1 Subsidy Accessibility Drives Asymmetric Food Web Responses

- 2 Marie Gutgesell¹, Bailey C. McMeans², Matthew M. Guzzo¹, Valesca deGroot³, Aaron T. Fisk⁵,
- 3 Timothy B. Johnson⁴, Kevin S. McCann¹
- 4 Ecology

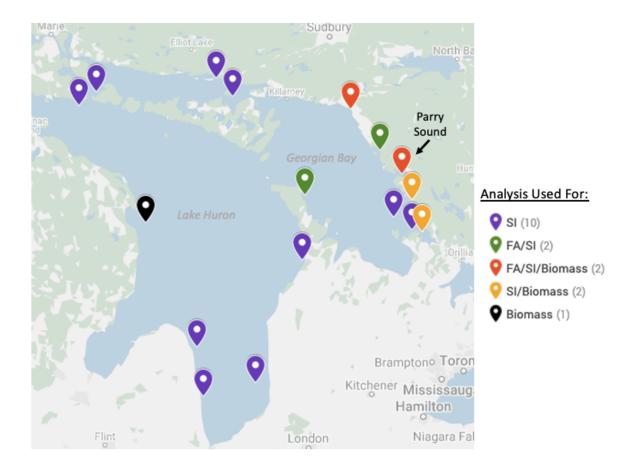
5 Appendix 1: Supplementary Tables & Figures

- 6 Table S1 Composition of feed pellets used by AquaCage Fisheries Inc. in 2016 and 2017. In
- 7 2016, only one size of feed was sampled.

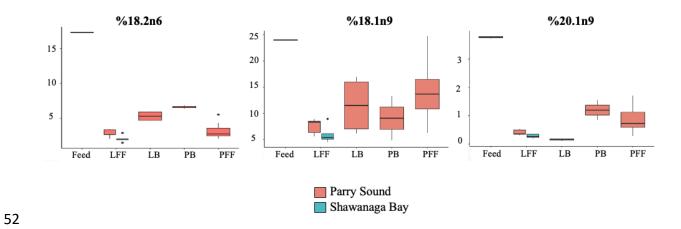
Year	Feed Size (mm)	Fish Size (g)	Protein (min)	Oil (min)	Moisture (max)	Fibre (max)	Ash (max)	Phos (max)	DE (MJ/KG)
2016	6	500-1000	46%	24%	8%	2%	10%	1%	19.5
2017	4	100-400	45%	28%	8.50%	1.50%	12%	NA	20.2
2017	6	400-1000	43%	31%	8.50%	1.50%	12%	NA	20.2
2017	7.5	1000+	39%	32%	8.50%	1.50%	12%	NA	20.2

Table S2. Proportion (%) of fatty acids (>1% in system) in feed in 2016 and 2017. Values for 2017 were calculated as an average of fatty acid % in all three feed sizes. Fatty Acid Type describes how fatty acids were characterized in our study: Dietary Fatty Acids (DFA); and Feed Indicator Fatty Acids (FIFA). The year following FIFA indicates which year fatty was a feed indicator. % FIFA are indicated in bold.

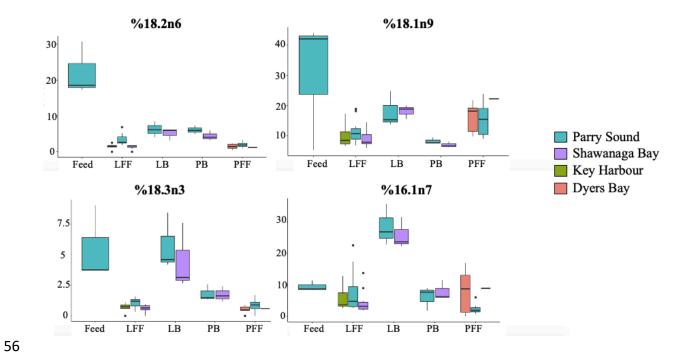
Fatty	Fatty Acid	2016	2017		
Acid	Туре	2010	18		
C14:0	EDFA	3.289	2.51867		
C16:0	EDFA	19.919	19.016		
C16:1n7	FIFA_2017	5.230	9.497		
C18:0	EDFA	4.587	5.818		
C18.1n9	FIFA_2016/7	23.993	30.430		
C:18:1n7	EDFA	2.073	unk		
C18.2n6	FIFA_2016/7	17.265	22.180		
C20.1n9	FIFA_2016	3.775	0.000		
C18:3n3	FIFA_2017	1.550	5.529		
C20:4n6	EDFA	0.558	0.247		
C20:5n3c	EDFA	3.705	2.384		
C22:5n3	EDFA	0.514	unk		
C22:6n3c	EDFA	3.645	0.216		


Table S3. Final temperature preferendum (FTP), thermal guild, and proportion (%) biomass of each species caught in 5 locations as part of the OMNRF 2017 Broad-scale Monitoring Program in Lake Huron. Values were extracted from UGLMU, 2018 Figure 4 (Key River); Fig. 7 (Moon River); Fig. 10 (Parry Sound); Fig 12 (Severn Sound); and Fig. 14 (South Bay). The Broadscale Fish Community Monitoring design used both large mesh and small mesh gillnets. The large mesh gillnets had eight panels (mesh sizes 38 mm to 127 mm stretched mesh) and a total length of 24.85 m. The small mesh gillnets had five panels (mesh sizes from 13 mm to 38 mm stretched mesh) with a total length of 12.5 m. Nets were set overnight and in pairs. Sites were selected using a depth-stratified randomized design using ArcGIS.

Species	FTP	Thermal	Key	Moon	Parry	Severn	South
Species	(°C)	Guild	River	River	Sound	Sound	Bay
Alewife	16.9	Cold	0.10	0.10	1.20	0.34	0.34
Black Crappie	23.4	Cool	0.26	0.10	-	0.68	-
Bluntnose Minnow	24.1	Cool	0.10	0.10	0.34	-	0.34
Blackchin Shiner	21.8	Cool	0.10	0.10	-	-	-
Blacknose Shiner		Cool	0.10	-	-	-	-
Bowfin	30.3	Warm	3.07	1.17	3.59	0.68	4.47
Brown Bullhead	26.2	Warm	6.14	7.49	2.39	2.38	3.44
Bluegill	30.2	Warm	-	-	-	0.34	-
Brook Stickleback	21.3	Cool	-	-	-	-	0.34
Burbot	13.2	Cold	1.02	6.79	-	1.02	5.84
Channel Catfish	27.3	Warm	0.26	1.40	-	-	-


Common Shiner	21.9	Cool	-	0.10	0.17	-	-
Chinook Salmon	13.8	Cold	-	-	-	3.40	-
Common Carp	27.7	Warm	-	-	2.56	3.40	3.09
Golden Shiner	21.8	Cool	0.10	0.10	-	-	-
Emerald Shiner	19.3	Cool	-	-	0.17	-	-
Johnny Darter	22.8	Cool	0.10	0.10	-	-	-
Lake Chub	27	Warm	0.26	0.10	-	-	-
Lake Herring,							
Cisco	12.4	Cold	0.26	0.10	2.91	0.34	1.72
Lake Trout	11.8	Cold	-	3.04	12.31	-	-
Lake Whitefish	12.7	Cold	-	-	2.22	0.34	16.49
Largemouth Bass	28.6	Warm	0.10	0.10	1.54	2.72	-
Longnose Gar	27.4	Warm	1.54	10.53	3.93	24.15	-
Logperch		Cool	0.10	-	-	-	-
Longnose Sucker	11.1	Cold	0.77	0.23	-	-	-
Mimic Shiner		Cool	-	0.10	-	0.34	0.34
Muskellunge	25.4	Warm	-	-	-	1.70	-
Northern Pike	20.7	Cool	20.98	21.30	9.74	7.82	-
Pumpkinseed	27.7	Warm	0.26	0.47	0.17	0.68	-
Rainbow Smelt	11.2	Cold	0.26	0.23	0.17	0.68	1.37
Rainbow Trout	15.5	Cold	-	-	0.85	-	-
Rock Bass	24.9	Cool	2.56	3.04	2.05	1.02	1.72
Round Goby	20.7	Cool	0.26	0.10	0.34	0.34	0.69

Smallmouth Bass	25	Warm	16.12	26.91	32.14	17.69	9.97
Spoonhead							
Sculpin	6	Cold	-	-	0.17	-	-
Spottail Shiner	16.6	Cold	0.10	-	0.17	0.34	-
Threespine							
Stickleback	12.5	Cold	0.10	-	-	-	-
Trout-perch	13.4	Cold	-	-	0.17	0.34	-
Walleye	22.5	Cool	20.98	13.57	8.38	11.90	2.06
White Sucker	23.4	Cool	14.84	-	8.03	2.72	12.71
White Perch	29.8	Warm	1.54	0.94	-	0.68	-
White Bass	27.3	Warm	-	0.23	-	-	-
Yellow Perch	17.6	Cool	7.68	1.40	4.27	13.95	35.40


31 Figure S1. Map of sampling locations used in manuscript. Colour of site indicates what analysis data collected was used in. (SI = Stable Isotope Analysis; FA = Fatty Acid Analysis; Biomass = 32 33 Biomass analysis using Broad-scale Monitoring Data). If sites were used for more than one analysis, all analysis used for are indicated by colour (e.g., data collected from Parry Sound was 34 35 used for stable isotope, fatty acid and biomass analysis). Parry Sound is where the net-pen 36 aquaculture facility is located and thus represents the experimental study site, all other sites are considered controls. 37 Figure S2. Comparison of the three % feed indicator fatty acids in net-pen feed to littoral forage 38 39 fish (LFF), littoral baselines (LB), pelagic baselines (PB) and pelagic forage fish (PFF) between 40 net-pen (Parry Sound) and control sites in 2016. Figure S3. Comparison of the four % feed indicator fatty acids in net-pen feed to littoral forage 41 fish (LFF), littoral baselines (LB), pelagic baselines (PB) and pelagic forage fish (PFF) between 42 net-pen (Parry Sound) and control sites in 2017. 43

46 Figure S1.

53 Figure S2.

57 Figure S3.