SUPPLEMENTAL INFORMATION

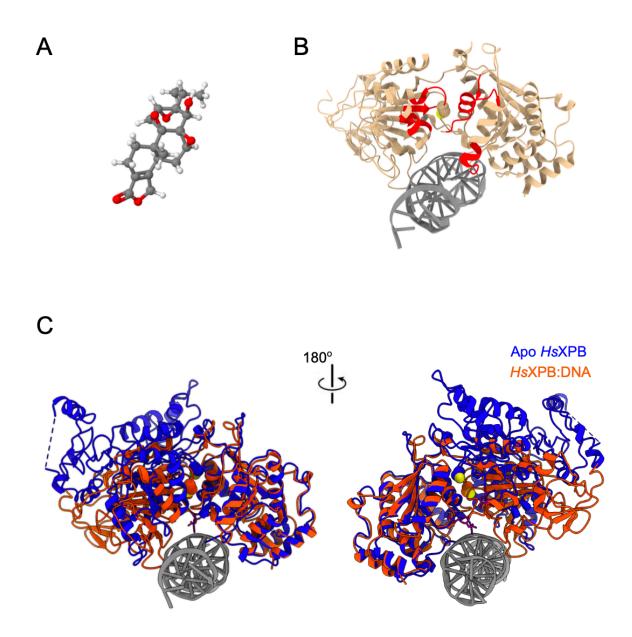
The role of XPB/Ssl2 dsDNA translocation processivity in transcription-start-site scanning.

Authors:

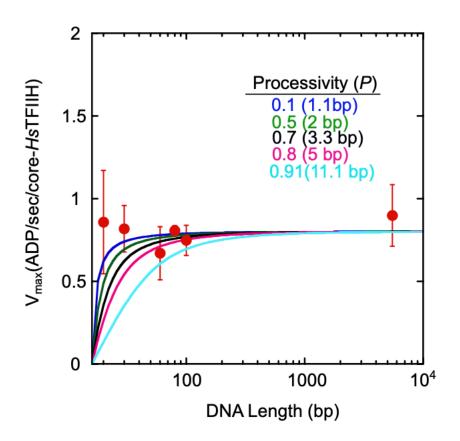
Eric J. Tomko¹, Olivia Luyties², Jenna K. Rimel², Chi-Lin Tsai⁴, Jill O. Fuss⁵, James Fishburn³, Steven Hahn³, Susan E. Tsutakawa⁵, Dylan J. Taatjes² and Eric A. Galburt^{*1}

* To whom correspondence should be addressed. Tel: (314)362-5201 Email: egalburt@wustl.edu

Affiliations:


¹ Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA

² Dept. of Biochemistry, University of Colorado, Boulder, CO 80303, USA.


³ Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA

⁴ Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA

⁵ Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA

Figure S1. Site of triptolide modification on XPB potentially disrupts ATP binding site and can be blocked by DNA binding. (A) Molecular structure of triptolide. **(B)** *Hs*XBP substructure bound to duplex DNA from the *Hs*PIC structure[17] (PDB: 5ivw). Residue C342 of XBP is shown in space fill and is the site of triptolide modification[26]. XBP structure in red are the conserved motifs found in DNA-stimulated ATPases that generally comprise the ATP binding site[28]. **(C)** Alignment of the *Hs*XBP substructure bound to duplex DNA from the *Hs*PIC structure[17] (PDB: 5ivw) with *Hs*XBP substructure from apo, core-*Hs*TFIIH structure[27] (PDB: 6o9m; blue) using Chimera[42]. Residue C342 is shown space filled and becomes less exposed in the DNA bound structure.

Figure S2. Estimating an upper limit on *Hs***TFIIH dsDNA translocation processivity.** A series of V_{max} length dependencies calculated from equation (1) using different processivities (P) are plotted along with the observed core-*Hs*TFIIH V_{max} values. The V_{max} length dependencies for P = 0.1 and 0.5 are within the error of all the observed V_{max} values, indicating both are consistent with the data. Thus, an upper limit on the translocation processivity is 0.5 (i.e. ~2 bp translocated on average per binding event).