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Supplementary Figure 1. Interactions between SNP genotypes and exposomic 

variables (gxe interactions) contribute to phenotypic variance but not phenotypic 

prediction accuracy. σgxe
2  denotes the phenotypic variance explained by gxe 

interactions. Prediction accuracy was computed using the Pearson’s correlation 

coefficient between the observed and the predicted for models with and without a 

random term for phenotypic effects of gxe interaction, denoted as y = g+e+ε and y = 

g+e+gxe+ε, respectively. g = phenotypic effects of the genome; e = phenotypic effects 

of the exposome; ε = residuals. Prediction accuracy improvement (i.e., y-axis) was 

derived by subtracting the prediction accuracy of the model y = g+e+ε from that of the 

model y = g+e+gxe+ε. Least squares lines with 95% confidence band are based on a 

linear model that regressed prediction accuracy improvements on estimates of 

variance explained by gxe interactions. The solid line is based on all traits, and the 

dashed line is based on traits without years of education. The slope of the solid line is 

statically different from zero (t(7)=0.02), but the slope of the dashed line is not 

(t(6)=0.78). 
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Supplementary Figure 2. Simulation results showing that despite the presence of geniune gxe interaction effects, little phenotypic 

prediction accuracy can be gained from acocunting for these interactions. 
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Supplementary Figure 3. Additional sample size required for the model y = g + ε to 

achieve the same level of prediction accuracy as y = g + e + ε (blue) and y = g + e + 

exe + ε (red). Sample size is expressed relative to that of the training set for each trait. 

Each solid curve represents the projected prediction accuracy as a function of sample 

size for the model y = g + ε using established theories (ref. Hong’s Plos). Each green 

dot represents the observed prediction accuracy by y = g + ε at the given sample size. 

Dotted curves are prediction accuracies adjusted for the difference between the 

theoretical prediction accuracy and observed prediction accuracy, noting that the 

difference is minimal for all traits such that most dotted curves are obscured by the 

solid curve. The y-coordinates of the blue and red dots correspond to the observed 

prediction accuracies for models y = g + e + ε and y = g + e + exe + ε, respectively. 

The x-coordinates of the blue and red dots correspond to the projected sample sizes 

required for y = g + ε to achieve the same level of prediction accuracy as y = g + e + ε 

and y = g + e + exe + ε. 
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Supplementary Figure 4. Prediction accuracies derived from theories agree with prediction accuracies based on data. Expected 

prediction accuracies are based on existing theories [ref.]. Observed prediction accuracies are based on results from 5-fold cross 

validations. Panel a. prediction accuracy for the model y = g + ε. Panel b. prediction accuracy for the model y = e + ε. Panel c. 

prediction accuracy for the model y = g + e + ε. 
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Supplementary Table 1. Variance and covariance estimates from model y = g + e + 

ε, where cov(g,e) is a free parameter for estimation. 

Trait 
var(g) var(e) cov(g,e) 

est. s.e. est. s.e. est. s.e. 

bmi 1.6E-01 8.9E-03 5.2E-02 1.4E-02 2.9E-03 3.5E-02 

height 5.0E-01 1.2E-02 1.5E-02 4.2E-03 3.5E-02 2.0E-02 

sitheight 3.3E-01 1.0E-02 7.9E-03 2.3E-03 1.8E-02 1.4E-02 

heelbmd 2.5E-01 1.8E-02 9.7E-03 3.0E-03 -1.2E-02 2.0E-02 

weight 2.0E-01 9.6E-03 4.4E-02 1.2E-02 2.1E-02 3.2E-02 

fluidiq 2.0E-01 2.1E-02 2.1E-02 5.9E-03 2.9E-02 3.0E-02 

edu 8.9E-02 9.8E-03 4.6E-02 1.3E-02 -6.9E-02 3.2E-02 

waist 1.5E-01 9.6E-03 6.6E-02 1.8E-02 -1.7E-02 4.0E-02 

hip 1.6E-01 8.9E-03 3.6E-02 9.8E-03 2.3E-02 2.8E-02 

wsthipr 1.3E-01 1.0E-02 5.3E-02 1.4E-02 -1.9E-02 3.4E-02 

diapres 1.6E-01 1.1E-02 1.6E-02 4.4E-03 -6.0E-04 1.9E-02 
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Supplementary Table 2. Breakdown of phenotypic variance by the model y = g + e + exe + gxe + ε. 

Trait 

σg
2  σe

2  σexe
2   σgxe

2  

est se  est se  est se  est se 

bmi 1.93E-01 1.06E-02  7.25E-02 1.82E-02  1.88E-02 2.10E-03  4.52E-02 1.05E-02 
height 5.18E-01 1.08E-02   1.73E-02 4.70E-03   4.00E-04 7.00E-04   2.21E-02 9.60E-03 

sitheight 3.92E-01 1.10E-02  9.60E-03 2.70E-03  3.00E-04 8.00E-04  3.03E-02 1.03E-02 
heelbmd 3.10E-01 2.17E-02   1.21E-02 3.70E-03   2.50E-03 1.90E-03   3.53E-02 1.72E-02 

weight 2.37E-01 1.10E-02  5.93E-02 1.52E-02  1.60E-02 1.90E-03  3.68E-02 1.04E-02 
fluidiq 2.05E-01 2.04E-02   2.21E-02 6.30E-03   1.14E-02 2.40E-03   1.23E-02 1.59E-02 

edu 7.79E-02 9.30E-03  4.75E-02 1.24E-02  1.15E-02 1.60E-03  9.20E-02 1.16E-02 
waist 1.59E-01 1.03E-02   8.47E-02 2.10E-02   1.75E-02 2.00E-03   1.35E-02 9.90E-03 

hip 1.97E-01 1.06E-02  5.01E-02 1.30E-02  1.28E-02 1.70E-03  -6.60E-03 9.90E-03 
wsthipr 1.36E-01 1.01E-02   6.08E-02 1.55E-02   9.30E-03 1.40E-03   -9.90E-03 9.90E-03 
diapres 1.64E-01 1.09E-02   1.66E-02 4.60E-03   1.00E-03 9.00E-04   1.98E-02 1.11E-02 

Note: σg
2 = phenotypic variance due to genetic effects; σe

2 = phenotypic variance due to additive effects of exposomic variables; σexe
2  = phenotypic 

variance due to interactions between exposomic variables, and σgxe
2  = phenotypic variance due to interactions between genotypes and exposomic 

variables. 
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Supplementary Table 3. P-values for E-C interactions estimated from single-covariate reaction normal models. 

Trait age sex pc1 pc2 townsend alc smk2 met_all 
energy 
intake 

bmi 1.31E-02 1.34E-02 4.00E-01 8.91E-02 2.43E-05 4.33E-22 1.65E-32 5.59E-21 6.80E-08 

diapres 3.37E-12 8.31E-02 5.76E-01 2.64E-01 1.60E-01 7.25E-01 2.56E-01 7.96E-02 4.91E-01 

edu 2.67E-10 2.37E-02 3.61E-01 5.57E-01 1.12E-03 2.01E-06 1.74E-04 9.78E-03 3.70E-05 

fluidiq 3.98E-01 7.77E-01 6.30E-01 9.42E-01 8.95E-02 2.92E-01 9.30E-01 5.62E-01 1.50E-05 

heelbmd 1.04E-03 2.55E-02 9.53E-02 2.46E-01 9.36E-01 1.14E-02 1.78E-01 3.70E-03 1.10E-01 

height 4.88E-01 5.38E-02 6.88E-01 5.51E-01 1.36E-04 4.88E-01 1.33E-01 1.68E-02 9.23E-02 

hip 9.92E-03 1.88E-02 9.44E-01 4.34E-01 8.89E-04 5.80E-13 7.00E-17 5.74E-24 9.92E-06 

sitheight 3.12E-01 3.26E-01 8.03E-01 7.80E-01 1.17E-03 5.77E-01 1 2.31E-02 1.37E-02 

waist 1.49E-03 1.69E-02 5.35E-01 5.97E-01 2.52E-03 1.81E-15 3.87E-23 9.25E-37 3.63E-08 

weight 1.24E-03 1.73E-02 2.08E-01 2.68E-02 1.56E-04 3.31E-16 2.44E-26 1.26E-23 1.89E-07 

wsthipr 5.66E-02 1.24E-02 5.91E-01 4.85E-01 1.18E-01 1.57E-05 7.05E-09 1.70E-20 2.68E-05 

Note: 1. univariate reaction norm model: y = g + e0 + e1*c + ε, where c = covariate (e.g., age). 2. p-values are based on likelihood 

ratio tests (df=1) that compare the univariate E-C interaction model with a null model (y = g + e0 + ε); 3. Highlighted in orange = 

signals remained after a familywise Bonferroni correction, where a family is defined as 9 univariate analyses for a given trait. Alpha 

level corrected for multiple testing = 0.05/9 = 5.56E-3. 
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Supplementary Table 4. The correlation structure of exposomic variables affects 

variance component estimates from the model y = e + exe + ε. 

model 
parameter 

 true 
value 

 uncor. exp.  cor.exp.  pc 

  ave. s.d.  ave. s.d.  ave. s.d. 

var(e)  0.4  0.40 0.04  0.43 0.12  0.40 0.03 

var(exe)  0.1  0.10 0.02  0.10 0.04  0.10 0.02 

var(ε)   0.5   0.50 0.01   0.50 4.5E-03   0.50 0.01 
Note. uncor. exp.: estimation based on 10 orthogonal exposomic variables simulated from a multivariate 
normal distribution; cor.exp.: estimation based on 10 correlated exposomic variables simulated from a 
multivariate normal distribution; pc: estimation based on all principal components of the 10 correlated 
exposomic variable. 
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Supplementary Table 5. Biased estimation of the model y = e + exe + ε can be 

corrected by removing outliers of exposomic variables and performing a principal 

component analysis on exposomic variables. 

model 
parameter 

 true 
value 

 before  pc  qc  pc + qc 

  ave. s.d.  ave. s.d.  ave. s.d.  ave. s.d. 

var(e)  0.4  0.49 0.22  0.42 0.06  0.48 0.23  0.40 0.04 

var(exe)  0.1  0.08 0.04  0.09 0.02  0.10 0.04  0.10 0.01 

var(ε)   0.5   0.50 4.9E-03   0.50 0.01   0.50 0.01   0.50 0.01 
Note. before: estimation based on ten exposomic variables from the UK biobank, which are correlated 
and have skewed distributions; pc: estimation based on all principal components of the exposomic 
variables; qc: estimation based on quality-controlled exposomic variables, of which values outside +/3 
sd from the mean are removed; pc + qc: estimation based on all principal components of the quality 
controlled exposomic variables. 
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Supplementary Table 6. Exposomic variables used to construct the kernel matrix for 
estimating exposomic effects on phenotypes.  

Exposomic Variable Field ID 

Pack years adult smoking as proportion of life span exposed to smoking 20162 

Alcohol intake (glass & pint/week)  multiple fields 

MET minutes/week for walking 22037 

MET minutes/week for moderate activity 22038 

MET minutes/week for vigorous activity 22039 

estimated total food weight 100001 

estimated total energy intake 100002 

estimated protein intake 100003 

estimated total fat intake 100004 

estimated carbohydrate intake 100005 

estimated saturated fat intake 100006 

estimated polyunsaturated fat intake 100007 

estimated total sugars intake 100008 

estimated dietary fibre intake 100009 

estimated iron intake 100011 

estimated Vitamin B6 intake 100012 

estimated Vitamin B12 intake 100013 

estimated folate intake 100014 

estimated vitamin C intake 100015 

estimated potassium intake 100016 

estimated magnesium intake 100017 

estimated retinol intake 100018 

estimated carotene intake 100019 

estimated vitamin D intake 100021 

estimated alcohol intake 100022 

estimated starch intake 100023 

estimated calcium intake 100024 

estimated Vitamin E intake 100025 
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Supplementary Table 7. Variance estimates of exc interaction effects from multi-

covariates reaction norm models. 

Trait  Covariate 
var(exc) 

estimate s.e. 

bmi townsend 8.0E-04 4.0E-04 

bmi alc 9.0E-04 4.0E-04 

bmi smk2 3.0E-03 1.0E-03 

bmi met_all 1.9E-03 6.0E-04 

bmi energy 1.0E-03 4.0E-04 

diapres age 2.0E-03 7.0E-04 

edu age 2.1E-03 7.0E-04 

edu townsend 7.0E-04 4.0E-04 

edu alc 7.0E-04 4.0E-04 

edu smk2 5.0E-04 3.0E-04 

edu energy 8.0E-04 4.0E-04 

fluidiq energy 1.7E-03 8.0E-04 

heelbmd age 1.4E-03 7.0E-04 

heelbmd met_all 1.4E-03 7.0E-04 

height townsend 9.0E-04 4.0E-04 

hip townsend 6.0E-04 3.0E-04 

hip alc 1.0E-03 5.0E-04 

hip smk2 1.8E-03 7.0E-04 

hip met_all 2.0E-03 7.0E-04 

hip energy 9.0E-04 4.0E-04 

sitheight townsend 7.0E-04 4.0E-04 

waist age 7.0E-04 4.0E-04 

waist townsend 5.0E-04 3.0E-04 

waist alc 1.0E-03 5.0E-04 

waist smk2 2.7E-03 9.0E-04 

waist met_all 3.1E-03 1.0E-03 

waist energy 1.2E-03 5.0E-04 

weight age 7.0E-04 3.0E-04 

weight townsend 7.0E-04 3.0E-04 

weight alc 8.0E-04 4.0E-04 

weight smk2 2.5E-03 9.0E-04 

weight met_all 2.1E-03 7.0E-04 

weight energy 1.0E-03 4.0E-04 

wsthipr alc 5.0E-04 3.0E-04 

wsthipr smk2 1.2E-03 5.0E-04 

wsthipr met_all 1.9E-03 7.0E-04 

wsthipr energy 1.0E-03 5.0E-04 

  



12 

Supplementary Table 8. Simulation results based on 10 real correlated exposomic 

variables 

model 
parameter 

 true 
value 

 before  pc1  pc2 

  ave sd  ave sd  ave sd 

var(g)  0.3  0.28 0.08  0.27 0.09  0.28 0.08 

var(e)  0.3  0.35 0.16  0.30 0.02  0.30 0.02 

var(gxe)  0.3  0.27 0.11  0.30 0.17  0.27 0.11 

var(ε)   0.1   0.13 0.11   0.12 0.15   0.13 0.11 
Note: before: estimation based on the original exposomic variables; pc1: the erm is constructed using 
the principal components (PCs) of the exposomic variables, and the kernel matrix for gxe is based on 
the hadamard product of the grm and the erm constructed using PCs of the exposomic variables; pc2: 
the erm is constructed using the principal components of the exposomic variables, and the kernel matrix 
for gxe is based on the hadamard product of the grm and the erm constructed using original exposomic 
variables. 
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Supplementary Table 9. Simulation results based on 10 real correlated exposomic 

variables under a different parameter setting from. 

model 
parameter 

 true 
value 

 before  pc1  pc2 

  ave sd  ave sd  ave sd 

var(g)  0.3  0.29 0.06  0.28 0.06  0.29 0.06 

var(e)  0.3  0.35 0.15  0.30 0.01  0.30 0.01 

var(gxe)  0.1  0.09 0.07  0.11 0.11  0.09 0.07 

var(ε)   0.3   0.31 0.07   0.29 0.11   0.31 0.07 

 
 Note: before: estimation based on the original exposomic variables; pc1: the erm is constructed using 

the principal components (PCs) of the exposomic variables, and the kernel matrix for gxe is based on 

the hadamard product of the grm and the erm constructed using PCs of the exposomic variables; pc2: 

the erm is constructed using the principal components of the exposomic variables, and the kernel matrix 

for gxe is based on the hadamard product of the grm and the erm constructed using original exposomic 

variables. 
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Supplementary Table 10. Simulation results based on 10 correlated exposomic 

variables that are simulated from a multivariate normal distribution. 

model 
parameter 

 true 
value 

 before  pc1  pc2 

  ave sd  ave sd  ave sd 

var(g)  0.3  0.30 0.05  0.30 0.05  0.30 0.05 

var(e)  0.3  0.32 0.09  0.30 0.01  0.30 0.01 

var(gxe)  0.3  0.28 0.06  0.30 0.05  0.28 0.06 

var(ε)   0.1   0.12 0.07   0.10 0.06   0.12 0.07 
Note: before: estimation based on the original exposomic variables; pc1: the erm is constructed using 

the principal components (PCs) of the exposomic variables, and the kernel matrix for gxe is based on 

the hadamard product of the grm and the erm constructed using PCs of the exposomic variables; pc2: 

the erm is constructed using the principal components of the exposomic variables, and the kernel matrix 

for gxe is based on the hadamard product of the grm and the erm constructed using original exposomic 

variables. 
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Supplementary Note 1 

Var(e) & var(exe) 
Using simulations, we identified two conditions that can cause biased variance 

estimates of additive effects of exposomic variables and exe interactions, which are 

correlations between exposomic variables and skewed distributions of exposomic 

variables. To show the impact of the correlation structure of exposomic variables on 

variance estimates of exposomic effects, we simulated, for 5,000 individuals, a set of 

ten orthogonal exposomic variables and another set of ten correlated exposomic 

variables, each from a multivariate normal distribution. Based on each set of 

exposomic variables, we then simulated phenotypes using the model y = e + exe + ε 

under the parameter setting specified in Supplementary Table 4 (column ‘true value’). 

The simulation was repeated 100 times, resulting in 100 replicates, each with 

phenotypes for 5,000 individuals. For each replicate, we fitted the model y = e + exe 

+ ε and averaged variance component estimates across replicates. Results are 

summarised in Supplementary Table 4. When exposomic variables are orthogonal, all 

variance-component estimates are unbiased. By contrast, when exposomic variables 

are correlated, var(e) is over estimated, although the estimate of var(exe) is unbiased.  

To remedy the effect of correlated exposomic variables on var(e) estimate, we used 

all principal components (PCs) of the correlated exposomic variables to construct the 

kernel matrix for estimating var(e), and used all pair-wise interaction terms of these 

PCs to construct the kernel matrix for estimating var(exe). Importantly, while retaining 

all information of the original exposomic variables, the PCs are orthogonal to each 

other (Jolliffe, 1982). We find that variance estimation based on the PCs of the 

correlated exposomic variables are unbiased (last column of Supplementary Table 4). 

To show the impact of skewness of the distributions of exposomic variables on 

variance component estimation, we repeated the above simulations using 10 

exposomic variables from the UK biobank with skewed distributions. We also noted 

that these exposomic variables are correlated. As shown in Supplementary Table 5, 

estimation based on these exposomic variables is biased for both var(e) and var(exe). 

Using the PCs of these exposomic variables did not completely eliminate the bias, 

indicating that skewness of the distributions of exposomic variables affects variance 

estimation independently from the correlation structure of exposomic variables.  

As a remedy, we reduced the skewness by removing outliers outside 3 standard 

deviations from the mean. We find that after this quality control procedure the estimate 

of var(exe) became unbiased; but the estimate of var(e) remained biased. These 

results indicate that the estimation of var(e) is sensitive to the correlation structure of 

exposomic variables, while the estimation of var(exe) is sensitive to the skewness of 

the distributions of exposomic variables. When using all principal components of the 

skewness-corrected exposomoic variables, all variance estimates became unbiased. 

Taken together, to avoid biased variance estimation of exposomic effects, it is 

necessary to 1) conduct quality control on the exposomic variables where values 

outside 3 standard deviations from the mean should be removed; and 2) transform 

quality-controlled exposomic variables using a principal component analysis. 
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var(gxe) 
We also tested the effect of the correlation structure of exposomic variables on var(gxe) 

estimate. To do so, we simulated phenotypes based on ten correlated (but quality-

controlled) exposomic variables for 5,000 individuals using the model y = g + e + gxe 

+ ε under parameter settings specified in Supplementary Table 8. We repeated the 

simulation 100 times, resulting in 100 replicates. We fitted the model y = g + e + gxe 

+ ε to each replicate and averaged variance estimates cross replicates. Results are 

summarised in Supplementary Table 8. All variance components are biased when the 

estimation is based on the corelated exposomic variables. Using PCs of the correlated 

variables corrected the bias for var(e) and var(gxe) (see ‘pc1’ in Supplementary Table 

8). This observation holds for simulations under a different parameter setting (see 

Supplementary Table 9) and for simulations based on 10 correlated exposomic 

variables whose values were simulated from a multivariate normal distribution (see 

Supplementary Table 10). 
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Supplementary Note 2  

 

In the main text, we report for the real data that accounting for significant gxe 

interactions did not lead to phenotypic prediction accuracy improvements. We 

hypothesized that the power of phenotypic prediction based on gxe interactions is low. 

Here we investigate the power of gxe-based phenotypic prediction using simulations. 

Spefically, we examined, for a sample of 10,000 individuals, of which 80% serves as 

the training set and 20% as the target set, the extent to which varying effect size of 

gxe interactions can improve phenotypic prediction accuracy. To do so, we simulated 

phenotypes using the model y = g + e + gxe + ε with σgxe
2  set to 0.2, 0.05, and 0.025, 

respectively. Each setting has 100 replicates, and each replicate contains phenotypes 

of 10,000 individuals. We randomly divided each replicate into a training set (n=8,000) 

and a target set (n=2,000) and subsequently computed the phenotypic prediction 

accuracy of two estimation models, y = g + e + ε (i.e., null model) and y = g + e + gxe 

+ ε (i.e., full model) for each replicate. Supplementary Figure 2 presents the prediction 

accuracies of the two models by simulation setting (2a) and changes in prediction 

accuracy from the null model to the full model (2b). Despite the presence of geniune 

gxe interactions, little prediction accuracy is gained from accounting for these 

interactions, and this observation holds even under the setting with the largest gxe 

interactions (i.e., σgxe
2  = 0.2). This observation aligns with our results from real data 

analyses (Figure ) and indicates that the power of phenotypic predictions based on 

gxe interactions is low. 


