	an	outbred	population,	the	diagonal	and	off-

diagonal	elements	of	the	G	matrix	are	respectively	𝐺(( ∼ 𝒩H1, 𝑉𝑎𝑟(𝐺(()I	and	𝐺() ∼

𝒩 E0, 𝑉𝑎𝑟H𝐺()IJ.	Using	results	from	Visscher	et	al.23	and	Visscher	and	Goddard24,	we	

derived	different	sampling	variance	for	HE	regression	using	phenotypic	cross-products	and	

REML	(Supplementary	Note	2),	

𝑉𝑎𝑟H�̂�!"#$
+,I ≃

1
𝑁$𝑉𝑎𝑟(𝐺())$

(3)	

and	

𝑉𝑎𝑟H�̂�!"#$
-,./I ≃

2
𝑁(4𝑉𝑎𝑟(𝐺(() + 2𝑉𝑎𝑟(𝐺(()$ + 3(𝑁 − 1)𝑉𝑎𝑟(𝐺())$)

(4)	

This	result	implies	that	statistical	power	to	detect	𝜂!"#$ 	is	substantially	larger	when	using	

REML	as	compared	to	HE.	Note	that	the	sampling	variance	of	ℎ]!"#$ 	and	𝛿!"#$ 	under	REML	or	

HE	regression	are	approximately	the	same.	For	an	infinite	sample	size,	
012(45#$%

&
'()

012(45#$%
&

)(*+)
≃ 1.5	

(Supplementary	Note	2),	while	this	ratio	is	in	fact	much	larger	for	finite	sample	sizes	

(Supplementary	Figure	2).	

	

From	simulations	of	35K	unrelated	individuals	with	simulated	unlinked	markers,	we	found	

approximations	from	Equations	(3)	and	(4)	to	be	accurate.	For	REML	analyses	across	100	

replicates,	we	observed	𝑆𝐷(ℎ]!"#$ ) = 0.012	(0.013	under	HE),	𝑆𝐷(𝛿!"#$ ) = 0.013	(0.014	
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under	HE)	and	𝑆𝐷(�̂�!"#$ ) = 0.611	(2.817	under	HE),	as	compare	to	theoretical	standard	

errors	(SE)	𝔼(𝑆𝐸(ℎ]!"#$ )) = 𝔼(𝑆𝐸(�̂�!"#$ )) = 0.013	(under	REML	and	HE),	and	

𝔼(𝑆𝐸(�̂�!"#$ )) = 0.599	under	REML	(2.858	under	HE).	We	then	used	simulations	based	on	

actual	genotypes	from	UKB	participants	to	assess	the	accuracy	of	our	theoretical	

expectation	on	real	data.	For	each	replicate,	we	quantified	the	empirical	SE	of	estimates	of	

variance	components	as	the	SD	across	8	sub-datasets	of	32K	individuals.	The	observed	

standard	deviations	were	then	averaged	over	replicates	and	compared	to	the	theoretical	

expectations.	Overall,	we	found	both	our	theoretical	expectations	to	be	accurate	(Table	1).	

We	noticed	a	very	small	absolute	bias	downward	for	the	theoretical	SE	in	the	order	of	10-3	

for	𝔼 E𝑆𝐸Hℎ]!"#$ IJ	and	𝔼(𝑆𝐸H�̂�!"#$ I),	and	upward	in	the	order	of	10-2	for	𝔼H𝑆𝐸(�̂�!"#$ )I,	both	

under	REML	and	HE.	

	

We	also	re-assessed	the	validity	of	the	SE	reported	by	GCTA	and	found	it	to	be	accurate	for	

REML	(Table	1).	When	performing	HE	analysis,	GCTA	reports	two	estimates	of	SE	based	on	

OLS	(𝑆𝐸7/!)	or	jackknife	(𝑆𝐸819:).	Comparing	the	observed	SD	to	the	reported	SE	from	

GCTA,	we	found	𝑆𝐸7/!	to	be	slightly	biased	downward	for	𝑆𝐸7/!Hℎ]!"#$ I	and	𝑆𝐸7/!H�̂�!"#$ I	

and	upward	for	𝑆𝐸7/!(�̂�!"#$ )	as	observed	with	the	theoretical	SE.	However,	the	reported	

𝑆𝐸819: 	by	GCTA	is	always	more	conservative.	Therefore,	we	chose	to	use	the	latter	and	the	

corresponding	P-values	for	the	real	phenotype	analysis.	
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Finally,	using	our	theoretical	expectations,	we	computed	the	expected	power	to	detect	a	

significant	additive-by-additive	effect	from	our	UKB	data.	The	sampling	variance	of	�̂�!"#$ 	is	

expected	to	be	very	large	under	HE	for	small	sample	sizes,	when	it	is	much	smaller	under	

REML	(Supplementary	Figure	2),	leading	to	a	substantially	larger	power	(Figure	3).	

However,	the	increase	of	sample	size	reduces	the	gap	between	the	two	approaches	and	we	

expect	
012(45#$%

&
'()

012(45#$%
&

)(*+)
≃ 2	for	a	sample	size	of	1M	unrelated	individuals	(Supplementary	

Figure	2).	We	show	that	even	if	we	were	to	be	able	to	analyze	254K	individuals	jointly	with	

REML,	our	power	(at	𝛼 = 5%)	to	detect	an	additive-by-additive	effect	of	0.2	(which	is	

unlikely	in	real	data)	would	only	be	≃0.45	under	REML	and	≃0.17	under	HE.	Under	the	

REML	IVW	meta-analysis,	the	expected	standard	error	becomes	𝑆𝐸;0< = !,,&-
√>

,	where	

𝑆𝐸*$? 	is	the	expected	SE	for	a	sample	of	32K	individuals.	Hence,	our	expected	power	under	

REML	slightly	decreases	because	of	the	meta-analysis	strategy	(Supplementary	Figure	3)	

and	we	expect	a	power	of	≃0.29	(𝛼 = 0.05)	for	𝜂!"#$ = 0.2.	Comparing	the	expected	SE	

under	the	IVW-REML	and	the	HE	analysis	of	254K	individuals,	we	expect	slightly	larger	

𝑆𝐸Hℎ]!"#$
;0<@-,./I = 0.004	and	𝑆𝐸H�̂�!"#$

;0<@-,./I = 0.005	as	compared	to	𝑆𝐸Hℎ]!"#$
+,I =

0.001	and	𝑆𝐸H�̂�!"#$
+,I = 0.002.	However,	the	meta-analysis	under	REML	is	expected	to	

produce	a	smaller	𝑆𝐸H�̂�!"#$
;0<@-,./I = 0.14	as	compared	to	𝑆𝐸H�̂�!"#$

+,I = 0.19.	

	

In	summary,	our	simulations	and	analytical	results	demonstrate	that	reliable	inference	of	

non-additive	variance	components	is	achievable	using	REML	and	HE	regression	in	large	

samples,	and	therefore	that	these	methods	can	be	applied	to	real	data.	
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Estimation	of	non-additive	genetic	variation	in	human	complex	traits	

We	estimated	ℎ!"#$ , 𝛿!"#$ 	and	𝜂!"#$ 	for	70	quantitative	traits	of	the	UKB	(Methods),	with	an	

average	number	of	phenotyped	individuals	≃ 200,550	(range:	36,990	to	251,805).	For	

REML	analysis,	IVW	meta-analysis	was	applied	when	𝑁 > 60𝐾.	Otherwise,	the	entire	set	of	

individuals	was	analysed	(Methods).	Estimates	of	ℎ!"#$ , 𝛿!"#$ 	and	𝜂!"#$ 	using	REML	and	HE	

are	reported	in	Supplementary	Tables	4	and	5	and	the	distributions	of	REML	and	HE	

estimates	across	traits	are	shown	in	Figure	4.	The	mean	estimate	of	ℎ!"#$ 	across	traits	was	

ℎ$!"#$
-,./ = 0.207 ± 0.001	(CI95%	=	[0.205;0.208])	for	REML	and	slightly	lower	for	HE	

with	ℎ$!"#$
+, = 0.194 ± 0.001	(CI95%	=	[0.192;0.196]).	The	average	estimate	of	𝛿!"#$ 	across	

traits	was	𝛿!̅"#$ = 0.001 ± 0.001	(CI95%	=	[-0.001;0.003])	for	both	REML	and	HE.	This	

result	is	in	agreement	with	theory	suggesting	than	𝜎&$	is	much	smaller	than	𝜎%$.	Finally,	we	

found	a	mean	estimate	of	𝜂!"#$ 	equal	to	�̅�!"#$
-,./ = 0.058 ± 0.032	(CI95%	=	[-

0.005;0.122])	for	REML	and	�̅�!"#$
+, = −0.054 ± 0.112	(CI95%	=	[-0.278;0.171])	for	HE.	

Estimates	are	consistent	between	REML	and	HE	analysis	for	ℎ]!"#$ 	and	�̂�!"#$ 	(	squared	

correlations	r2=0.97	and	0.43	respectively),	but	the	two	methods	show	poor	agreement	for	

�̂�!"#$ 	(squared	correlation	r2=0.04,	see	Supplementary	Figure	5),	consistent	with	their	

high	standard	errors.	

	

From	the	70	traits	analysed,	we	estimated	an	effective	number	of	43	traits	(Methods)	and	

test	for	3	variance	components,	however,	because	we	ascertained	traits	with	significant	
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additive	variance	(Methods),	we	only	included	two	variance	components	for	multiple	

testing	correction.	Therefore,	our	P-value	threshold	for	declaring	statistical	significance	at	

an	experiment-wise	error	rate	𝛼 = 0.05	is	0.05/(43 × 2) =	5.8e-4.	After	multiple-testing	

correction,	urate	concentration	(N	=	238,773)	was	the	only	trait	showing	a	small	but	

significant	dominance	variance	(𝛿!"#$ = 0.012 ± 0.003,	P	=	9.6e-5)	under	HE	analysis.	

However,	significance	was	not	obtained	using	REML	(𝛿!"#$ = 0.003 ± 0.005,	P	=	5.1e-1).	

	

We	did	not	find	significant	evidence	of	epistatic	variance.	However,	we	unexpectedly	found	

two	traits	with	an	apparent	negative	�̂�!"#$ 	but	significant	before	multiple-testing	correction	

under	REML,	Bone	mineral	density	(BMD)	(�̂�!"#$ = −0.58 ± 0.176,	P	=	1.0e-3)	and	Corneal	

resistance	factor	(�̂�!"#$ = −0.80 ± 0.233,	𝑃 = 6.3𝑒 − 4).	This	unusual	result	implies	that	

close	relatives	would	be	disproportionally	less	phenotypically	similar	than	distant	

relatives.	We	therefore	quantified	phenotypic	covariance	in	family	data	in	the	UKB	as	a	

function	of	relatedness	but	found	no	evidence	for	“phenotypic	repulsion”25	

(Supplementary	Figure	6).	All	these	estimates	of	non-additive	genetic	variation	are	

implausibly	large,	so	the	most	parsimonious	explanation	is	the	large	sampling	variance.	

	

Discussion	

The	role	of	non-additive	genetic	variance	in	human	complex	traits	has	been	a	topic	of	much	

discussion	and	debate7,26-30.	In	this	study,	we	jointly	estimate	the	proportions	of	phenotypic	

variance	of	70	traits	that	is	explained	by	additive,	dominance	and	additive-by-additive	
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genetic	variation	tagged	by	common	SNPs,	in	a	large	sample	of	254,679	unrelated	

individuals	from	the	UKB.	Using	common	variants,	we	found	no	evidence	of	significant	non-

additive	variance	(𝛿!̅"#$ =0.001	and	�̅�!"#$ = 0.055)	across	traits	while	we	confirm	the	

evidence	for	additive	variance	(ℎ$!"#$ = 0.208).	We	also	derived	theoretical	standard	errors	

for	REML	and	HE	regression	estimators	of	additive-by-additive	variance	and	validated	our	

theory	through	extensive	simulations.	Our	theoretical	and	empirical	results	suggest	that	

REML	should	be	preferred	over	HE	regression	for	the	same	sample	size,	as	the	former	

estimator	leads	to	a	substantially	larger	statistical	power.	

	

A	lack	of	dominance	variance	is	expected	from	theory7	and	for	traits	that	are	polygenic	and	

subjected	to	inbreeding	depression.9	However,	most	of	our	70	traits	do	not	show	evidence	

of	inbreeding	depression.	Nevertheless,	the	argument	of	high	degree	of	polygenicity	could	

be	enough	to	expect	a	lack	of	dominance	variance	too31,32.	Indeed	and	as	quoted	by	Crow31	

for	continuous	quantitative	traits,	“in	general,	the	smaller	the	effects,	the	more	nearly	

additive	they	are”	(see	Supplementary	Note	3).	In	a	large	sample,	our	average	dominance	

variance	estimated	across	traits	𝛿!̅"#$ = 0.001,	is	much	lower	than	the	0.03	previously	

reported	by	Zhu	et	al.10	across	79	traits,	although	the	two	estimates	are	not	significantly	

different	from	each	other.	Therefore	our	findings	are	consistent	with	that	from	Zhu	et	al.10	

as	they	confirm	a	negligible	contribution	of	dominance	variance	for	causal	variants	that	are	

tagged	by	common	SNPs.	By	extrapolation,	our	results	lead	to	the	conclusion	that	

dominance	variance	is	likely	to	contribute	very	little	to	the	broad	sense	heritability	of	

human	complex	traits.	Urate	concentration	was	the	only	trait	showing	a	significant	
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dominance	variance	in	our	HE	analysis	(𝛿!"#$ = 0.012 ± 0.003,	P	=	9.6e-5),	but	the	estimate	

was	lower	and	non-significant	in	our	REML	analysis	(�̂�!"#$ = 0.003 ± 0.005,	P	=	5.1e-1).	

Similarly,	we	observed	that	ℎ!"#$ 	estimates	for	urate	concentration	were	higher	using	HE	

compared	to	REML	(ℎ]!"#$ = 0.383 ± 0.005	under	HE	and	0.304 ± 0.004	under	REML).	If	

REML	and	HE	estimates	are	expected	to	converge	under	a	classical	polygenic	model,	the	

genetic	architecture	of	a	trait	can	bias	the	estimates	of	the	two	methods	in	different	ways33-

35.	Previous	studies36,37	have	suggested	that	urate	concentration	is	a	trait	on	the	low	

spectrum	of	polygenicity	and	controlled	by	three	main	genes	and	two	large	effect	QTLs	on	

chromosome	4.	Moreover,	urate	concentration	also	displays	sex-specific	effects	and	

heritability38.	Analysis	performed	on	each	sex	separately	(with	a	3	fold	IVW	meta-analysis	

for	REML)	confirmed	a	larger	estimated	heritability	in	females	(ℎ]!"#$ = 0.549 ±

0.009	under	HE	and	0.354 ± 0.005	under	REML)	than	in	males	(ℎ]!"#$ = 0.254 ±

0.007	under	HE	and	0.237 ± 0.006	under	REML),	and	a	significant	dominance	variance	for	

females	only	under	HE	analysis	(�̂�!"#$ = 0.017 ± 0.005,	P	=	1.4e-3	for	females,	and	𝛿!"#$ =

0.005 ± 0.006,	P	=	3.9e-1	for	males).	Importantly,	the	significant	dominance	variance	

estimate	detected	in	females	with	HE	vanishes	when	excluding	SNPs	on	chromosome	4	

from	our	analysis	(�̂�!"#$ = 0.0004 ± 0.006,	P	=	0.93	without	chromosome	4).	Similarly,	

chromosome	4	also	entirely	accounts	for	the	observed	differences	in	ℎ]!"#$ 	estimates	

between	HE	and	REML	analysis	in	females	(ℎ]!"#$ = 0.175 ± 0.005	under	HE	and	0.185 ±

0.005	under	REML),	as	well	as	the	discrepancies	between	males	and	females	(for	males,	

ℎ]!"#$ = 0.151 ± 0.005	under	HE	and	0.165 ± 0.006	under	REML).	Altogether,	low	

polygenicity	of	urate	concentration	combined	with	substantial	sex	differences	in	the	

genetic	architecture	on	chromosome	4	constitute	strong	departure	from	assumptions	
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underlying	the	consistency	of	HE	and	REML	estimators.	There	is	also	prior	evidence	of	

female	sex	hormones	effects	on	urate	concentration38,	which	we	did	not	accounted	for	in	

our	analysis,	and	further	investigations	of	the	sex-specific	genetic	architecture	of	the	trait	

are	needed.	Finally,	we	detected	significant	dominance	deviation	(P	<	5e-8)	at	two	SNPs	on	

chromosome	1	(top	hit	for	rs12124078,	a	SNP	associated	with	kidney	function39)	and	4	

(larger	signal	with	top	hit	for	rs9998811	located	in	SLC2A9	gene	region36),	

(Supplementary	Figure	7)	although	the	total	dominance	variance	explained	by	these	two	

SNPs	remains	very	small	(�̂�!"#$ = 0.002).	

	

The	lack	of	evidence	for	the	additive-by-additive	variance	in	our	analyses	is	mostly	due	to	

the	very	large	sampling	variance	of	�̂�!"#$ .	Therefore,	potentially	real	effects	on	individual	

traits	cannot	be	ruled	out.	Nevertheless,	we	can	provide	an	upper	limit	for	the	role	of	

epistatic	variance	associated	with	SNPs	across	the	70	traits	of	approximately	0.12	(upper	

bound	of	the	95%	CI	from	REML	analysis,	see	Figure	4-A),	based	on	the	SE	of	the	mean	

�̅�!"#$ 	of	0.032.	This	upper	limit	(across	traits)	remains	smaller	than	the	well-estimated	

mean	ℎ!"#$ 	of	0.207.	Our	power	calculations	based	on	REML	suggest	that	≃2	million	

unrelated	individuals	would	be	necessary	to	ensure	>76%	statistical	power	to	detect	

𝜂!"#$ = 0.05	at	α = 0.05.	The	same	calculations	based	on	HE	regression	would	only	yield	a	

statistical	power	of	52%.	Analysis	of	such	a	large	sample	raise	new	computational	

challenges	to	be	addressed	in	future	research.	
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Besides	these	limitations,	theory	and	prior	evidence	also	suggest	that	epistatic	variance	is	

likely	to	be	small7,8,21,	with	first	order	additive-by-additive	epistasis	expected	to	be	the	

largest	contributor	to	epistatic	variance.	In	this	study,	we	therefore	focused	on	the	

additive-by-additive	variance	and	did	not	estimate	higher	order	interactions	or	epistatic	

components	involving	dominance.	Because	epistatic	GRMs	result	from	the	Hadamard	

products	of	lower	order	GRMs,	they	will	quickly	tend	to	identity	with	increasing	order	of	

interactions.	It	will	lead	to	very	large	standard	errors	and	estimates	of	genetic	variance	

indistinguishable	from	the	residual	(non-genetic)	variance.	The	same	argument	holds	for	

any	epistatic	interaction	involving	dominance	as	it	will	result	in	even	larger	standard	

errors,	the	variance	of	the	off-diagonal	elements	of	Θ&	in	unrelated	European	individuals	

being	approximately	10-5,	half	of	the	variance	of	the	off-diagonal	elements	of	Θ%.	Finally,	

Mäki-Tanila	and	Hill8	showed	for	polygenic	traits	that	when	gene-gene	interactions	(𝑎𝑎)	

are	of	same	magnitude	as	single-locus	effects	(𝑎),	epistatic	variance	is	expected	to	decrease	

and	eventually	disappear	with	the	increase	number	of	causal	variants.	In	this	context,	

epistatic	variance	lead	to	mainly	additive	variance,	while	dominance	is	expected	to	remain	

the	main	contributor	to	non-additive	genetic	variance.	Therefore,	and	in	light	of	our	results	

showing	a	lack	of	dominance	variance,	that	would	suggest	that	epistatic	variance	is	likely	to	

be	extremely	small	in	human	complex	traits.	

	

Our	findings	can	be	directly	applied	to	human	diseases	using	a	liability	threshold	model.	

Yet,	it	is	worth	emphasizing	that	the	observed	0-1	scale	is	expected	to	show	non-additive	

variance	even	when	variance	in	liability	is	fully	additive40.	An	analysis	of	non-additive	
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variance	on	liability	would	require	the	use	of	generalized	non-linear	mixed	models	and	

would	be	less	powerful	than	the	analysis	of	quantitative	traits.	For	these	reasons	we	have	

not	attempted	to	estimate	dominance	or	epistatic	variance	for	liability	to	common	disease	

in	our	study.	Results	for	additive	SNP-based	heritability	are	by-and-large	the	same	for	

quantitative	traits	and	common	disease,	so	it	seems	reasonable	to	assume	that	there	is	

likely	to	be	little	non-additive	variance	for	liability	of	disease.	

	

We	showed	by	simulation	that	we	were	able	to	capture	a	large	proportion	of	the	genetic	

variation	from	common	SNPs	in	our	data	even	when	causal	variants	were	not	included.	

However,	because	the	expected	loss	of	non-additive	variance	is	disproportionally	larger	

than	additive	variance	with	the	decay	of	linkage	disequilibrium	between	causal	and	tagging	

variants,	the	contribution	of	rare	variants	poorly	tagged	in	our	study	is	expected	to	be	

missed.	There	is	evidence	that	rare	variants	contribute	to	narrow	sense	heritability41,42.	

However,	using	simulations,	Zhu	et	al.10	showed	that	the	observed	difference	between	the	

additive	and	dominance	variance	across	traits	was	unlikely	to	be	explained	by	a	

disproportionally	missing	contribution	of	rare	variants	to	dominance	variation.	Moreover,	

because	the	amount	of	non-additive	variance	also	disproportionally	depends	on	allele	

frequencies	as	compared	to	additive	variance,	with	the	largest	amount	expected	for	

intermediate	frequencies8,	contribution	of	rare	variants	to	the	non-additive	genetic	

variance	is	expected	to	be	minute.	
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Importantly,	the	absence	of	evidence	for	epistatic	variance	does	not	imply	the	absence	of	

functional	epistasis43,44.	In	addition,	any	significant	signal	of	epistatic	variance	should	be	

investigated	in	depth	due	to	potential	inferential	problems.	Indeed,	phantom	epistasis,	that	

is	a	non-additive	signal	generated	from	incomplete	linkage	between	variants,45,46	can	

induce	a	bias	in	the	estimates	of	epistatic	variance.	A	recent	study	suggested	that	the	effect	

of	phantom	epistasis	is	likely	to	increase	for	low	density	markers	which	is	not	necessarily	

relevant	for	human	data.	However,	the	genetic	architecture	of	a	trait,	such	as	local	

polygenicity	(i.e.	the	non-random	spatial	distribution	of	small	effect	loci)	and	large	effects	

QTL,	could	also	favor	phantom	epistasis.	

	

To	conclude,	the	analysis	of	70	human	complex	traits	from	a	large	sample	of	unrelated	

individuals	provides	new	evidence	that	genetic	variance	for	complex	traits	is	

predominantly	additive	and	suggests	negligible	dominance	variance	due	to	causal	variants	

that	are	associated	with	common	SNPs.	Because	of	a	large	standard	error,	we	cannot	draw	

firm	conclusions	regarding	additive-by-additive	variance	for	individual	traits,	but	we	can	

conclude	that	its	upper	value	is	about	half	of	the	additive	genetic	variance	captured	by	

common	SNPs.	We	showed	that	REML	lead	to	substantially	larger	power	as	compared	to	

HE	at	a	given	sample	size,	and	that	sample	sizes	of	many	millions	of	unrelated	individuals	

will	be	necessary	to	estimate	epistatic	variance	with	sufficient	precision.	
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Methods	

Genetic	model	

We	assume	a	model	with	additive,	dominance	and	epistatic	interaction	effects	(ADAA	

model).	For	epistatic	variance,	we	only	focus	on	additive-by-additive	interactions.	Consider	

one	diploid	individual	genotyped	at	L	loci,	each	with	major	and	minor	alleles	A	and	B	

respectively.	Let	𝑎( = (𝜇%%)/2	and	𝑑 = 𝜇%A − (𝜇AA + 𝜇%%)/2,	with	𝜇AA ,	𝜇%A 	and	𝜇%%	being	

the	phenotypic	means	in	the	three	genotypic	classes	at	one	locus.	Let	𝑝( 	be	the	allele	

frequency	of	A	at	locus	i,	𝑎( 	the	additive	effect,	𝑑( 	the	dominance	effect,	𝑎𝑎() 	the	additive-

by-additive	interaction	effect	between	locus	i	and	j.	Under	the	Hardy-Weinberg	equilibrium	

assumption,	we	can	define	the	average	effect	of	allele	substitution,	i.e.,	𝛽( = 𝑎( + (1 −

2𝑝()𝑑( + ∑ 2/
)B( 𝑝)𝑎𝑎() ,	which	contains	the	additive	effect,	a	term	due	to	dominance	

interaction	between	two	alleles,	and	a	term	due	to	additive-by-additive	interactions	

between	pairs	of	loci8.	Then,	the	additive	variance	at	locus	i	(𝜎%(()$ )	is	2𝑝((1 − 𝑝()[𝑎( + (1 −

2𝑝()𝑑( + ∑ 2/
)B( 𝑝)𝑎𝑎()]$,	the	variance	of	the	average	effect	of	allele	substitution,	dominance	

variance	(𝜎C(()$ )	is	[2𝑝((1 − 𝑝()𝑑($],	and	additive-by-additive	variance	(𝜎11(()$ )	is	

∑ 2/
)B( 𝑝((1 − 𝑝()2𝑝)(1 − 𝑝))(𝑎𝑎())$.	Hence,	the	genotypic	variance	(𝜎D(()$ )	is	𝜎1(()$ +

𝜎C(()
$ +	𝜎11(()$ .	

	

Let	us	define	the	additive	genotype	coding	𝑥%(()	as	0,1	or	2	for	genotypes	BB,	AB	and	AA	

respectively	,	and	dominance	coding	𝑥&(()	as	0,	2𝑝( 	or	(4𝑝( − 2).	This	parametrization	of	

𝑥C(()	following	Zhu	et	al.10	ensures	the	orthogonality	with	𝑥%((),	compare	to	the	classical	0,	
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1,	0	code	use	for	the	different	genotypes,	which	lead	to	𝐶𝑜𝑣(𝑥%((), 𝑥&(()) = 2𝑝((1 − 2𝑝().	

Now	including	all	L	biallelic	loci,	we	can	fit	the	additive,	dominance	and	additive-by-

additive	effect	of	all	SNPs	as	random	effects	in	a	mixed	linear	model:	

𝑦 = 𝜇 +tu𝑤%(()𝑢%(() +𝑤&(()𝑢&(()x
/

(EF

+tt𝑤%(()
/

)G(

/@F

(EF

𝑤%())𝑢%%(()) + 𝑒 (5)	

with	𝑤%(() = (𝑥%(() − 2𝑝()/y2𝑝((1 − 𝑝()	and	𝑤&(() = (𝑥&(() − 2𝑝($)/(2𝑝((1 − 𝑝())	are	

respectively	the	standardized	form	of	𝑥%	and	𝑥& .	𝑢%,	𝑢&	and	𝑢%%	are	the	additive,	dominance	

and	additive-by-additive	random	effects	of	the	standardized	genotypes,	𝜇	is	the	mean	term	

and	𝑒~𝒩(0, 𝜎'$)	is	the	residual.	

	

This	model	can	be	expressed	as	an	individual	based	model	for	a	sample	of	N	diploid	

individuals	and	the	presence	of	fixed	covariates,	written	in	matrix	form	as:	

𝐲 = 𝐂𝐛 +𝐖%𝐮% +𝐖&𝐮& +𝐖%%𝐮%% + 𝐞	

where	𝐲	is	a	𝑁 × 1	vector	of	individuals	phenotypes,	𝐖%	and	𝐖&	are	𝑁 × 𝐿	matrices	with	

one	row	per	individual	containing	the	corresponding	𝑤%(()	and	𝑤&(()	vectors.	𝐖%%	is	a	

𝑁 × /(/@F)
$

	matrix	with	one	row	per	individual	containing	all	the	pairwise	𝑤%(()𝑤%()).	𝐮𝐀	and	

𝐮𝐃	are	𝐿 × 1	vectors	of	locus	specific	additive	and	dominance	effects,	𝐮%%	is	a	
/(/@F)

$
× 1	

vector	of	additive-by-additive	effects,	𝐞	is	an	𝑁 × 1	vector	of	residuals.	𝐂	is	an	𝑁 × 𝑐	matrix	

of	𝑐	covariates,	and	𝐛	is	a	𝑐 × 1	vector	of	corresponding	covariate	effects.	
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If	we	define	𝐠% = 𝐖𝐀𝐮𝐀,	𝐠& = 𝐖&𝐮&	and	𝐠%% = 𝐖%%𝐮%%,	then	we	have:	

𝐲 = 𝐂𝐛 + 𝐠% + 𝐠& + 𝐠%% + 𝐞	

The	(co)variance	matrix	of	phenotypes	becomes:	

var(𝐲) = var(𝐠%) + var(𝐠&) + var(𝐠%%) + var(𝐞)
= 𝚯%𝜎%$ + 𝚯&𝜎&$ + 𝚯%%𝜎%%$ + 𝕀𝜎'$

	

where	𝚯% = 𝐺 = 𝐖𝐀𝐖𝐀
/

/
	and	𝚯& =

𝐖𝐃𝐖𝐃
/

/
	are	the	additive	and	dominance	genomic	relatedness	

matrices	(GRM)	as	described	in	Yang	et	al.16	and	Zhu	et	al.10,	and	𝚯%%	is	the	additive-by-

additive	genomic	relatedness	matrix	define	as:	

𝚯%% =
G⊙ G

𝑡𝑟(𝐺 ⊙ 𝐺)/𝑁	

	

Genotype	data	

We	analyze	a	large	dataset	of	347,849	unrelated	(genomic	relatedness	<	0.05)	individuals	

of	European	descent	(188,088	females	and	159,761	males),	from	the	UK	Biobank	(UKB).	

Informed	consent	was	obtained	from	all	the	subjects	and	those	who	expressed	the	which	to	

be	withdrawn	have	been	removed	from	analysis.	We	used	the	release	3	of	the	UKB	where	

individuals	were	genotyped	on	the	Affymetrix	UK	Biobank	Axiom	array	before	imputation	

using	the	HRC	and	UK10K	reference	panel	and	IMPUTE247.	SNPs	were	filtered	for	quality	

control	by	removing	those	with	missing	genotyping	rate	> 0.05,	Hardy-Weinberg	

equilibrium	test	𝑃 < 10@K	and	minor	allele	frequency	(maf)	< 0.01.	After	filtering,	we	

extracted	autosomal	HapMap	phase	3	(HM3)	markers,	resulting	in	1,130,561	SNPs.	
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The	Additive	and	Dominance	GRM	were	computed	using	the	standard	algorithm	of	GCTA	

software16	version	1.93.0b	as	previously	described,	and	the	additive-by-additive	GRM	was	

computed	using	R	version	3.6.248	from	the	additive	GRM	as	described	in	Equation	(2).	In	

order	to	remove	any	cryptic	relatedness,	we	trimmed	the	GRMs	by	removing	one	individual	

for	each	pair	with	an	additive	genomic	relatedness	> 0.025.	This	resulted	in	a	final	dataset	

of	254,679	unrelated	individuals	(138,196	females	and	116,483	males).	

	

Phenotypes	selection	and	quality	control	

We	chose	70	continuous	trait	from	the	UKB	(listed	in	the	Supplementary	Table	3)	with	a	

total	number	of	phenotyped	individuals	in	the	all	UKB	≥ 60,000,	a	significant	SNP	

heritability	ℎ!"#$ ≥ 0.05	(at	𝛼 = 0.05	level,	based	on	Neale’s	lab	ℎ!"#$ 	estimates	

https://nealelab.github.io/UKBB_ldsc/h2_browser.html)	and	a	square	pairwise	phenotypic	

correlation	𝑟$ < 0.8.	First	assessment	data	only	were	used,	and	for	phenotypes	with	left	

and	right	measure,	only	one	was	chosen	randomly.	Outlier	individuals	were	removed	

following	Tukey’s	method49	separately	for	males	and	females	in	every	phenotype.	This	step	

resulted	in	a	mean	and	minimum	number	of	phenotyped	individuals	across	traits	of	

200,550	and	36,690	respectively	(among	a	total	of	254,679	individuals).	Each	sex-specific	

dataset	has	been	further	corrected	for	age,	as	well	as	month	of	assessment	for	blood	

biochemistry	traits	only,	and	standardized	to	z-score.	The	first	20	eigenvectors	of	the	

principal	components	(PCs),	estimated	from	the	254,679	individuals	genotype	data	using	
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flashPCA2	software50,	were	included	as	fixed	covariates	in	the	REML	analyses	and	the	

phenotypes	were	pre-corrected	for	HE	analysis.	

	

Effective	number	of	phenotypes	

For	multiple	testing	correction	purpose,	we	computed	the	effective	number	of	phenotypes	

(𝑃,LL)	from	a	general	purpose	estimator51	using	the	Shannon	entropy:	

𝑃,LL =��
𝜆)

∑ 𝜆(#
(EF

�
@

M"
∑ M!%
!12

#

)EF

	

where	P	is	the	total	number	of	phenotypes	and	𝜆) 	the	𝑗OP	eigenvalue	of	the	phenotypes’	

correlation	matrix.	Using	the	correlation	matrix	of	our	70	traits,	we	found	𝑃,LL = 43	and	

used	it	for	Bonferroni	corrections.	Because	we	tested	for	three	variance	components	but	

chose	only	traits	with	significant	SNP-based	heritability,	we	also	used	two	components	for	

the	Bonferroni	corrections,	resulting	in	a	threshold	P-value	of	0.05/(43x2)	=	5.8e-4	at	𝛼 =

5%.	

	

Estimation	of	genetic	variance	components	

Genetic	variance	components	were	estimated	using	HE	regression	with	phenotypic	cross-

products	and	REML.	As	stated	in	the	main	text,	HE	regression	analyses	were	performed	on	

the	full	dataset	as	well	as	REML	when	the	number	of	phenotyped	individuals	was	smaller	

or	equal	to	60K.	Otherwise,	we	used	an	inverse-variance	weighted	(IVW)	meta-analysis	of	8	
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sub-datasets	of	≃32K	individuals.	For	a	single	trait,	the	genetic	variance	estimate	from	the	

IVW	meta-analysis	of	i	sub-datasets	and	its	associated	standard	error	are:	

𝜃];0< =
∑ Q

34!
53!
& R!

∑ Q 2
53!
& R!

	and	𝑆𝐸;0< =
�

F

∑ Q 2
53!
& R!

	

where	𝜃]( 	is	the	genetic	variance	estimate	from	the	sub-dataset	i,	and	𝜎S!
$ 	the	associated	

sampling	variance.	Indications	on	whether	we	use	a	single	or	meta-analysis	for	each	

phenotype	can	be	find	in	the	Supplementary	Table	3.	To	obtain	unbiased	estimates	of	the	

variance	components,	we	did	not	constrain	REML	estimates	to	be	non-negative.	For	REML,	

P-values	of	the	estimates	were	computed	as	the	probability	of	the	likelihood	ratio	test	

𝐿𝑅𝑇 ≃ (,TO(U1O'
!,

)$	in	a	Chi-square	distribution	with	one	degree	of	freedom.	For	HE	analysis,	

we	used	the	reported	jackknife	SE	and	P-values	by	GCTA.	

	

We	estimated	the	mean	of	each	variance	component	estimate	𝜃],	𝜇 = F
#
∑ 𝜃V�#
(EF 	across	our	P	

traits,	as	well	as	its	standard	error	𝑆𝐸(𝜇) = � F
#&
∑ u𝜎S!

$ + ∑ 𝐶(B) 𝑜𝑣(𝜃(; 𝜃))x#
(EF 	where	

𝐶𝑜𝑣(𝜃(; 𝜃))	accounts	for	the	non-independence	of	the	traits.	We	can	show	from	simulations	

(Supplementary	Figure	8)	that	a	good	approximation	of	the	covariance	between	genetic	

estimates	is	𝐶𝑜𝑣(𝜃(; 𝜃)) ≃ 𝑟W$ × 𝜎S! × 𝜎S" 	with	𝑟W
$	the	squared	phenotypic	correlation	

between	traits	i	and	j,	and	𝜎S! 	the	standard	error	of	the	estimate	which	can	be	approximate	

from	our	analysis	(using	the	reported	SE	by	GCTA).	Dominance	variance	explained	by	
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genome-wide	significant	SNPs	was	calculated	as	∑H𝑝((1 − 𝑝()�̂�(I
$
	with	𝑝( 	the	empirical	

allele	frequency	at	SNP	i	and	�̂�( 	the	estimated	dominance	effect	from	the	genome-wide	

association	analysis.	We	used	R	version	3.6.248	to	perform	the	analysis	of	GCTA	outputs.	

	

Simulation	studies	

We	performed	simulation	studies	to	validate	our	model	and	theoretical	sampling	variance	

of	the	estimates.	We	performed	simulations	based	on	the	real	genotypes	observed	on	the	

1,130,561	autosomal	HM3	SNPs	of	the	254,679	unrelated	European	individuals	from	UKB.	

Following	Zhu	et	al.10,	we	randomly	sampled	100,000	SNPs	(across	autosomes)	as	a	pool	of	

causal	variants	and	used	the	remaining	SNPs	as	the	observed	SNPs.	To	measure	at	which	

extent	we	were	able	to	capture	the	additive	and	dominance	variation	of	causal	variants	that	

are	associated	with	common	SNPs,	we	computed	the	multiple	regression	R2	for	the	first	

10K	causal	SNPs	by	regressing	the	𝑥%(()	(𝑥&(() 	under	dominance)	of	the	target	SNPs	with	the	

𝑥%(()	(𝑥&(() 	under	dominance)	of	the	neighboring	SNPs	in	a	1Mb	window.	

	

We	generated	the	phenotypes	using	a	custom	C++	program	following	Equation	(5)	where	

the	additive,	dominance,	and	additive-by-additive	effects	were	generated	from	a	standard	

normal	distribution	and	adjusted	to	the	expected	variance	of	the	additive,	dominance	and	

additive-by-additive	genome-wide	effects	(ℎ!"#$ , 𝛿!"#$ 	and	𝜂!"#$ ).	The	residuals	were	then	

generated	from	a	normal	distribution	with	mean	0	and	variance	1 − (ℎ!"#$ +	𝛿!"#$ + 𝜂!"#$ ).	

The	simulated	phenotypes	were	standardized	to	z-scores.	We	chose	ℎ!"#$ = 𝛿!"#$ = 𝜂!"#$ =
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0.3	and	simulated	100	replicates,	each	with	1000	randomly	sampled	causals	SNPs	from	the	

pool	of	100,000	putative	causal	variants.	Missing	genotypes	were	imputed	to	the	mean	

genotype	during	the	simulation	process.	The	different	variance	components	were	

estimated	using	Equation	(1)	under	REML	and	HE	regression,	including	or	not	causal	

variants.	

	

To	compare	results	from	simulations	based	on	observed	genotypes	of	UKB	participants	

with	those	under	Hardy-Weinberg	and	linkage	equilibrium,	we	used	R	v3.6.248	to	generate	

a	sample	of	35K	unrelated	individuals	genotyped	at	100K	unlinked	markers	with	uniform	

allele	frequency	distributions	in	the	range	[0.01;0.99].	Phenotypes	were	then	simulated	as	

described	above	with	the	same	setting	(ℎ!"#$ = 𝛿!"#$ = 𝜂!"#$ = 0.3).	Causal	markers	were	

randomly	sampled	among	the	100K	unlinked	SNPs	and	all	variants	were	included	in	the	

analysis.	

	

Acknowledgments	

We	acknowledge	funding	from	the	Australian	National	Health	and	Medical	Research	

Council	(1113400,	1173790)	and	the	Australian	Research	Council	(FT180100186	and	

FL180100072).	This	research	has	been	conducted	using	the	UK	Biobank	Resource	under	

Application	Number	12505.	We wish to acknowledge The University of Queensland's Research 

Computing Centre (RCC) for its support in this research.	We	also	thank	Allan	McRae	for	

technical	support	and	Jian	Zeng	for	fruitful	discussions.	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 9, 2020. ; https://doi.org/10.1101/2020.11.09.375501doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.375501
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 30	

	

Author	contributions	

P.M.V	conceived	and	designed	the	study.	Theory	was	derived	by	P.M.V,	L.Y	and	V.H.	The	

UKB	phenotypic	data	were	extracted	by	J.S	who	also	assisted	V.H	on	quality	control.	V.H	

and	L.Y	performed	simulations	and	statistical	analysis	under	the	assistance	and	guidance	of	

P.M.V,	N.R.W	and	J.Y.	The	manuscript	has	been	written	by	V.H,	L.Y	and	P.M.V	with	the	

participation	of	all	authors.	All	authors	reviewed	and	approved	the	final	manuscript.	

	

Competing	Interests	

The	authors	declare	no	competing	interests.	

	

Web	Resources	

The	URLs	for	data	and	software	used	in	this	paper	are	as	follow:	

UK	Biobank:	https://www.ukbiobank.ac.uk/	

FlashPCA2:	https://github.com/gabraham/flashpca	

GCTA:	https://cnsgenomics.com/software/gcta/#Overview	

	

References	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 9, 2020. ; https://doi.org/10.1101/2020.11.09.375501doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.375501
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 31	

1.	 Cockerham,	C.C.	An	extension	of	the	concept	of	partitionning	hereditary	variance	for	
analysis	of	covariances	among	relatives	when	epistasis	is	present.	Genetics	(1954).	

2.	 Kempthorne,	O.	The	correlation	between	relatives	in	a	random	mating	population.	
Proc.	R.	Soc.	Lond.	B,	103-113	(1954).	

3.	 Falconer,	D.S.	&	Mackay,	T.F.C.	Introduction	to	quantitative	genetics,	(Burnt	Mill,	
England	:	Longman,	1996).	

4.	 Fisher,	R.A.	The	Correlation	between	Relatives	on	the	Supposition	of	Mendelian	
Inherit-	ance.	TRANS.	ROY	SOC.	EDIN.	LII,	399-433	(1918).	

5.	 Lynch,	M.	&	Walsh,	B.	Genetics	and	Analysis	of	Quantitative	Traits,	(Sinauer	
Associates.,	1998).	

6.	 Bloom,	J.S.,	Ehrenreich,	I.M.,	Loo,	W.T.,	Lite,	T.L.V.	&	Kruglyak,	L.	Finding	the	sources	
of	missing	heritability	in	a	yeast	cross.	Nature	494,	234-237	(2013).	

7.	 Hill,	W.G.,	Goddard,	M.E.	&	Visscher,	P.M.	Data	and	theory	point	to	mainly	additive	
genetic	variance	for	complex	traits.	PLoS	Genetics	4(2008).	

8.	 Mäki-Tanila,	A.	&	Hill,	W.G.	Influence	of	gene	interaction	on	complex	trait	variation	
with	multilocus	models.	Genetics	198,	355-367	(2014).	

9.	 Robertson,	A.	&	Hill,	W.G.	Population	and	quantitative	genetics	of	many	linked	loci	in	
finite	populations.	Proceedings	of	the	Royal	Society	of	London.	Series	B.	Biological	
Sciences	219,	253-264	(1983).	

10.	 Zhu,	Z.	et	al.	Dominance	genetic	variation	contributes	little	to	the	missing	
heritability	for	human	complex	traits.	American	Journal	of	Human	Genetics	96,	377-
385	(2015).	

11.	 Yang,	J.	et	al.	Common	SNPs	explain	a	large	proportion	of	the	heritability	for	human	
height.	Nature	Genetics	42,	565-569	(2010).	

12.	 Weir,	B.S.	Linkage	disequilibrium	and	association	mapping.	Annu	Rev	Genomics	Hum	
Genet	9,	129-42	(2008).	

13.	 Bycroft,	C.	et	al.	The	UK	Biobank	resource	with	deep	phenotyping	and	genomic	data.	
Nature	562,	203-209	(2018).	

14.	 Vitezica,	Z.G.,	Legarra,	A.,	Toro,	M.A.	&	Varona,	L.	Orthogonal	Estimates	of	Variances	
for	Additive.	Genetics	206,	1297-1307	(2017).	

15.	 Xu,	S.	Mapping	quantitative	trait	loci	by	controlling	polygenic	background	effects.	
Genetics	195,	1209-1222	(2013).	

16.	 Yang,	J.,	Lee,	S.H.,	Goddard,	M.E.	&	Visscher,	P.M.	GCTA:	A	tool	for	genome-wide	
complex	trait	analysis.	American	Journal	of	Human	Genetics	88,	76-82	(2011).	

17.	 Elston,	R.C.,	Buxbaum,	S.,	Jacobs,	K.B.	&	Olson,	J.M.	Haseman	and	Elston	Revisited.	
Genetic	Epidemiology	19,	1-17	(2000).	

18.	 Haseman,	J.K.	&	Elston,	R.C.	The	Investigation	of	Linkage	Between	a	Quantitative	
Trait	and	a	Marker	Locus.	Behavior	Genetics	2,	3-19	(1972).	

19.	 Yang,	J.,	Zeng,	J.,	Goddard,	M.E.,	Wray,	N.R.	&	Visscher,	P.M.	Concepts,	estimation	and	
interpretation	of	SNP-based	heritability.	Nature	Genetics	49,	1304-1310	(2017).	

20.	 International	HapMap,	C.	et	al.	Integrating	common	and	rare	genetic	variation	in	
diverse	human	populations.	Nature	467,	52-8	(2010).	

21.	 Hill,	W.G.	&	Mäki-Tanila,	A.	Expected	influence	of	linkage	disequilibrium	on	genetic	
variance	caused	by	dominance	and	epistasis	on	quantitative	traits.	Journal	of	Animal	
Breeding	and	Genetics	132,	176-186	(2015).	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 9, 2020. ; https://doi.org/10.1101/2020.11.09.375501doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.375501
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 32	

22.	 Yang,	J.	et	al.	Genetic	variance	estimation	with	imputed	variants	finds	negligible	
missing	heritability	for	human	height	and	body	mass	index.	Nat	Genet	47,	1114-20	
(2015).	

23.	 Visscher,	P.M.	et	al.	Statistical	Power	to	Detect	Genetic	(Co)Variance	of	Complex	
Traits	Using	SNP	Data	in	Unrelated	Samples.	PLoS	Genetics	10(2014).	

24.	 Visscher,	P.M.	&	Goddard,	M.E.	A	general	unified	framework	to	assess	the	sampling	
variance	of	heritability	estimates	using	pedigree	or	marker-based	relationships.	
Genetics	199,	223-232	(2015).	

25.	 Steinsaltz,	D.,	Dahl,	A.	&	Wachter,	K.W.	On	Negative	Heritability	and	Negative	
Estimates	of	Heritability.	Genetics	215,	343-357	(2020).	

26.	 Carlborg,	Ö.	&	Haley,	C.S.	Epistasis:	Too	often	neglected	in	complex	trait	studies?	
Nature	Reviews	Genetics	5,	618-625	(2004).	

27.	 Manolio,	T.A.	et	al.	Finding	the	missing	heritability	of	complex	diseases.	Nature	461,	
747-753	(2009).	

28.	 Wei,	W.H.,	Hemani,	G.	&	Haley,	C.S.	Detecting	epistasis	in	human	complex	traits.	Nat	
Rev	Genet	15,	722-33	(2014).	

29.	 Zuk,	O.,	Hechter,	E.,	Sunyaev,	S.R.	&	Lander,	E.S.	The	mystery	of	missing	heritability:	
Genetic	interactions	create	phantom	heritability.	Proceedings	of	the	National	
Academy	of	Sciences	of	the	United	States	of	America	109,	1193-1198	(2012).	

30.	 Zaitlen,	N.	et	al.	Using	extended	genealogy	to	estimate	components	of	heritability	for	
23	quantitative	and	dichotomous	traits.	PLoS	Genet	9,	e1003520	(2013).	

31.	 Crow,	J.F.	On	epistasis:	why	it	is	unimportant	in	polygenic	directional	selection.	
Philosophical	Transactions	of	the	Royal	Society	B:	Biological	Sciences	365,	1241-1244	
(2010).	

32.	 Keightley,	P.D.	Models	of	quantitative	variation	of	flux	in	metabolic	pathways.	
Genetics	121,	869-876	(1989).	

33.	 Chen,	G.B.	Estimating	heritability	of	complex	traits	from	genome-wide	association	
studies	using	IBS-based	Haseman-Elston	regression.	Front	Genet	5,	107	(2014).	

34.	 Chen,	G.B.	On	the	reconciliation	of	missing	heritability	for	genome-wide	association	
studies.	Eur	J	Hum	Genet	24,	1810-1816	(2016).	

35.	 Speed,	D.,	Hemani,	G.,	Johnson,	M.R.	&	Balding,	D.J.	Improved	heritability	estimation	
from	genome-wide	SNPs.	Am	J	Hum	Genet	91,	1011-21	(2012).	

36.	 Kottgen,	A.	et	al.	Genome-wide	association	analyses	identify	18	new	loci	associated	
with	serum	urate	concentrations.	Nat	Genet	45,	145-54	(2013).	

37.	 Tin,	A.	et	al.	Target	genes,	variants,	tissues	and	transcriptional	pathways	influencing	
human	serum	urate	levels.	Nat	Genet	51,	1459-1474	(2019).	

38.	 Halperin	Kuhns,	V.L.	&	Woodward,	O.M.	Sex	Differences	in	Urate	Handling.	Int	J	Mol	
Sci	21(2020).	

39.	 Pattaro,	C.	et	al.	Genome-Wide	Association	and	Functional	Follow-Up	Reveals	New	
Loci	for	Kidney	Function.	PLOS	Genetics	8,	e1002584	(2012).	

40.	 Dempster,	E.R.	&	Lerner,	I.M.	Heritability	of	threshol	characters.	Genetics	35,	212-
236	(1950).	

41.	 Hernandez,	R.D.	et	al.	Ultrarare	variants	drive	substantial	cis	heritability	of	human	
gene	expression.	Nat	Genet	51,	1349-1355	(2019).	

42.	 Wainschtein,	P.	et	al.	Recovery	of	trait	heritability	from	whole	genome	sequence	
data.	bioRxiv	(2019).	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 9, 2020. ; https://doi.org/10.1101/2020.11.09.375501doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.375501
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 33	

43.	 Barton,	N.H.	&	Keightley,	P.D.	Understanding	quantitative	genetic	variation.	Nat	Rev	
Genet	3,	11-21	(2002).	

44.	 Hansen,	T.F.	Why	epistasis	is	important	for	selection	and	adaptation.	Evolution	67,	
3501-11	(2013).	

45.	 de	Los	Campos,	G.,	Sorensen,	D.A.	&	Toro,	M.A.	Imperfect	Linkage	Disequilibrium	
Generates	Phantom	Epistasis	(&	Perils	of	Big	Data).	G3	(Bethesda)	9,	1429-1436	
(2019).	

46.	 Schrauf,	M.F.	et	al.	Phantom	Epistasis	in	Genomic	Selection:	On	the	Predictive	Ability	
of	Epistatic	Models.	G3	(Bethesda)	10,	3137-3145	(2020).	

47.	 Marchini,	J.,	Howie,	B.,	Myers,	S.,	McVean,	G.	&	Donnelly,	P.	A	new	multipoint	method	
for	genome-wide	association	studies	by	imputation	of	genotypes.	Nat	Genet	39,	906-
13	(2007).	

48.	 R	Core	Team.	R:	A	Language	and	Environment	for	Statistical	Computing.	(R	
Foundation	for	Statistical	Computing,	Vienna,	Austria,	2019).	

49.	 Tukey,	J.W.	Exploratory	Data	Analysis,	(Addison-Wesley,	1977).	
50.	 Abraham,	G.,	Qiu,	Y.	&	Inouye,	M.	FlashPCA2:	principal	component	analysis	of	

Biobank-scale	genotype	datasets.	Bioinformatics	(Oxford,	England)	33,	2776-2778	
(2017).	

51.	 Del	Giudice,	M.	Effective	Dimensionality:	A	Tutorial.	Multivariate	Behavioral	
Research	0,	1-16	(2020).	

	

	 	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 9, 2020. ; https://doi.org/10.1101/2020.11.09.375501doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.375501
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 34	

	

	

Figure	1:	REML	and	HE	estimates	from	simulations	based	on	observed	genotypes	of	

UKB	participants	(simulated	𝒉𝑺𝑵𝑷𝟐 = 𝜹𝑺𝑵𝑷𝟐 = 𝜼𝑺𝑵𝑷𝟐 = 𝟎. 𝟑).	We	compared	(A)	IVW-REML	

(meta-analysis	of	8	sub-datasets	of	32K	individuals)	and	(B)	HE	estimates	(analysis	of	

254,679	individuals)	for	100	replicates	of	simulations	including	the	pool	of	causal	variants	

when	we	jointly	estimate	the	different	variance	components	(ADAA)	or	only	one	at	a	time	

for	ℎ!"#$ , 𝛿!"#$ 	and	𝜂!"#$ .	Simulated	values	are	depicted	by	a	black	cross,	the	black	dashed	
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line	depicts	the	Y=X	line	while	the	solid	grey	line	depicts	the	linear	regression	between	the	

corresponding	ADAA	and	single	component	model.	The	squared	correlation	r$	is	close	to	1	

for	all	the	variance	components	and	η$	is	the	only	one	showing	a	large	intercept.	 	
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Figure	2:	Distributions	of	REML	and	HE	estimates	from	simulations	based	on	

observed	genotypes	of	254,679	UKB	participants	(simulated	𝒉𝑺𝑵𝑷𝟐 = 𝜹𝑺𝑵𝑷𝟐 = 𝜼𝑺𝑵𝑷𝟐 =

𝟎. 𝟑).	IVW-REML	(analysis	of	8	sub-datasets	of	32K	individuals)	and	HE	estimates	(analysis	

of	254,679	individuals)	for	100	replicates	of	simulations	are	shown	for	the	three	different	
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variance	components	including	all	variants	(all	SNPs)	or	excluding	the	causal	variants	

(without	causal).	The	black	dashed	line	indicates	the	simulated	value	of	0.3.	
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Figure	3:	Statistical	power	to	detect	additive-by-additive	variance	as	a	function	of	

sample	size	for	REML	(solid	lines)	and	HE	regression	(dashed	lines)	on	additive-by-

additive	GRMs	computed	on	UKB	data.	Results	are	shown	for	an	additive-by-additive	

heritability	equal	to	0.01,	0.05,	0.	1,	0.2	and	0.4.	The	current	sample	size	of	254,679	

unrelated	individuals	is	depicted	by	the	vertical	black	dashed	line.	 	
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Figure	4:	Distributions	of	the	(A)	REML	and	(B)	HE	estimates	of	SNP-based	

𝒉𝑺𝑵𝑷𝟐 , 𝜹𝑺𝑵𝑷𝟐 	𝐚𝐧𝐝	𝜼𝑺𝑵𝑷𝟐 	for	70	continuous	traits	in	the	UK	Biobank.	For	each	distribution	of	

variance	components	estimates,	we	indicate	the	mean	estimate	as	well	as	the	95%	

confidence	interval	(CI95%).	 	
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Table	1:	Observed	standard	deviations	(SD)	from	the	analysis	of	simulations	based	

on	observed	genotypes	of	254,679	UKB	participants	(simulated	𝒉𝑺𝑵𝑷𝟐 = 𝜹𝑺𝑵𝑷𝟐 =

𝜼𝑺𝑵𝑷𝟐 = 𝟎. 𝟑),	as	well	as	theoretical	and	reported	standard	errors	(SE)	by	GCTA.	

Analysis	 Variance	
component	

Observed	
SD	

Theoretical	
SE	

reported	SE	

𝑅𝐸𝑀𝐿*$? 	 ℎ$�	 0.011	 0.010	 0.012	
	 𝛿$�	 0.015	 0.014	 0.016	
	 𝜂$�	 0.37	 0.399	 0.393	
	 	 	 	 	
HE*$? 	 ℎ$�	 1.4x10-2	 9.9x10-3	 9.9x10-3	(1.8x10-2)	
	 𝛿$�	 1.8x10-2	 1.4x10-2	 1.5x10-2	(2.2x10-2)	
	 𝜂$�	 1.45	 1.57	 1.55	(2.19)	
	

We	performed	100	replicates	of	simulations	based	on	observed	genotypes	of	254,679	UKB	

participants.	In	order	to	assess	the	accuracy	of	the	theoretical	and	reported	SE,	8	sub-

datasets	of	32K	individuals	were	analyzed	for	each	replicate	both	with	REML	(𝑅𝐸𝑀𝐿*$?)	

and	HE	(HE*$?).	The	observed	SD	have	been	computed	within	a	replicate	and	averaged	

across	them	for	each	variance	component.	Reported	SE	by	GCTA	were	averaged	within	and	

across	replicates	and	the	format	for	HE	analysis	is	𝑆𝐸7/!(𝑆𝐸)19::\(L').	
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