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 81 

Summary 82 

With the development of transcriptomic technologies, we are able to quantify precise changes in 83 

gene expression profiles from astronauts and other organisms exposed to spaceflight. Members of 84 

NASA GeneLab and GeneLab-associated analysis working groups (AWGs) have developed a 85 
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consensus pipeline for analyzing short-read RNA-sequencing data from spaceflight-associated 86 

experiments. The pipeline includes quality control, read trimming, mapping, and gene 87 

quantification steps, culminating in the detection of differentially expressed genes. This data 88 

analysis pipeline and the results of its execution using data submitted to GeneLab are now all 89 

publicly available through the GeneLab database. We present here the full details and rationale for 90 

the construction of this pipeline in order to promote transparency, reproducibility and reusability 91 

of pipeline data, to provide a template for data processing of future spaceflight-relevant datasets, 92 

and to encourage cross-analysis of data from other databases with the data available in GeneLab. 93 

Introduction 94 

Opportunities to perform biological studies in space are rare due to high costs and a limited 95 

number of funding sources, rocket launches, and spaceflight crew hours for experimental 96 

procedures. Additionally, spaceflight research is decentralized and distributed across numerous 97 

laboratories in the United States and abroad. As a result, studies performed in different laboratories 98 

often utilize different organisms, strains, cell lines, and experimental procedures. Adding to this 99 

complexity are variance in spaceflight factors and/or confounders within each study, such as 100 

degree of radiation exposure, experiment duration, CO2 concentration, light cycle, and water 101 

availability, all of which can have effects on an organism’s health and gene expression profiles 102 

during spaceflight (Rutter et al. n.d.). In order to optimize the integration of data from this diverse 103 

array of spaceflight experiments, it is paramount that variations in data processing are minimized. 104 

There is presently no consensus on how best to analyze RNA-seq data and the impact of 105 

analysis tool selection on results is an active field of research. Indeed, selections of trimming 106 

parameters (Williams et al. 2016), read aligner (Yang et al. 2015), quantification tool (Teng et al. 107 

2016), and differential expression detection algorithm (Costa-Silva, Domingues, and Lopes 2017) 108 

all affect results. Because of such challenges, groups like ENCODE and MINSEQE have 109 

developed standardized analysis pipelines for better comparison of RNA-seq datasets (ENCODE 110 

Project Consortium et al. 2020; “FGED: MINSEQE” n.d.).  111 

 The NASA GeneLab database (https://genelab-data.ndc.nasa.gov/genelab/projects) was 112 

created as a central repository for spaceflight-related omics-data. The repository includes data from 113 

experiments that profile transcription (RNA-seq, microarray), DNA/RNA methylation, protein 114 
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expression, metabolite pools, and metagenomes. The most prevalent data type in this repository is 115 

RNA-seq from organisms exposed to spaceflight conditions. As of August 2020, the NASA 116 

GeneLab database has over eighty datasets with RNA-sequencing data [Table S1]. These datasets 117 

include Homo sapiens (human), Mus musculus (mouse), Drosophila melanogaster (fruit fly), 118 

Arabidopsis thaliana (model higher plant), Oryzias latipes (Japanese rice fish), Helix lucorum 119 

(land snail), Brassica rapa (Fast Plant®), Eruca vesicaria (arugula/edible plant), Euprymna 120 

scolopes (Hawaiian bobtail squid), Ceratopteris richardii (aquatic fern), and the bacterium, 121 

Bacillus subtilis from experiments performed during true spaceflight on various orbital platforms 122 

such as the Space Shuttle and International Space Station (ISS), as well as spaceflight-analog 123 

studies, such as hindlimb unloading and bed rest studies (Berrios et al., n.d.).  124 

NASA’s GeneLab and Ames Life Sciences Data Archive (ALSDA) projects have put 125 

forward an ambitious strategy focused on integrating data, metadata, and biospecimens to fully 126 

utilize the 40+ years of archived NASA Life Sciences data (Scott et al. 2020). One of the first steps 127 

in this effort is the ability to analyze how experimental factors common to multiple datasets impact 128 

molecular signaling. Such meta-analysis can only occur if metadata, data, and processed data are 129 

harmonized. As part of this strategy, GeneLab engaged with the scientific community and held its 130 

first Analysis Working Group (AWG) workshop in 2018. Spaceflight researchers from universities 131 

and organizations across the United States and abroad met to begin the creation of a standardized, 132 

consensus data-processing pipeline for one of the most common types of spaceflight datasets: 133 

transcription profiling via RNA-sequencing. Scientists at this workshop met to discuss the merits 134 

of various bioinformatic software tools for processing RNA-sequencing data, and ultimately 135 

agreed on a single pipeline of these tools. 136 

The main driver for developing the consensus pipeline was to present consistently 137 

processed data to the public, therefore making space-relevant multi-omics data more accessible 138 

and reusable. The overall goals were: 1) To get more consistently processed data to the public; 2) 139 

To provide output data from every step of the consensus pipeline so users can download and use 140 

these “intermediate” data; 3) To support easier and more consistent analysis of space-relevant data 141 

by users including those in the NASA AWGs; and 4) To allow easier cross-analysis of experiments 142 

to identify effects that result from the spaceflight environment, independent of confounding 143 

factors. In addition, many of these data in the GeneLab database have not been previously 144 

analyzed, as their generation was relatively recent. Therefore, providing new and processed 145 
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datasets to the public allows biologists and others to more easily interpret these data, and 146 

contributes significantly to our collective knowledge of the effects of spaceflight on terrestrial 147 

organisms. 148 

Here we present the RNA-seq consensus pipeline (RCP) developed by the GeneLab AWG 149 

along with the rationale behind the tool settings and options selected. The RCP includes three 150 

distinct steps: data pre-processing, data processing, and differential gene expression 151 

computation/annotation [Fig 1A]. These steps use tools for quality control (FastQC, MultiQC) 152 

(Andrews and Others 2010; Ewels et al. 2016), read trimming (TrimGalore) (Krueger 2019),  153 

mapping (STAR) (Dobin et al. 2013), quantification (RSEM) (B. Li and Dewey 2011), and 154 

differential gene expression calculation/annotation (DESeq2) (Love, Huber, and Anders 2014) 155 

[Fig 1B]. The RCP has been integrated into the GeneLab database and files produced by the RCP 156 

for each RNA-seq dataset hosted in GeneLab are and will continue to be publicly available for 157 

download. 158 

Results 159 

Data Pre-processing: Quality Control and Trimming 160 

There are three distinct steps to the RCP, the first of which is data preprocessing [Fig 2A]. 161 

The pipeline begins with quality control (QC) of raw FASTQ files from a short-read Illumina 162 

sequencer using the FastQC software (Andrews and Others 2010) [Fig 2B]. FastQC is one of the 163 

most widely used QC programs for short-read sequencing data. It provides information which can 164 

be used to assess sample and sequencing quality, including base statistics, per base sequencing 165 

quality, per sequence quality scores, per base sequence content, per base GC content, per sequence 166 

GC content, per base N content, sequence length distributions, sequence duplication levels, 167 

overrepresented sequences and  k-mer content. 168 

 The FastQC program is run on each individual sample file. However, reviewing the FastQC 169 

results for each sample file can be tedious and time consuming. Experiments typically have many 170 

sample files (biological and/or technical replicates) for multiple experimental conditions 171 

(spaceflight, ground control, etc). For this reason, we also use the MultiQC package  (Ewels et al. 172 

2016) [Fig 2C] to create a summary statistics report that includes the same quality control result 173 

categories from FastQC across all experiment samples.  174 
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After performing quality control on the raw FASTQ data, reads are trimmed using 175 

TrimGalore (Krueger 2019) to remove sequencing adapters that would disrupt read mapping 176 

during the data processing pipeline step [Fig 2D]. Quality trimming is not performed as this has 177 

been shown to decrease the accuracy of quantification results (Williams et al. 2016). TrimGalore 178 

is a wrapper program that uses the cutadapt program (Martin 2011) for read trimming. TrimGalore 179 

was selected for the RCP due to its simplified command line interface, thorough output of trimming 180 

metrics, and ability to automatically detect adapters. In this step, bases that are part of a sequencing 181 

adapter are removed from each read and reads that become too short will subsequently be removed. 182 

After trimming, the quality control programs, FastQC and MultiQC, are again run on the trimmed 183 

FASTQ files for viewing the quality control metrics of the reads that will be used for data 184 

processing. Once the data has been preprocessed, the sequenced reads are ready for mapping and 185 

quantification. 186 

 187 

Data Processing: Read Mapping and Sample Quantification 188 

  189 

In the data processing step [Fig 1; Step 2A], the trimmed reads are first aligned to the 190 

reference genome [Fig 3A] with STAR, a splice-aware aligner (Dobin et al. 2013). STAR must be 191 

run in two steps. The first step is to create indexed genome files [Fig 3B]. These files are used to 192 

assist read mapping and only need to be generated once for each reference genome file. This step 193 

requires reference FASTA and GTF files [Table S2]. Some datasets include the External RNA 194 

Control Consortium (ERCC) spike-in control - a pool of 96 synthetic RNAs with various lengths 195 

and GC content covering a 220 concentration range (Jiang et al. 2011). If ERCC spike-ins were 196 

included, the spike-in FASTA and GTF files are appended to the reference FASTA and GTF files, 197 

respectively. The second step of STAR mapping is to use the indexed reference genome and the 198 

trimmed reads from the preprocessing step in order to map the reads to the genome and the 199 

transcriptome [Fig 3C]. STAR will also produce genome mapped data, which can optionally be 200 

used to find reads that map outside of annotated reference transcripts. STAR mapping output data 201 

are in BAM format, which has a separate entry for each mapped read and states which transcript 202 

each read mapped to. In order to improve the detection and quantification of splice sites, STAR is 203 

run in “two-pass mode”. Here, splice sites are detected in the initial mapping to the reference and 204 

used to build a new reference that includes these splice sites. Reads are then re-mapped to this 205 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.06.371724doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.06.371724


8 

dynamically generated reference to improve the quantification of splice isoforms (Dobin et al. 206 

2013). Users are provided with these results (as per sample SJ.out files) for further analysis of 207 

differential splicing. 208 

 The second part of processing is quantifying the number of reads mapped to each annotated 209 

transcript and gene [Fig 1A; Step 2B]. For this task, the RCP uses RSEM (B. Li and Dewey 2011) 210 

[Fig. 4A]. The main reasons for using RSEM are its ability to account for reads that map to multiple 211 

transcripts and distinguish gene isoforms. In short-read sequencing experiments it is likely that 212 

some number of reads will map to multiple regions in the genome. RSEM computes maximum 213 

likelihood abundance estimates to split the read count across multiple genes. Similar to STAR, 214 

RSEM is run in two distinct phases. The first phase uses the reference genome and GTF files (with 215 

or without ERCC as appropriate) [Table S2] to prepare indexed genome files [Fig 4B]. The second 216 

phase uses the indexed files and the mapped reads from STAR to assign counts to each gene [Fig 217 

4C]. There are two output files generated for each sample: counts assigned to genes and counts 218 

assigned to isoforms. Gene counts are used to calculate differential gene expression. Isoform 219 

counts are also generated as an option to look at differential isoform expression but are not used 220 

during differential gene expression calculation in the RCP. Once the RSEM count files are 221 

generated, the data are used to compute differentially expressed genes. A list of the reference 222 

genomes used in the GeneLab pipeline is available in Supplementary Table 2 [Table S2]. These 223 

reference genomes were the most recent releases at the time each STAR and RSEM indexed 224 

references were created. While it is possible to run STAR mapping through the RSEM toolkit, we 225 

elected not to do this because the alignment parameters used in this case are from ENCODE's 226 

STAR-RSEM pipeline and are not customizable. Thus, we would have been precluded from using 227 

the precise mapping parameters agreed to by the GeneLab AWG. 228 

We elected to adopt a mapping-based approach rather than rapidly quantifying the reads 229 

via a k-mer-based counting algorithm, pseudo-aligners, or a quasi-mapping method that utilizes 230 

RNA-seq inference procedures such as Kallisto (Bray et al. 2016) or Salmon (Patro et al. 2017) 231 

despite their speed advantages. This is because alignment-free quantification tools do not 232 

accurately quantify low-abundant and small RNAs especially when biological variation is present 233 

(Wu et al. 2018). Furthermore, alignment of reads allows for additional analyses beyond transcript 234 

and gene quantification such as measurement of gene body coverage and detection of novel 235 

transcripts. 236 
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There are several alignment-based mapping tools available and each has advantages and 237 

disadvantages. An alignment tool that is sensitive to splice-isoforms is critical to accurately 238 

identify how expression of splice-isoforms is affected by the spaceflight environment. DNA-239 

specific aligners such as BWA (H. Li and Durbin 2009) and Bowtie (Langmead et al. 2009) cannot 240 

handle intron-sized gaps and thus an RNA-seq specific aligner is needed (Baruzzo et al. 2017). In 241 

addition to splice-awareness, when selecting an aligner the following criteria were also considered: 242 

ability to input both single- and paired-end reads, handle strand-specific data, applicability to a 243 

variety of different model organisms with both low- and high-complexity genomic regions, 244 

efficient runtime and memory usage, ability to identify chimeric reads,  high sensitivity, low rate 245 

of false discovery, and ability to output both genome and transcriptome alignments. Several studies 246 

have been conducted to compare the wide variety of available RNA-seq specific alignment tools, 247 

and of these, the STAR aligner consistently performs better than, or on par with the tools tested 248 

for the indicated criteria (Baruzzo et al. 2017; Schaarschmidt et al. 2020; Raplee, Evsikov, and 249 

Marín de Evsikova 2019).   250 

 251 

Differential Gene Expression Calculations and Addition of Gene Annotations 252 

Once reads have been mapped and quantified, differential expression analysis is performed 253 

using the DESeq2 R package [Fig 1; Step 3, Fig 5A]. Unlike the previous steps, a custom R script 254 

GeneLab_DGE_noERCC.R or (GeneLab_DGE_wERCC.R) [Scripts S1, S2] is used to run 255 

DESeq2, to create both unnormalized and normalized counts tables, and to generate a differential 256 

gene expression (DGE) output table containing normalized counts for each sample, DGE results, 257 

and gene annotations [Fig 5B]. The GeneLab DGE R script also creates computer-readable tables 258 

that are used by the GeneLab visualization portal to generate various plots so users can easily view 259 

and begin interpreting the processed data. These scripts are provided in the NASA 260 

GeneLab_Data_Processing Github repository 261 

(https://github.com/nasa/GeneLab_Data_Processing). In the following sections we describe each 262 

step of these sections in order. 263 

The GeneLab DGE R script requires three inputs: the quantified counts data from the 264 

previous (RSEM) step, sample metadata from the Investigation, Study, and Assay (ISA) tables in 265 

the ISA.zip file (provided in the GeneLab repository with each dataset) (Sansone et al. 2012; 266 

Rocca-Serra et al. 2010), and the organisms.csv file [Table S3], which is used to specify the 267 
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organism used in the study and relevant gene annotations to load. Since samples from some 268 

GeneLab RNA-seq datasets contain ERCC spike-in and others do not, there are two versions of 269 

the GeneLab DGE R script, one for datasets with ERCC spike-in (GeneLab_DGE_wERCC.R, 270 

Script S1) and one for those without (GeneLab_DGE_noERCC.R, Script S2). Prior to running 271 

either script, paths to directories containing the input data and the output data location must be 272 

defined. Each script starts by defining the organism used in the study, which should be consistent 273 

with the name in the organisms.csv file so that it matches the abbreviations used in the PANTHER 274 

database (Mi, Muruganujan, and Thomas 2013; Thomas 2003) for each organism. Next, the 275 

metadata from the ISA.zip file are imported and formatted for use with the DESeq2 package. 276 

During metadata formatting, groups for comparison are defined based on experimental factors and 277 

a sample table is created to specify the group to which each sample belongs. Next, a contrasts 278 

matrix is generated, which specifies the groups that will be compared during DGE analysis; each 279 

group is compared with every other group in a pairwise manner in both directions (i.e. spaceflight 280 

vs. ground and ground vs. spaceflight). This approach provides the user with the results for all 281 

possible group comparisons, allowing each user to select the most relevant comparisons for their 282 

particular scientific questions. After metadata formatting, the RSEM gene count data files from 283 

each sample are listed and re-ordered (to match the order the samples appear in the metadata), then 284 

imported with the R package, tximport (Soneson, Love, and Robinson, n.d.), and sample names 285 

are assigned. Prior to running DESeq2, a value of 1 is added to genes with lengths of zero, which 286 

is necessary to make a DESeqDataSet object. A DESeqDataSet object is then created using the 287 

formatted metadata and the count data that was imported with tximport.  288 

For datasets that contain samples without ERCC spike-in, we use the 289 

GeneLab_DGE_noERCC.R script [Script S1]. To reduce the possibility of skewing the data during 290 

DESeq2 normalization (McIntyre et al. 2011; Risso et al. 2011; Conesa et al. 2016; Law et al. 291 

2016), all genes that have a sum of less than 10 counts across all samples are removed. The cutoff 292 

value of 10 is a best practice recommended by the DESeq2 tutorial on Bioconductor. These filtered 293 

data are then prepared for normalization and DGE analysis with DESeq2. Since there is no 294 

consensus for whether or not ERCC-normalization improves the accuracy of the results (Risso et 295 

al. 2014), the GeneLab project and its AWG members decided to perform the DGE analysis both 296 

with and without ERCC-normalization (for datasets with samples containing ERCC spike-in).  297 
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To enable DESeq2 analysis with and without considering ERCC reads, the DESeqDataSet 298 

object is used to create a DESeqDataSet object containing only ERCC reads. Since all samples 299 

must contain ERCC spike-in for ERCC-normalization, the DESeqDataSet object containing only 300 

ERCC reads is used to identify and remove any samples that do not contain ERCC reads. Next, a 301 

DESeqDataSet object containing only non-ERCC reads is created by removing rows containing 302 

ERCC reads. These data are then used for DESeq2 analysis. 303 

For DESeq2 analysis with ERCC-normalization (Script S2), the size factor object of the 304 

non-ERCC data is replaced with ERCC size factors for re-scaling in the first DESeq2 step. For 305 

DESeq2 analysis without ERCC-normalization, the DESeq2 default algorithm is applied to the 306 

DESeqDataSet object containing only non-ERCC reads. The unnormalized and DESeq2-307 

normalized counts data as well as the sample table are then outputted as CSV files. The 308 

‘Unnormalized_Counts.csv’, ‘Normalized_Counts.csv’, and ‘ERCC_Normalized_Counts.csv’ 309 

files for each RNA-seq dataset are available in the GeneLab Data Repository; the 310 

‘SampleTable.csv’ file is used internally for verifying and validating the processed data prior to 311 

publication.  312 

There are two types of hypothesis tests that can be run with DESeq2, the likelihood ratio 313 

test (LRT), which is similar to an analysis of variance (ANOVA) calculation in linear regression 314 

and allows for comparison across all groups, and the Wald test, in which the estimated standard 315 

error of a log2 fold change is used to compare differences between two groups. The DGE step of 316 

the RCP performs both of these analyses. After normalization, the DESeq2 likelihood ratio test 317 

design is applied to the normalized data (both ERCC- and nonERCC-normalized data) to generate 318 

the F statistic p-value, which is similar to an ANOVA p-value and reveals genes that are changed 319 

in any number of combinations of all factors defined in the experiment. 320 

To prepare for building a gene/pathway annotation database, the STRINGdb (Szklarczyk 321 

et al. 2019) and PANTHER.db (Thomas 2003) libraries are loaded and the organisms.csv file is 322 

read and used to indicate the Bioconductor AnnotationData Package needed (Huber et al. 2015; 323 

Gentleman et al. 2004). The current gene annotation database for the organism specified at the 324 

beginning of the R script is then loaded. 325 

Next, DGE tables containing normalized counts for each sample, pairwise DGE results, 326 

and current gene annotations as well as computer-readable DGE tables (that will be used for 327 

visualization) are created first with nonERCC-normalized data and then with ERCC-normalized 328 
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data. For pairwise DGE analysis, first normalized count data are used to create two output tables, 329 

one that is used to create the human-readable DGE output table provided to users with processed 330 

data for each dataset, and the respective computer-readable DGE output table that contains 331 

additional columns and is used to visualize the data. Next, normalized count data are iterated 332 

through Wald Tests to generate pairwise comparisons of all groups based on the contrasts matrix 333 

that was generated during metadata formatting. The pairwise DGE analysis results are then added 334 

as columns to both DGE output tables. 335 

Then an annotation database is built by first defining the “keytype”, which indicates the 336 

primary type of annotation used (for most GeneLab datasets this is ENSEMBL). The keytype is 337 

then used to map to annotations in the organism-specific Bioconductor AnnotationData Package, 338 

and the following annotation columns are added to the annotation database: SYMBOL, 339 

GENENAME, ENSEMBL (if not the primary), REFSEQ, and ENTREZID. STRING and 340 

GOSLIM annotation columns are also added to the annotation database using the STRINGdb and 341 

PANTHER.db R packages, respectively. All of the aforementioned annotation columns are added 342 

to the annotation database to enable users to perform downstream analyses without having to map 343 

gene IDs themselves. Once the annotation database is complete, additional calculations are 344 

performed on the normalized count data before assembling the final DGE output tables. 345 

Means and standard deviations of normalized count data for each gene across all samples, 346 

and for samples within each respective group, are calculated and added as columns to the DGE 347 

output tables. A column containing the F statistic p-value, calculated previously, is also added to 348 

the DGE output tables. The following columns are added only to the computer-readable DGE 349 

output table (used for visualization): a column to indicate whether each gene (or pathway) is up- 350 

or down-regulated for each pairwise comparison, a column to indicate genes that are differentially 351 

expressed using a p-value cutoff of ≤0.1 and another column using a p-value cutoff of ≤0.05, a 352 

column indicating the log2 of the p-value for each pairwise comparison and another column 353 

indicating the log2 of the adjusted p-value, both of which are used to create Volcano plots. After 354 

all columns are added to the DGE tables, both the human- and computer-readable DGE tables are 355 

combined with the current annotation database to create the complete human- and computer-356 

readable DGE tables. An example of the complete human readable DGE tables provided with 357 

processed RNAseq datasets in the GeneLab Data Repository is shown in Table 1 and Table 2. 358 

Principal component analysis (PCA) is also performed on the normalized count data and used to 359 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.06.371724doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.06.371724


13 

create PCA plots for the GeneLab data visualization portal. DGE analysis of datasets without 360 

ERCC spike-in is performed exactly the same way as the nonERCC-normalized approach 361 

described above, except that no ERCC reads have to be removed from the DESeqDataSet object 362 

prior to DESeq analysis. 363 

Both the GeneLab_DGE_wERCC.R and the GeneLab_DGE_noERCC.R scripts produce 364 

the following output files: Unnormalized_Counts.csv (*), Normalized_Counts.csv (*), 365 

SampleTable.csv (#), contrasts.csv (*), differential_expression.csv (*), 366 

visualization_output_table.csv (**), visualization_PCA_table.csv (**) [Fig 5B, Table 1, Table 2]. 367 

The GeneLab_DGE_wERCC.R script will also produce the following additional output files: 368 

ERCC_rawCounts_unfiltered.csv (#), ERCC_rawCounts_filtered.csv (#), 369 

ERCCnorm_contrasts.csv (*), ERCC_Normalized_Counts.csv (*), 370 

ERCCnorm_differential_expression.csv (*), visualization_output_table_ERCCnorm.csv (**), 371 

visualization_PCA_table_ERCCnorm.csv (**) [Fig 5B, Table 1, Table 2]. All the tools used in the 372 

consensus pipeline described above are documented in Supplemental Table 4: Pipeline Tools and 373 

Links [Table S4]. 374 

 375 

A Use Case for Data Processed with the RCP 376 

To showcase the value of using a consensus pipeline and publishing the processed data 377 

from each step of the pipeline, downstream analyses were performed using processed data from 378 

select samples from RNAseq datasets hosted on GeneLab. One of the advantages of providing 379 

expression data of all samples in each dataset as well as all possible pairwise DGE comparisons is 380 

to allow users the flexibility to pick and choose which samples and which comparisons they would 381 

like to focus on. Thus, when selecting samples for downstream analysis, we exercised this 382 

flexibility and searched the GeneLab Data Repository for datasets/samples that met a specific set 383 

of criteria. These criteria were as follows: 1) datasets that evaluated the same tissue (liver) from 384 

the same mouse strain (C57BL/6) and sex (female), 2) only samples derived from animals flown 385 

in space and respective ground control samples, 3) studies that used the same preservation protocol 386 

(liver samples extracted from frozen carcasses post-mission) and library preparation method (ribo-387 

depletion), and 4) samples that contained ERCC spike-in to evaluate outputs with and without 388 

ERCC normalization. Select samples from two GeneLab datasets, GLDS-168 and GLDS-245 met 389 

these criteria and processed data including the Normalized_Counts.csv, 390 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.06.371724doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.06.371724


14 

differential_expression.csv, ERCC_Normalized_Counts.csv, and the 391 

ERCCnorm_differential_expression.csv files from these two datasets were used for downstream 392 

analyses.  393 

Prior to downstream analysis, the processed data files were filtered so that only samples 394 

that met the criteria listed above were included. Since GLDS-168 contains samples from both the 395 

Rodent Research 1 (RR-1) and RR-3 missions and only the RR-1 mission met our first criteria of 396 

using the C57BL/6 mouse strain, RR-3 samples were removed from the process data files. GLDS-397 

168 processed data files were subsequently filtered to remove all samples except spaceflight (FLT) 398 

and respective ground control (GC) samples to meet the second criteria listed above. Lastly, since 399 

GLDS-168 contains a set of FLT and GC samples that were spiked with ERCC and another set in 400 

which ERCC was not added, the later set of samples were removed to meet the fourth criteria. 401 

GLDS-245 contains liver samples from the RR-6 mission, which included a set of animals that 402 

were returned to earth alive after ~30 days of spaceflight and another set of animals that remained 403 

in space (aboard the ISS) for a total of ~60 days before being sacrificed aboard the ISS (note that 404 

there were respective control samples for each set of spaceflight animals described). The former 405 

set of animals had their livers dissected immediately after euthansia whereas livers from the latter 406 

set of animals were frozen in situ and dissected from frozen carcasses after return to earth. Thus, 407 

only the later (ISS-terminal) set of FLT and respective GC samples met criteria 2 and 3, so the 408 

GLDS-245 processed data files were filtered to remove all other samples. A complete list of all 409 

samples from GLDS-168 and GLDS-245 that were included in this analysis are provided in 410 

Supplemental Table S5 [Table S5]. Additionally, since the downstream analyses focused on the 411 

differences between FLT and GC samples in these two datasets, all other comparisons were 412 

removed from the differential_expression.csv and ERCCnorm_differential_expression.csv files 413 

prior to analysis.  414 

The filtered processed data files (available in Mendeley Data, 415 

http://dx.doi.org/10.17632/fv3kd6h7k4.1) were then used to create Principal Component Analysis 416 

(PCA) plots [Fig 6A, 6B and Fig S1A, S1B], heatmaps containing the top 30 most significant FLT 417 

vs. GC differentially expressed (and annotated) genes (adj. p value < 0.05 and |log2FC| > 1) [Fig 418 

6C, 6D and Fig S1C, S1D], and to evaluate FLT vs. GC gene ontology (GO) differences using 419 

Gene Set Enrichment (GSEA) analysis [Table 3, Table S6]. These results can then be further 420 

evaluated to identify similarities and differences in gene expression between these two studies and 421 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.06.371724doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.06.371724


15 

draw novel conclusions about the effects of spaceflight that are consistent across spaceflight 422 

experiments. 423 

Discussion 424 

The differentially expressed genes calculated by the RCP can be further explored with a 425 

variety of tools designed for higher-order analysis. For example, there are tools which can look for 426 

enriched pathways, gene ontology terms, or protein and/or metabolite networks. Popular software 427 

tools among the GeneLab working group members include WebGestalt (Liao et al. 2019), 428 

STRING (Szklarczyk et al. 2019), GSEA (Subramanian et al. 2005), PIANO (Väremo, Nielsen, 429 

and Nookaew 2013), Reactome (Szklarczyk et al. 2019), and ToppFun (Chen et al. 2009). There 430 

is no universal consensus on which tools are the most useful for higher-order analysis (Nguyen et 431 

al. 2019). RCP users are encouraged to try multiple tools in order to analyze their data from a 432 

variety of perspectives. 433 

 The RCP has been designed to handle sequencing experiments that either lack or include 434 

the ERCC RNA spike-in mix - a set of 96 polyadenylated RNAs that can be used during differential 435 

gene expression calculation to normalize read counts across samples (Munro et al. 2014). 436 

However, the use of normalization according to ERCC spike-ins remains controversial among 437 

AWG members, and Munro et al. suggested its usage only for determining limit of detection of 438 

ratio (LODR), expression ratio variability and measurement bias (Munro et al. 2014). For this 439 

reason, ERCC normalization remains optional in the GeneLab pipeline and both kinds of DGE 440 

outputs are provided in the GeneLab database. Additionally, ERCC spike-in could have two other 441 

usages. First, it allows us to evaluate whether normalization succeeded in removing systemic bias 442 

between libraries by using methods such as Rlog and VST when normalizing the spike-in RNAs 443 

along with all other genes. Second, most normalization methods of RNA-seq data assume that 444 

most genes are not differentially expressed towards one direction. Comparing spike-in 445 

measurements between libraries will help us to estimate the validity of this assumption. 446 

 A high number of biological replicates can increase certainty in the differentially 447 

expressed genes determined by the RCP. However, conducting experiments in spaceflight often 448 

limits the number of biological replicates that a researcher can include. Therefore, it is important 449 

to note that at least three biological replicates are required for the pipeline, specifically for DESeq2, 450 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.06.371724doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.06.371724


16 

to perform its statistical methods. However, at least six replicates are suggested in order to 451 

minimize the false discovery rate (FDR) (Schurch et al. 2016). Finally, RNA-seq datasets hosted 452 

on GeneLab that do not contain biological replicates are only processed up until unnormalized 453 

(raw) counts are obtained, the step right before DESeq2 is used for DGE calculation. 454 

More advanced RCP users might have additional data inquiries that fall beyond the scope 455 

of this pipeline. For this reason, there are two parts of the pipeline that include additional output 456 

that are not used in our differential gene expression computation. The first is in the output from 457 

STAR, mapping output is also provided in genomic coordinates. This is useful for obtaining reads 458 

that are mapped outside of the reference transcriptome. For example, this may be used to find 459 

novel genes, transcripts, or exons that have not yet been annotated by consortiums. The second 460 

part of the pipeline with alternative output files is RSEM. This also provides transcript-level counts 461 

which can be used to investigate differential isoform expression. Moreover, intermediate files are 462 

provided as outputs to allow users to use components of the pipeline that they find useful.  463 

The GeneLab database also includes other types of transcriptomic data. As discussed in 464 

this article, the RCP is not used for microarray data which are fundamentally different, and the 465 

AWG is still debating the best approach for cross-dataset comparisons between microarrays. 466 

GeneLab also accepts data from long read experiments, such as those produced by Pacific 467 

Biosciences’ (PacBio) single-molecule real-time (SMRT) sequencing (Roberts, Carneiro, and 468 

Schatz 2013) and Oxford Nanopore Technologies’ (ONT) nanopore sequencing (Jain et al. 2016). 469 

Long-read data would be processed with similar steps to the RCP but will require tools specifically 470 

designed for the intricacies of long-read data, such as reads that contain multiple splice junctions 471 

and reads which currently have a higher base-calling error-rate. Currently, long-reads are typically 472 

used for DNA sequencing and were recently highlighted on board of the ISS using ONT for de 473 

novo assembly of the E. coli genome from raw reads (Castro-Wallace et al. 2017). However, even 474 

though throughput and accuracy remain far inferior to short-reads, long-reads offer some 475 

advantages for RNAseq as well, with less ambiguity for genes and isoforms detection, much faster 476 

mapping, potential identification of genes not yet known from reference genomes and eventually 477 

less bias in DGE.  478 

To conclude, the RCP is specifically designed for RNA-seq data from short-read 479 

sequencers and has been developed in order to encourage and facilitate analysis of spaceflight 480 

multi-omic data. The creation of the RCP by a large community of scientists (GeneLab AWG: 481 
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https://genelab.nasa.gov/awg) and the sharing of pipeline details in a peer-reviewed article provide 482 

analysis transparency and enable data reproducibility.  483 

 484 

Limitations of the Study 485 

The results of this study are limited to short-read RNA-seq and are not applicable to other 486 

transcriptomic profiling methods (e.g. microarray, long-read RNA-seq). Additionally, the pipeline 487 

cannot compensate for poor library preparation technique or inadequate sample size. Sample 488 

preservation protocols between datasets need to also be evaluated, since variations in sample 489 

preservation protocol could lead to poor correlation between studies that are otherwise identical 490 

(Polo et al. 2020). The number of sequenced reads may also be a limiting factor in the usefulness 491 

and accuracy of the differentially expressed genes calculated by DESeq2 and, similarly, during 492 

splice isoform analysis. 493 

Note that this article does not discuss strategies and pipelines regarding older 494 

transcriptomics data in GeneLab (i.e. more than 100 microarray datasets), as it is much more 495 

challenging to provide meta-analysis with microarrays, which are prone to strong batch effects and 496 

gene lists which are platform dependent. Future efforts of GeneLab and the AWG will address 497 

microarray pipelines. 498 

In the future, we will add functionality to process unique molecular identifiers (UMIs) that 499 

can identify PCR duplicates using tools such as UMI-tools (Smith, Heger, and Sudbery 2017). 500 

This will allow PCR duplicates to be removed after mapping and before quantification. 501 

Additionally, transcriptomic data will be integrated with proteomic and metabolomics data; 502 

this will help further understand the significance of gene expression changes to metabolic “fitness” 503 

in the spaceflight environment.  504 

 505 

 506 

Resource Availability 507 

Lead Contact: Jonathan M. Galazka 508 

Materials Availability: No unique reagents were generated in this study. 509 
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Data and Code Availability: Spaceflight-relevant RNA-seq data is located in the GeneLab database 510 

(https://genelab-data.ndc.nasa.gov/genelab/projects). All software packages are open source and 511 

are linked in the methods section. Custom R scripts for DESeq2 are included as supplemental 512 

information and are available in the Github repository GeneLab_Data_Processing 513 

(https://github.com/nasa/GeneLab_Data_Processing). Raw data utilized to generate plots are 514 

available on Mendeley Data (http://dx.doi.org/10.17632/fv3kd6h7k4.1). 515 

Methods 516 

The tools used in the consensus pipeline are documented in Supplemental Table 4: 517 

Pipeline Tools and Links [Table S4]. Due to NASA security requirements, all software is 518 

updated monthly with security patching. Therefore, tool versions used to process each RNA-seq 519 

dataset hosted on the GeneLab Data Repository are provided in the RNA-seq protocol section 520 

and are also available along with exact processing scripts in the GeneLab Data Processing 521 

GitHub Repository 522 

(https://github.com/nasa/GeneLab_Data_Processing/tree/master/RNAseq/GLDS_Processing_Scr523 

ipts). Specific commands, options, and flags for each tool used in the RCP are reported in the 524 

figures of the main text. Note that some packages listed here are dependencies of the packages 525 

used in the RCP. More information about such dependencies can be found in the tool 526 

documentation.  527 

This pipeline has been run on short-read RNA-seq data in the GeneLab database 528 

(https://genelab-data.ndc.nasa.gov/genelab/projects) and is applied to new submissions to the 529 

database. Any updates to the software used in the pipeline will be noted in the Github repository 530 

GeneLab_Data_Processing (https://github.com/nasa/GeneLab_Data_Processing). 531 

 Processed RNAseq data from GLDS-168 and GLDS-245 select samples were used to 532 

provide an example of the downstream analyses that can be done using data processed with the 533 

consensus pipeline presented here. Normalized counts and ERCC-normalized counts from the 534 

following GLDS-168 and GLDS-245 samples were used to generate the PCA plots shown in 535 

Figure 6A & 6B and Supplemental Figure 1A & 1B, respectively. Samples from GLDS-168 and 536 

GLDS-245 that were used in this study are listed in Supplemental Table 5 [Table S5]. Differential 537 

gene expression (DGE) data from FLT versus GC samples using (non-ERCC) normalized counts 538 
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and ERCC-normalized counts data for each respective dataset were used to generate the heatmaps 539 

shown in Figure 6C & 6D and Supplemental Figure 1C & 1D, respectively. DGE data were filtered 540 

using an adjusted p value cutoff of < 0.05 and |log2FC| cutoff of > 1. The gene expression data 541 

were then sorted based on adjusted p values and the top 30 most differentially expressed and 542 

annotated genes were used to generate heatmaps with ggplot2 version 3.3.2 (Wickham, Navarro, 543 

and Pedersen 2016). Note that for visualization purposes, sample names were shortened. 544 

Pairwise gene set enrichment analysis (GSEA) was performed on the (non-ERCC) 545 

normalized counts (Table 3) and ERCC-normalized counts [Table S6] from select samples in 546 

GLDS-168 and GLDS-245 using the C5: Gene Ontology (GO) gene set (MSigDB v7.2) as 547 

described (Subramanian et al. 2005). All comparisons were performed using the phenotype 548 

permutation. The ranked lists of genes were defined by the signal-to-noise metric and the statistical 549 

significance were determined by 1000 permutations of the gene set. FDR <= 0.25 were considered 550 

significant for comparisons according to the authors’ recommendation. 551 

The data used to generate all PCA plots, heatmaps, and GSEA shown are provided on 552 

Mendeley (http://dx.doi.org/10.17632/fv3kd6h7k4.1). 553 
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Figure and Scheme Legends 572 

Figure 1: GeneLab RNA-seq Consensus Pipeline (RCP). A: The three broad steps of the RCP. 573 

The RCP handles: 1) Data preprocessing to trim sequencing adapters and to provide quality control 574 

metrics; 2) Data processing to map reads to the reference genome and quantify the number of read 575 

counts per gene; and 3) Differential gene expression calculation, which will provide a list of 576 

differentially expressed genes that can be sorted by adjusted p-value and log fold-change. B: The 577 

full RCP annotated with tools, input files, and output files. 578 

 579 

Figure 2: Data preprocessing (pipeline step 1): Quality control and trimming. A: Data 580 

Preprocessing pipeline. FastQ files from Illumina base-calling software are quality checked using 581 

FastQC and MultiQC. Data is then trimmed using TrimGalore and are re-checked for quality; B: 582 

Flags used for FastQC program; C: Flags used for MultiQC program; D: Flags used for 583 

TrimGalore program; trimmed reads (*fastq.gz) are then used as input data for FastQC (B) 584 

followed by MultiQC (C) to generate trimmed read quality metrics. Tool versions used to process 585 

each dataset are included in the RNA-seq processing protocol in the GLDS Repository. 586 

 587 

Figure 3: Data processing (pipeline step 2A): Read mapping. A: Data processing pipeline. 588 

Trimmed reads are mapped to their reference genome and transcriptome with STAR. Gene counts 589 

are then quantified with RSEM; B: Flags used for generating the indexed STAR reference files; 590 

C: Flags used for mapping reads with STAR. Tool versions used to process each dataset are 591 

included in the RNA-seq processing protocol in the GLDS Repository. 592 

 593 
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Figure 4: Data processing (pipeline step 2B): Gene quantification. A: Data processing 594 

pipeline. Mapping results from STAR are quantified by RSEM; B: Parameters for RSEM indexed 595 

reference files generation; C: Parameters for quantifying gene and isoform counts with RSEM. 596 

Tool versions used to process each dataset are included in the RNA-seq processing protocol in 597 

the GLDS Repository. 598 

 599 

Figure 5: Differential gene expression calculation (pipeline step 3). A: Data processing 600 

pipeline. The R program DESeq2 is run in order to determine which genes are differentially 601 

expressed between experimental conditions using gene count files from RSEM. B: Output files 602 

generated. The table columns distinguish which script produces each output. The columns 603 

distinguish how those output files are used. 604 

 605 

Figure 6. Global and differential gene expression in spaceflight versus ground control liver 606 

samples from GeneLab datasets. A, B: Principal component analysis of global gene expression 607 

in spaceflight (FLT) and respective ground control (GC) liver samples from the A) Rodent 608 

Research 1 (RR-1) NASA Validation mission (GLDS-168) and B) RR-6 ISS-terminal mission 609 

(GLDS-245). Plots were generated using data in the normalized counts tables for each respective 610 

dataset on the NASA GeneLab Data Repository. C, D: Heatmaps showing the top 30 differentially 611 

expressed genes in spaceflight (FLT) versus ground control (GC) liver samples from the C) Rodent 612 

Research 1 (RR-1) NASA Validation mission (GLDS-168) and D) RR-6 ISS-terminal mission 613 

(GLDS-245). Heatmaps were generated using data in the differential expression tables for each 614 

respective dataset on the NASA GeneLab Data Repository and are colored by relative expression. 615 

Adj. p-value < 0.05 and |log2FC| > 1. All samples included were derived from frozen carcasses 616 

post-mission and utilized the ribo-depletion library preparation method. 617 

 618 

Table 1. Differential gene expression output table - Annotations. Truncated version of the 619 

differential_expression.csv file provided as GeneLab processed data for GLDS-251. The first 7 620 

columns of the differential gene expression output table contain gene IDs and annotations (for 621 

remainder of columns, refer to Table 2). 622 

 623 
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Table 2. Differential gene expression output table - Statistics. Truncated version of the 624 

differential_expression.csv file provided as GeneLab processed data for GLDS-251. Following the 625 

7 columns of gene IDs and annotations (Table 1) are normalized gene expression data for each 626 

sample (Norm. expr. (sample A)) then results from all possible pairwise comparisons, including 627 

log2 fold change (Log2fc (comparison A)), p values (P.value (comparison A)), and adjusted p 628 

values (Adj.p.value (comparison A)) calculated from the Wald Tests. Next are the average gene 629 

expression (Mean (all samples)) and standard deviation (Stdev (all samples)) of all samples 630 

followed by the F-statistic p value generated from the likelihood ratio test (LRT.p.value), and the 631 

last set of columns are the average gene expressions (Group.Mean) and standard deviations 632 

(Group.Stdev) of samples within each group. 633 

 634 

Table 3. Comparison of gene ontology in spaceflight versus ground control liver samples 635 

from GeneLab datasets. The number of enriched gene ontology (GO) terms identified by Gene 636 

Set Enrichment Analysis (GSEA, phenotype permutation) was evaluated in spaceflight (FLT) 637 

versus ground control (GC) liver samples from the Rodent Research 1 (RR-1) NASA Validation 638 

mission (GLDS-168), and RR-6 ISS-terminal mission (GLDS-245). For GO terms, the number on 639 

the left corresponds to GO terms enriched in FLT samples and the number on the right corresponds 640 

to GO terms enriched in GC samples. These data were generated using the normalized counts for 641 

each respective dataset on the NASA GeneLab Data Repository. All samples included were 642 

derived from frozen carcasses post-mission and utilized the ribo-depletion library preparation 643 

method. GLDS-168, FLT n=5 and GC n=5; GLDS-245, FLT n=10 and GC n=10. p values and 644 

FDR values are indicated.  645 

 646 

 647 

  648 
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Figure 1: GeneLab RNA-seq Consensus Pipeline (RCP). A: The three broad steps of the RCP. The RCP
handles: 1) Data preprocessing to trim sequencing adapters and to provide quality control metrics; 2) Data
processing to map reads to the reference genome and quantify the number of read counts per gene; and 3)
Differential gene expression calculation, which will provide a list of differentially expressed genes that
can be sorted by adjusted p-value and log fold-change. B: The full RCP annotated with tools, input files,
and output files.
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Figure 2: Data preprocessing (pipeline step 1): Quality control and trimming. A: Data Preprocessing
pipeline. FastQ files from Illumina base-calling software are quality checked using FastQC and MultiQC.
Data is then trimmed using TrimGalore and are re-checked for quality; B: Flags used for FastQC program;
C: Flags used for MultiQC program; D: Flags used for TrimGalore program; trimmed reads (*fastq.gz)
are then used as input data for FastQC (B) followed by MultiQC (C) to generate trimmed read quality
metrics. Tool versions used to process each dataset are included in the RNA-seq processing protocol in the
GLDS Repository.

B FastQC
Parameters fastqc -o /path/to/output/directory \

-t number_of_threads \
/path/to/input/files

Input data files fastq.gz
Output data files fastqc.html (FastQC report) 

fastqc.zip (FastQC raw data)

C MultiQC
Parameters multiqc -o /path/to/output/directory \

/path/to/fastqc/output/files
Input data files fastqc.html (FastQC report) 

fastqc.zip (FastQC raw data)
Output data files multiqc_report.html (multiqc report)

multiqc_data (directory containing multiqc raw data)

D TrimGalore
Parameters trim_galore --gzip \

--path_to_cutadapt /path/to/cutadapt \
--phred33 \
--illumina \ # if adapters are not illumina, replace with adapters used
--output_dir /path/to/TrimGalore/output/directory \
--paired \ # only for PE studies
/path/to/forward/reads /path/to/reverse/reads
# if SE, replace the last line with only /path/to/forward/reads

Input data files *fastq.gz (raw reads)

Output data files *fastq.gz (trimmed reads) 
*trimming_report.txt (trimming report) 

FastQC

Raw FastQ Files

MultiQC

TrimGalore Trimmed FastQ Files

FastQC

MultiQC

Quality Report Quality Report

pipeline step 2

Step 1: Data Preprocessing



A

Figure 3: Data processing (pipeline step 2A): Read mapping. A: Data processing pipeline. Trimmed
reads are mapped to their reference genome and transcriptome with STAR. Gene counts are then
quantified with RSEM; B: Flags used for generating the indexed STAR reference files; C: Flags used for
mapping reads with STAR. Tool versions used to process each dataset are included in the RNA-seq
processing protocol in the GLDS Repository.
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Figure 4: Data processing (pipeline step 2B): Gene quantification. A: Data processing pipeline.
Mapping results from STAR are quantified by RSEM; B: Parameters for RSEM indexed reference files
generation; C: Parameters for quantifying gene and isoform counts with RSEM. Tool versions used to
process each dataset are included in the RNA-seq processing protocol in the GLDS Repository.
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Parameters rsem-prepare-reference --gtf /path/to/annotation/gtf/file \

/path/to/genome/fasta/file \
/path/to/RSEM/genome/directory/RSEM_ref_prefix
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.gtf (genome annotation) 
Note that for analyzing samples with ERCC spike-in, the genome FASTA and 
GTF files should have the ERCC FASTA and GTF files appended to them.
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RSEM_ref_prefix.chrlist
RSEM_ref_prefix.grp
RSEM_ref_prefix.idx.fa
RSEM_ref_prefix.n2g.idx.fa
RSEM_ref_prefix.seq
RSEM_ref_prefix.ti
RSEM_ref_prefix.transcripts.fa

RSEM Calculate Expression
Parameters rsem-calculate-expression --num-threads NumberOfThreads \

--alignments \
--bam \
--paired-end \ # only for PE studies
--seed 12345 \
--estimate-rspd \
--no-bam-output \
--strandedness reverse \ # For Illumina TruSeq stranded protocols, reads are derived 

from the reverse strand
/path/to/*Aligned.toTranscriptome.out.bam \
/path/to/RSEM/genome/directory/RSEM_ref_prefix \
/path/to/RSEM/output/directory

Input data files *Aligned.toTranscriptome.out.bam
RSEM indexed reference

Output data files *genes.results (counts per gene)
*isoforms.results (counts per isoform)
*stat (directory containing the following stats files)

*cnt
*model
*theta

RSEM: 
Calculate Expression

Gene Count Files Isoform Count Files

RSEM: Prepare Reference

Step 2B: Read Quantification

B

A

C

pipeline step 3
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Figure 5: Differential gene expression calculation (pipeline step 3). A: Data processing pipeline. The R
program DESeq2 is run in order to determine which genes are differentially expressed between
experimental conditions using gene count files from RSEM. B: Output files generated. The table columns
distinguish which script produces each output. The columns distinguish how those output files are used.

Metadata File

Organisms File
DESeq2

Normalized Count Matrix Table with differentially expressed 
genes (w/o ERCC data)

Table with differentially expressed 
genes (w/ ERCC data)

Step 3: Calculate Differential Gene Expression

B Output Type Output File Name
(GeneLab_DGE_noERCC.R

and 
GeneLab_DGE_wERCC.R)

Output File Name 
(GeneLab_DGE_wERCC.R only)

Available with RNA-seq 
processed data in the 

GLDS Repository
(*)

Unnormalized_Counts.csv

Normalized_Counts.csv

contrasts.csv

differential_expression.csv

ERCCnorm_contrasts.csv

ERCC_Normalized_Counts.csv

ERCCnorm_differential_expression.csv

Used to generate 
interactive plots from 

RNA-seq processed data 
in the GLDS 

visualization portal
(**)

visualization_output_table.csv

visualization_PCA_table.csv

visualization_output_table_ERCCnorm.csv

visualization_PCA_table_ERCCnorm.csv

Used for internal QC 
and/or V&V

(#)
SampleTable.csv

ERCC_rawCounts_unfiltered.csv

ERCC_rawCounts_filtered.csv
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Figure 6. Global and differential gene expression in spaceflight versus ground control liver samples
from GeneLab datasets. A, B: Principal component analysis of global gene expression in spaceflight (FLT)
and respective ground control (GC) liver samples from the A) Rodent Research 1 (RR-1) NASA Validation
mission (GLDS-168) and B) RR-6 ISS-terminal mission (GLDS-245). Plots were generated using data in
the normalized counts tables for each respective dataset on the NASA GeneLab Data Repository. C, D:
Heatmaps showing the top 30 differentially expressed genes in spaceflight (FLT) versus ground control
(GC) liver samples from the C) Rodent Research 1 (RR-1) NASA Validation mission (GLDS-168) and D)
RR-6 ISS-terminal mission (GLDS-245). Heatmaps were generated using data in the differential expression
tables for each respective dataset on the NASA GeneLab Data Repository and is colored by relative
expression. Adj. p-value < 0.05 and |log2FC| > 1. All samples included were derived from frozen carcasses
post-mission and utilized the ribo-depletion library preparation method.



TAIR SYMBOL GENENAME REFSEQ ENTREZID STRING_id GOSLIM_IDS

AT1G01010 ANAC001 NA NM_099983 839580 3702.AT1G01010.1 NA

AT1G01020 ARV1 NA NM_001035846 839569 3702.AT1G01020.1
GO:0005622, 
GO:0005737, …

AT1G01030 NGA3 NA NM_001331244 839321 3702.AT1G01030.1 NA

AT1G01040 ASU1
Encodes a Dicer 
homolog... NM_001197952 839574 3702.AT1G01040.2 NA

Table 1. Differential gene expression output table - Annotations. Truncated version of the
differential_expression.csv file provided as GeneLab processed data for GLDS-251. The first 7
columns of the differential gene expression output table contain gene IDs and annotations (for
remainder of columns, refer to Table 2).



Norm. expr. 
(sample A)

Log2fc 
(comparison A)

P.value
(comparison A)

Adj.p.value 
(comparison A)

Mean 
(all samples)

Stdev
(all samples)

LRT 
p.value

Mean 
(group A)

Stdev
(group A)

263.864 -0.078 0.648 0.848 198.735 31.756 0.484 225.550 36.759

200.493 0.341 0.033 0.198 147.061 19.197 0.740 174.839 24.073

19.040 0.691 0.137 NA 11.035 3.121 NA 15.706 2.889

644.811 0.126 0.366 0.655 669.586 68.327 1.000 688.123 76.969

Table 2. Differential gene expression output table - Statistics. Truncated version of the
differential_expression.csv file provided as GeneLab processed data for GLDS-251. Following the 7
columns of gene IDs and annotations (Table 1) are normalized gene expression data for each sample
(Norm. expr. (sample A)) then results from all possible pairwise comparisons, including log2 fold
change (Log2fc (comparison A)), p values (P.value (comparison A)), and adjusted p values
(Adj.p.value (comparison A)) calculated from the Wald Tests. Next are the average gene expression
(Mean (all samples)) and standard deviation (Stdev (all samples)) of all samples followed by the F-
statistic p value generated from the likelihood ratio test (LRT.p.value), and the last set of columns are the
average gene expressions (Group.Mean) and standard deviations (Group.Stdev) of samples within each
group.



Table 3. Comparison of gene ontology in spaceflight versus ground control liver samples
from GeneLab datasets. The number of enriched gene ontology (GO) terms identified by Gene
Set Enrichment Analysis (GSEA, phenotype permutation) was evaluated in spaceflight (FLT)
versus ground control (GC) liver samples from the Rodent Research 1 (RR-1) NASA Validation
mission (GLDS-168), and RR-6 ISS-terminal mission (GLDS-245). For GO terms, the number
on the left corresponds to GO terms enriched in FLT samples and the number on the right
corresponds to GO terms enriched in GC samples. These data were generated using the
normalized counts for each respective dataset on the NASA GeneLab Data Repository. All
samples included were derived from frozen carcasses post-mission and utilized the ribo-
depletion library preparation method. GLDS-168, FLT n=5 and GC n=5; GLDS-245, FLT n=10
and GC n=10. p values and FDR values are indicated.

GeneLab Dataset # Enriched GO terms
(NOM p<0.01)

# Enriched GO terms
(NOM p<0.01 & 

FDR<0.5)

# Enriched GO terms
(NOM p<0.01 & 

FDR<0.25)

GLDS-168 71, 135 0, 132 0, 0

GLDS-245 21, 24 2, 6 1, 0


