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	 2	

Abstract 1	
 2	

The functional interpretation of GWAS remains challenging due to cell-type dependent influences 3	

of genetic variants.  4	

Here, we generated comprehensive maps of expression quantitative trait loci (eQTL) for 659 5	

microdissected human kidney samples and identified cell-type eQTLs by mapping interactions 6	

between cell type abundance and genotype. Separately, we generated single cell open chromatin 7	

maps (by snATAC-seq) for human kidney samples. We highlight critical enrichment of proximal 8	

tubules in kidney function and endothelial cells and distal tubule segments in blood pressure by 9	

partitioning heritability using stratified LD-score regression to integrate GWAS with scRNA-seq 10	

and snATAC-seq data. Bayesian colocalization analysis nominated more than 200 genes for 11	

kidney function and hypertension. Our study clarifies the mechanism of the most commonly used 12	

antihypertensive and renal protective drugs and identifies drug repurposing opportunities for 13	

kidney disease. 14	

 15	

One Sentence Summary:  We define causal cell types, genes and mechanism for kidney 16	

dysfunction.  17	

18	
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Main Text 1	

 2	

Chronic kidney disease (CKD) affects more than 800 million people worldwide (1). CKD causes 3	

toxic mineral, metabolite, salt, water accumulation (2), in addition to anemia, bone disease and 4	

hypertension leading to premature death (3). Therapeutic options for CKD have been limited. 5	

Guidelines mandate the use of agents blocking the renin-angiotensin-aldosterone-system (RAAS); 6	

such as angiotensin converting enzyme inhibitors (ACEi), and angiotensin receptor blockers 7	

(ARBs). Despite ACEi and ARBs were introduced more than 30 years ago, their mechanisms of 8	

action have not been fully clarified. As kidney disease is still responsible for 1 in 60 deaths 9	

worldwide, new therapeutics are desperately needed for CKD. Nelson et al. concluded, that 10	

pipeline drug targets with human genetic evidence of disease association are twice as likely to lead 11	

to approval (4), highlighting the critical importance of understanding disease genetics.   12	

 13	

Kidney function is highly heritable, with estimates of 30-50% (5). Large population-based genome 14	

wide association studies (GWAS) have identified around 300 loci with statistically significant 15	

reproducible association with kidney function (eGFR; estimated glomerular filtration rate) (5). 16	

Despite the remarkable success of genetic signal mapping in GWAS, the functional interpretation 17	

of GWAS remains challenging. First, it is unclear in which tissues and cell types these variants 18	

active, and how they disrupt specific biological networks to impact disease risk. Second, more than 19	

90% of the identified variants are located in the non-coding regions, complicating the precise 20	

identification of CKD risk target genes. Furthermore, extensive linkage disequilibrium (LD) in the 21	

human genome confounds efforts to pinpoint causal variants. 22	

 23	

A commonly used approach to map variants to causal genes utilizes expression quantitative trait 24	

loci (eQTLs) (6, 7). The Genotype-Tissue Expression (GTEx) project has been a highly valuable 25	

resource to catalogue eQTLs across multiple human tissues, including kidney cortex with a limited 26	

sample size (n=73) (6, 8). Our and other groups have generated bulk glomerular and tubule specific 27	

eQTL data for about 120 kidney samples. This dataset was able to prioritize disease-causing genes 28	

for close to 24 of the GWAS identified loci (7). As both GWAS and eQTL have significant 29	

limitations on defining causal variants due to the linkage disequilibrium (9), the integration of 30	

these datasets focused around causal gene (rather causal variant) identification (10, 11). Functional 31	
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genomics or epigenetics can provide an orthogonal information for GWAS interpretation by 1	

prioritizing likely causal variants (12, 13). Functionally important gene regulatory regions are 2	

mostly nucleosome-free and can be identified by transposase insertion (ATAC), DNAse 3	

hypersensitivity (14) and histone tail modifications (15). Datasets generated from whole human 4	

kidney tissue highlighted a modest enrichment of the GWAS signals in kidney specific enhancers 5	

(12, 13).  6	

 7	

Another critical limitation of the eQTL and open chromatin analysis has been the cell type 8	

heterogeneity of the kidney. Recent single cell RNA-seq (scRNA-seq) studies have highlighted at 9	

least 30 different cell types in the kidney (16, 17). Studies analyzing a variety of blood cells 10	

identified (often rare) single disease driving cell types that was hard to read out using bulk datasets 11	

(18). Few approaches have been developed to identify disease-causal cell types. For example, cell-12	

type-specific eQTLs have been generated using sorted (bulk) cell types (19, 20), an approach that 13	

is feasible for immune cells. It has been hard to generate cell-type specific eQTL data using 14	

scRNA-seq, as most current scRNA-seq methods suffer from uneven cell capture efficiency and 15	

low accuracy to define gene expression (16). Bulk tissue analysis coupled with computational 16	

cellular deconvolution have recently been developed for in silico estimation of cell type eQTLs, 17	

however, the accuracy of the computational methods has not been validated (21-25). Single cell 18	

epigenome studies, such as single-nucleus ATAC-seq (snATAC-seq), could provide potential 19	

insights into causal variants identification by overlapping GWAS variants with cell-type specific 20	

open chromatin regions (26-28).  21	

 22	

Here, we combined several orthogonal approaches to prioritize causal cell types, variants, and 23	

genes for complex kidney disease-associated phenotypes. First, we identified expression of 24	

quantitative trait loci for 659 kidney samples by bulk eQTL analysis. We developed cell fraction 25	

adjusted SNP-cell type interaction (eQTL(ci)) analysis using estimated cell fractions, using in 26	

silico deconvolution (29). Separately, we generated single nuclear ATAC-seq (snATAC-seq) maps 27	

for the human kidney and assessed enrichment of GWAS heritability in each cell type, obtained 28	

from scRNA-seq and snATAC-seq data, using stratified LD-score regression. Our study not only 29	

highlighted critical cell type convergence of kidney associated traits, but also nominated causal 30	
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variants, cell types and regulatory mechanisms for renal disease and defines mechanisms for 1	

commonly used antihypertensive and renoprotective drugs. 2	

 3	

Results 4	

 5	

Cell fraction adjusted eQTL analysis of microdissected human kidney samples  6	

 7	

While GWAS efficiently describe the genotype association with specific traits and diseases, 8	

understanding the genotype effect on gene expression (eQTL) has been essential to nominate target 9	

genes for GWAS variants. Prior eQTL studies have been limited, as they used whole organ tissue, 10	

comprised of many cell types, and small sample sizes (7, 30). Here we collected a large number of 11	

human kidneys from subjects with different ethnicities, disease status and disease stages (Tables 12	

S1 and S2). To reduce cell heterogeneity, we manually microdissected each tissue sample into 13	

glomerular and tubule compartments, and performed RNA-sequencing and genotyping on 659 14	

samples (356 tubules and 303 glomeruli) (Fig. 1A). We initially performed eQTL analysis 15	

separately in glomerular and tubule samples following the GTEx v7 pipeline (6). The analysis took 16	

age, gender, collection site, RNA integrity (RIN), sequencing parameters (batch effect, read depth, 17	

and sequencing types), genotyping principle components (PCs), and kidney disease severity into 18	

consideration. This first cis-eQTL analysis identified 3,599 and 5,871 eGenes (genes that showed 19	

association with at least one SNP at a q-value<0.05) in tubule and glomerular samples, respectively 20	

(Fig. S1A and B).  21	

 22	

Since we observed heterogeneity in the relative distributions of cell populations across the RNA-23	

seq samples (Fig. 1B and C), we hypothesized that considering the cell population distributions 24	

of each sample would improve the quality of eQTL inferences by reducing heterogeneity and 25	

increasing our power to detect associations within tissues and/or cell types. We used kidney single 26	

cell gene expression matrix (29) and an in silico deconvolution method implemented in 27	

CIBERSORTx (22, 25) to estimate cell fractions in each microdissected sample (Fig. 1A, 28	

Methods). As expected, we observed that proximal tubules (PT) represented the major cell type 29	

in the human kidney tubule samples (Fig. 1B) and endothelial cells in glomeruli (Fig. 1C). Next, 30	

we performed a second eQTL analysis by further adjusting for cell population differences across 31	
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samples. We found that comparing to our initial eQTL analysis model without considering the cell 1	

fractions, the inclusion of cell fractions has improved the eGene identification by 28% (1,256 2	

genes) and 18% (1,194 genes) in tubule (Fig. S1A) and glomerular (Fig. S1B) compartments, 3	

respectively.  4	

 5	

Our final eQTL(cf) model included estimated latent variable adjustment by PEER factors in 6	

addition to cell fraction adjustment (Methods). This analysis identified 9,209 and 10,106 eGenes 7	

(Fig. 1D and E), including 6,821 and 7,501 protein coding genes, and 865,410 and 897,548 8	

significant SNP-gene pairs (at a q-value <0.05) (31), in tubular and glomeruli samples, respectively. 9	

It is important to note that this eQTL(cf) model replicated ~90% eGenes identified by the general 10	

eQTL model (only including PEER factors) (Fig. S1C and D), which is consistent with previous 11	

findings that PEER factors modeled cellular heterogeneity reasonably well (Fig. S2) (32).  12	

 13	

Our eQTL(cf) model identified more than twice as many eGenes as reported in our previous 14	

publication (7) (Fig. S3), which is likely due to increasing power of eGene discovery with a larger 15	

sample size and better adjustments for confounders. Several genes, such as KIAA1841 (Fig. S4A) 16	

and MRPL43 (Fig. S4B) did not reach significance in the previous eQTL analysis, but showed 17	

strong associations between gene expression and genotypes in our eQTL(cf) model, illustrating 18	

the power of the new dataset. The significant SNP-gene pairs identified by our previous study 19	

could be successfully replicated by the eQTL(cf) model with 𝛑1=0.95 in tubule and 𝛑1=0.99 in 20	

glomeruli, respectively (33). There was a 90% direct overlap between the newly and previously 21	

reported eGene list (Fig. 1D and E).  Meta-analysis combining evidence from results with 48 22	

tissues in the published GTEx data showed a large number of shared eGenes (34) and also 1,309 23	

tubule-specific (Fig. 1F) and 1,458 glomerulus-specific (Fig. 1G) eGenes (M-value>0.9) in our 24	

eQTL(cf) study.  25	

In summary, here we report bulk and cell fraction adjusted eQTL data for more than 600 26	

microdissected human kidney glomeruli and tubule samples. The increased sample size and 27	

improved cell fraction estimation have more than doubled the number of identified eGenes and 28	

revealed a large number of kidney compartment specific eGenes.  29	

 30	

Defining cell-type dependent activities of genetic variants on gene expression 31	
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 1	

In order to identify eQTLs that modulate gene expression in a cell-type specific manner, we 2	

adopted a linear regression model that included an interaction term between cell fraction and 3	

genotype (Methods). We refer to these eQTLs as cell type interacting eQTLs (eQTL(ci)) (8) (Fig. 4	

2A). For example, kidneys of subjects with higher allele dosage of G (SNP rs12481710), showed 5	

a positive correlation between PT fractions and SYCP2 (Synaptonemal complex protein 2) 6	

expression (Fig. 2B), indicating a cell-type specific genotype-gene expression interaction. In total, 7	

we identified 1,613 and 713 protein-coding eQTL(ci) genes in tubule (Table S3) and glomerular 8	

(Table S4) samples, respectively (Fig. 2C) (8), by evaluating the significance of the interaction 9	

effect between genotype and cell fraction (Methods) in 23 cell types (n=13 in tubule, n=10 in 10	

glomeruli) of the kidney. Kidney PT cells showed the highest number of eQTL(ci)s in the 11	

microdissected human kidney tubule compartment (Fig. 2C), while glomerular endothelial cells 12	

(EndoG) showed the highest number of eQTL(ci)s in glomeruli (Fig. 2C). The number of 13	

eQTL(ci)s for each cell type and sample size was in line with the previous publication (8). 14	

 15	

To characterize the cell type specificity of eQTL(ci)s, we examined the eQTL(ci) sharing across 16	

kidney cell types using a multivariate adaptive shrinkage method (mash) (35), which improves the 17	

effect size estimation for the cell fraction and genotype interaction. Mash leverages the correlations 18	

of effect sizes across all cell types to re-estimate eQTL(ci) effect size at each locus. Cell type 19	

specific eQTL(ci) was defined as the eQTL(ci) at LFSR<0.05 (the local false sign rate (36)) only 20	

in a single cell type. We found that using this stringent threshold, about 18% (n=3,544 of 20,146 21	

SNP-Gene pairs) eQTL(ci)s were cell type specific across the 23 highly correlated kidney and 22	

immune cell types (Fig. S5). 23	

 24	

Here, we show that lipoprotein A (LPA) expression significantly correlated with rs783153 25	

(eQTL(cf) P-value=5.76E-46) in tubule (Fig 2D). This SNP modified the relationship between PT 26	

cell fraction and LPA expression, such as LPA expression in subjects with increasing dosage of G 27	

allele is increased with increasing PT fractions. The LPA gene expression showed a greater 28	

increase with PT fractions in individuals with genotype G/G at rs783153, compared to individuals 29	

with genotype T/G and T/T, which is consistent with the bulk eQTL data. T-statistics for eQTL(ci)s 30	

in each cell type of the kidney tubules, which were estimated using mash and our eQTL(ci) linear 31	
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regression model, show consistent regulatory directions in each cell type. Interestingly, the eQTL 1	

effect observed in tubule was consistent with the PT specific regulatory eQTL(ci) effect (Fig 2D) 2	

(with LFSR<0.05 only in PT cells). These results indicate that for this eQTL pair (rs783153-LPA), 3	

the PT eQTL(ci) acted as the major driver of eQTL(cf) effect in the bulk tubule tissue. Similarly, 4	

we found that the eQTL pair (rs8023408-SV2B (Synaptic Vesicle Glycoprotein 2B)), which 5	

showed that individuals with genotype A/A had higher SV2B expression in the bulk glomerular 6	

tissue (Fig S7), was related to a EndoG specific eQTL(ci) effect. There was a greater increase in 7	

SV2B expression as the fraction of EndoG increased in subjects with A/A genotype. This was an 8	

EndoG specific eQTL(ci) (LFSR<0.05 only in EndoG cells) and the genotype did not significantly 9	

modify the cell fraction and gene expression relationship in other cell types. This indicated that 10	

the EndoG specific eQTL(ci) (rs783153-LPA) effect was the key driver of the eQTL(cf) (Fig. S6) 11	

in the bulk glomerular tissue. Taken together, using the eQTL(ci) model, we have defined a list of 12	

genotype-gene expression correlations that is likely driven by a specific cell type in the human 13	

kidney.  14	

 15	

Single cell resolution regulatory maps for the human kidney  16	

 17	

Cell-type specific regulatory elements have not been mapped for the human kidney, which is an 18	

important knowledge gap as functionally relevant GWAS variants are likely enriched in cell type 19	

specific regulatory regions (28). To characterize gene regulatory regions at a cellular resolution, 20	

we generated single nuclei accessible chromatin information for 12,720 human kidney cells using 21	

the 10x Genomics snATAC-seq platform (Fig. 3A). After initial quality control, we identified 8 22	

distinct cell clusters (Fig. 3B). By comparing the read density of the promoter regions in each 23	

cluster, we found that the initial clustering showed a clear match with previously identified key 24	

kidney gene expression markers (16, 37), such as KDR for endothelial cells (Endo), NPHS2 for 25	

podocytes (Podo), LRP2 for proximal tubule cells (PT), UMOD for loop of Henle (LOH), 26	

SLC12A3 for distal convoluted tubule (DCT), AQP2 for principal cell (PC), ATP6V1G3 for 27	

intercalated cells (IC) of the collecting duct (CD) and LST1  for  immune cells (Immune), 28	

respectively (Fig. 3C and Fig. S7), indicating the robustness of the independently identified 29	

clusters. This analysis identified a total of 359,019 accessible chromatin peaks in the entire dataset 30	

for the human kidney (Methods). Single cell open chromatin peaks were enriched in human kidney 31	
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ChromHMM defined promoter and enhancer regions (Fig. S8). For example, 38% of open 1	

chromatin regions observed in PT cells overlapped with enhancer regions and 17% of peaks 2	

overlapped with promoter regions in adult bulk human kidney samples (Table S5). 3	

 4	

Next, we generated a list of differentially accessible chromatin regions (DARs) by comparing open 5	

chromatin regions across clusters and identified 60,661 cell-type specific peaks (Methods). To 6	

identify transcription factors (TFs) that predominantly occupy cell type specific open chromatin 7	

regions, we performed motif enrichment analysis of differentially accessible regions (DARs) for 8	

each cell type using chromVAR (38) and Homer (39). This analysis identified HNF4A motif 9	

enrichment in proximal tubules, ESRRB in loop of Henle, and ERG in endothelial cells (40) (Fig. 10	

S9). Furthermore, TF footprinting analysis across the 8 major cell types (Fig. 3D and Fig. S10) 11	

showed cell type specific enrichment of TF binding to HNF4A (Fig. 3D) and HNF4G (Fig. S10) 12	

in proximal tubule, and tubule compartment specific motif enrichment of TF HNF1B (Fig. 3D). 13	

Overall, these results provide a reference landscape for chromatin accessibility in the adult human 14	

kidneys at single cell resolution.  15	

 16	

The cell-type specificity of the eQTL(ci) has not been experimentally validated yet. We next 17	

estimated the enrichment of eQTL(ci) variants in the associated cell type specific open chromatin 18	

regions (by snATAC-seq) (41) (Methods). We found that for most common kidney cell types 19	

(EndoG, Endo, Podo, PT, ALOH and IC-B), eQTL(ci) SNPs showed the strongest enrichment in 20	

the open chromatin regions of the corresponding cell type (Fig. 3E), indicating consistency 21	

between cell type interaction eQTLs and the corresponding cell type specific regulatory regions. 22	

The similarity of open chromatin in DCT and LOH (Fig. S9) cells likely explained the overlap we 23	

observed for these cells.  24	

 25	

To summarize, we generated a single cell resolution regulatory map of genetic regulation of gene 26	

expression for the human kidney. We found that our cell-type specific eQTL(ci)s enriched in open 27	

chromatin regions of the corresponding cell type using snATAC-seq data, indicating accuracy of 28	

the computational eQTL(ci)s identification. 29	

 30	

Single cell annotation highlights cell-type convergence of kidney relevant endophenotypes 31	
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 1	

To prioritize potential driver cell types for specific kidney dysfunction associated endophenotypes 2	

(such as glomerular filtration rate, albuminuria, and hypertension), we first calculated and ranked 3	

the expression specificity of each gene for each cell type from the single cell RNA-seq data (16). 4	

For a cell type, higher gene expression specificity deciles were associated with increasing levels 5	

of cell type expression specificity (Methods). Next, we assessed the partitioning heritability 6	

enrichment from GWAS summary statistics in genes of each decile (Fig. 4A) using linkage 7	

disequilibrium score regression (LDSC) (42). We observed that the enrichment of eGFR SNP 8	

heritability increased with increasing gene expression specificity for PT cells (Fig. 4B). Similar 9	

positive correlation was observed between SBP and DCT (Fig. 4C), PC (Fig. S11) and endothelial 10	

cells (Fig. 4D), suggesting the importance of these cell types for the tested endophenotypes.  11	

 12	

Next, we adopted a generalized gene set enrichment analysis established in MAGMA (43) to 13	

evaluate whether gene-level genetic association with kidney relevant phenotypes increased 14	

linearly with cell type specificity (Methods). We have analyzed 24 different GWAS traits (Fig. 15	

4E and Fig. S12) including three independent eGFR GWAS (5, 44, 45), two systolic blood 16	

pressure (SBP) GWAS (46), serum urate (47) (Urate), urinary albumin-to-creatinine ratio (UACR) 17	

(48), urinary sodium (Na+) and potassium (K+) excretion (49), and cardiometabolic traits. As 18	

established earlier, multiple sclerosis showed significant enrichment in lymphocytes also in our 19	

kidney dataset (50). We found the strongest enrichment for kidney function (eGFR) and serum 20	

urate level in proximal tubules (51) (Fig. 4E). Genetic signals for blood pressure showed 21	

enrichment in endothelial cells. 22	

 23	

Simultaneously, we adopted a third independent analysis by implementing LDSC using the single 24	

cell open chromatin information. We note that snATAC-seq LDSC evaluates the heritability of 25	

GWAS variants under snATAC-seq peaks, which is distinct from the measured gene expression 26	

output of scRNA-seq. We found a highly consistent enrichment of multiple eGFR GWAS signals 27	

in PT cells. Serum urate signals were the most enriched in PT cells comparing to other cells (Figs. 28	

4E and Fig. S12). We observed enrichment of SBP genetic signals in endothelial cells, tubule cells 29	

in the distal nephron (DCT and PC cells) (Fig. 4E and Fig. S12).  30	

 31	
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To summarize, using a variety of orthogonal datasets and methods, we observed important cell 1	

type convergence for several tested endophenotypes. The strongest of all was the enrichment 2	

between eGFR associated genetic signals and proximal tubule cells (Fig. 4B and E) and SBP 3	

associated genetic signals in endothelial (Fig. 4E) and DCT cells (Figs. 4C, E and S11). 4	

 5	

Comprehensive gene prioritization provides new mechanistic insights into kidney function 6	

and blood pressure regulation 7	

 8	

Next, we prioritized genes that likely mediate phenotypic variations for specific renal 9	

endophenotypes. Using the Bayesian test for colocalization (implemented in coloc) (52) to 10	

integrate 6 kidney related traits including eGFR, SBP, serum urate, UACR, urinary Na+ and K+, 11	

and kidney microdissected compartment eQTL(cf)s data, we identified 240 colocalized protein 12	

coding genes in the tubule (Table S6) and 230 genes in the glomerular compartment (Table S7). 13	

At these regions, causal genetic variants driving gene expression changes and the variations of 14	

these 6 renal endophenotypes were shared. The analysis prioritized 182 genes for kidney function 15	

(eGFR) (Fig. 5A and Table S8) (5). This number was markedly increased compared to the 27 16	

genes prioritized by earlier studies (7). Similar colocalization analysis prioritized 88 genes for the 17	

340 GWAS loci (46) associated with SBP (Fig. 5B and Table S9), where the causal genetic 18	

variants associated with blood pressure and gene expression were shared. The distribution of the 19	

eGFR and blood pressure prioritized genes in the glomerular and tubular compartments across the 20	

genome is illustrated in Fig. 5C and Fig. S13. Only 10 genes were prioritized for both SBP and 21	

eGFR, indicating that genetic architecture of these two traits are likely distinct, which is consistent 22	

with the LDSC analysis estimating the genetic correlation of these 6 GWAS traits (Fig. S14) (9). 23	

One of the loci and genes that was associated with both traits was FGF5 (Fibroblast Growth Factor 24	

5). Allelic dosage of G at the SNP rs3733336 position was associated with a higher FGF5 25	

expression levels in glomeruli (Fig. S15A). There was a strong correlation between the eQTL and 26	

GWAS effect sizes of SNPs located within ±100 kb of this locus for both SBP (Fig. S15B) and 27	

eGFR GWAS (Fig. S15C).  28	

 29	

To understand whether the eQTL(ci) data could be used to improve GWAS target identification 30	

and also to nominate causal cell types, we repeated the Bayesian colocalization analysis using 31	
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GWAS summary data of the 6 kidney related traits and the eQTL(ci)s data. We prioritized 61 1	

potentially causal protein coding genes, where variants for the 6 renal endophenotypes and cell-2	

type specific gene regulation were shared (Table S10). We again observed a significant 3	

enrichment of PT eQTL(ci)s and eGFR GWAS, such as 23 of the 40 showed colocalization with 4	

interaction PT eQTL(ci)s. For SBP GWAS, we observed significant enrichment for EndoG eQTL 5	

(ci)s, where 9 of the 28 identified variants showed cell type enrichment (Fig. 5D, Figs. S16 and 6	

S17).  7	

 8	

Functional annotation (Gene Ontology) of prioritized causal genes for kidney function showed 9	

enrichment for cellular metabolic processes, including organic substrate, nitrogen compound, 10	

sulfur and macromolecule metabolism (Fig. S18A and Table S11). The enriched pathways were 11	

consistent with the functional role of the kidney in detoxification and metabolism. Gene ontology 12	

annotation prioritized biological processes for HTN shown enrichment for angiogenesis and  13	

circulation (Fig. S18B and Table S12). 14	

 15	

Taken together, kidney compartment-based eQTL(cf)s colocalization annotation of renal disease 16	

endophenotypes increased the prioritized genes by 10-fold (230 from the previous 27 (7)). 17	

Functional annotation highlighted the likely role of metabolism in kidney function regulation and 18	

angiogenesis in blood pressure genetics. Furthermore, eQTL(ci) enabled the discovery of driver 19	

cell types and genes previously masked by bulk tissue analysis. 20	

 21	

Multi-omics integrative annotation highlights important therapeutics targets for CKD and 22	

HTN  23	

 24	

At present, the most widely used therapies for preventing kidney disease progression are inhibitors 25	

of the renin-angiotensin-aldosterone system. About 70-80% of patients with CKD take ACEi or 26	

ARBs. These drugs also effectively reduce blood pressure, and are one of the most prescribed 27	

classes of anti-hypertensive medications taken by roughly 30% of patients with HTN worldwide. 28	

Despite their remarkable efficacy and common use over the last 3 decades, the molecular 29	

mechanism of protection has not been identified as both genes are expressed by multiple cell types 30	

and genetic studies have not elucidated why these treatments are effective.  31	
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 1	

A recent SBP GWAS (46) identified a genetic signal on chromosome 17, rs4292, which barely 2	

passed genome wide significance (P-value(GWAS)=5.88E-09).  Our eQTL analysis indicated that 3	

the same SNP, rs4292 was significantly associated with ACE expression in microdissected kidney 4	

tubule samples (Fig. S19A). Interestingly, we observed that the allelic dosage of C or T is markedly 5	

changed the relationship between PT fractions and ACE expression in human kidney proximal 6	

tubules (Fig. 6A). Meta-analysis of this eQTL association (rs4292 and ACE) (kidney 7	

compartments and 46 GTEx tissue (7), Methods) indicated that rs4292 had the most significant 8	

eQTL effect on ACE (M-value=1) in kidney, especially in the tubule fraction (Fig. 6B and Fig. 9	

S20). Furthermore, the signal colocalized with PT eQTL(ci) with a high confidence (Fig. 6C). An 10	

Iterative Bayesian Step-wise Selection based sum of single effect model for fine mapping analysis 11	

implemented in Susie (53) indicated that across the ~2,500 SNPs located within ±1 Mb around the 12	

transcription start site of ACE, rs4292 has the highest posterior inclusion probability (PIP=55.5%) 13	

(Fig. S21) for being causal. Single cell open chromatin data indicated that rs4292 was located on 14	

a cell type specific open chromatin region only in PT around the promoter region of ACE (Fig. 15	

6D). Single cell open chromatin accessibility analysis highlighted the strong correlation between 16	

open chromatin regions of ACE and rs4292 and other significant GWAS SNPs in PT cells (Fig. 17	

6D and Fig. S22A). Finally, using gapped k-mer support vector machine based methods (gkm-18	

SVM and deltaSVM) (54, 55), we were able to computationally quantify the likely causal 19	

regulatory effect of this variant on the transcription factor binding activity (of the 50 bp region 20	

around rs4292) significantly increased, when the C allele was replaced by allele T (deltaSVM=2.16, 21	

P-value=6.75E-07) of rs4292 (Fig. 6E). This observation is consistent with the association 22	

between rs4292 and ACE gene expression, for individuals with the higher dosage of allele T at the 23	

rs4292 locus, ACE expression levels are significantly higher in tubules (Fig. S19A).  24	

 25	

To our surprise, we found that our analysis identified not only ACE, but also AGT, encoding the 26	

primary substrate for production of angiotensin II. The SBP GWAS (46) have identified a 27	

significant signal at rs6687360 (PGWAS(rs6687360)=4.72E-13). Kidney tubule eQTL data highlighted 28	

a strong association with AGT expression (PeQTL=4.83E-44) (Fig. S19B). Allelic dosage of  C at 29	

the rs6687360 variant, significantly reduced the correlation between PT fraction and AGT 30	

expression with P-value=1.22E-05 (Fig. 6F). Interestingly, although AGT is expressed in multiple 31	
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tissues and cell types (34), meta-analysis of the eQTL rs6687360-AGT in kidney compartments 1	

studies (7) and 46 GTEx tissues (Methods) indicated that rs6687360 was most significantly 2	

associated with AGT (M-value=1) in the kidney, especially in the tubule compartment (Fig. 6G 3	

and Fig. S23). We did not observe colocalization with the genetic signal using bulk eQTL data 4	

from tubule (PP4=0.00), but found a strong colocalization signal between PT eQTL(ci) and the 5	

genetic signal, highlighting the shared genetic casual variants between the GWAS and PT eQTL(ci) 6	

(PP4=0.73) (Fig. 6H). We only observed a single open chromatin region of this area in the intronic 7	

region of AGT in PT cells (Fig. 6I). Single-cell open chromatin co-accessibility analysis showed 8	

an interaction between opening regions of AGT and rs6687360 (and other significant GWAS SNPs 9	

in PT cells (Fig. 6I and Fig. S22B)). In addition, the deltaSVM analysis indicated the TF binding 10	

activity of ±25 bp region around rs6687360 increased as allele C changed to T on rs6687360 in 11	

PT cells (Fig. 6J). The observation was consistent with tubule eQTL effect (Fig. S19B),  samples 12	

with the higher dosage of T at rs6687360 locus had higher AGT expression.  13	

 14	

The discovery of more than 200 prioritized genes for kidney function and hypertension allowed us 15	

to identify targets for potential repurposing of drugs. Using the Drug Gene Interaction Database 16	

(DGIdb v3.0, https://www.dgidb.org), we identified 54 genes that can be targeted by already FDA- 17	

approved drugs (Table S15). In addition, to the large number of drugs that targeted ACE and AGT 18	

with clinically approval drugs, several drugs directly target prioritized genes, such as cilastatin that 19	

inhibits the kidney dipeptidase (DPEP1) (Table S15). DPEP1 was nominated as a kidney disease 20	

gene based on our eQTL annotation. The DPEP1 inhibitor cilastatin showed protection in 21	

preliminary studies from acute toxic kidney injury in animal models (56). Caspase9 has also been 22	

prioritized as a CKD gene, with already available inhibitors, such as emricasan and nivocasan 23	

(Table S15). Several genes from Solute Carrier Family (SLC) have been identified in our study 24	

that might be particularly amenable for pharmacological targeting, such as SLC2A4 (GLUT4), 25	

SLC47A1 and SLC15A2(57), in addition to the key regulator of the Notch signaling; APH1A, 26	

hedgehog signaling; SMO and TGFB1 (Table S15 and S16). 27	

Overall, our combined eQTL(ci) and snATAC-based GWAS analysis had defined the genetic and 28	

mechanistic basis for ACEi and ARBs; the most commonly used anti-hypertensive and kidney 29	
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protective drugs, and prioritized a large number of mostly approved compounds that can be 1	

repurposed for the treatment of kidney disease and hypertension. 2	

 3	

 4	

Discussion 5	

Here, we generated a comprehensive multi-omics dataset and used orthogonal analytical 6	

approaches to annotate renal endophenotypes. Our analysis prioritized more than 182 likely causal 7	

genes for kidney function and 88 for hypertension, potentially defining the core genes for these 8	

conditions in the kidney. We showed the critical cell type convergence of endophenotypes, such 9	

as kidney function and metabolite heritability enrichment in PT and SBP heritability enrichment 10	

in endothelial cells and distal tubule segments. Functional annotation indicated the likely role of 11	

metabolism in kidney disease and angiogenesis in hypertension. Finally, our analysis clarified the 12	

key genetic underpinning of action for the most commonly used antihypertensive and renal 13	

protective drugs, as well as highlighted a large number of additional drugs that could potentially 14	

be effective for HTN and CKD. 15	

 16	

While GWAS studies have been extremely powerful in disease associated loci discovery, signals 17	

at these sites have rarely been translated into molecular mechanisms and therapeutics. One of the 18	

most important computational methods used to annotate GWAS signals is eQTL analysis. Limited 19	

availability of kidney eQTL datasets has been an important limitation of renal related traits GWAS 20	

annotation. With the increased sample size provided in this study, we were able to double the 21	

number of identified eQTLs. 22	

 23	

Another key limitation of the eQTL studies has been the heterogenous cell types in the bulk tissue 24	

samples. We found that while PEER factors have been able to account for cell fraction 25	

heterogeneity, additional adjustment using computational deconvolution could further improve the 26	

model. We took this a step further and identified eQTL(ci) that define genotype-cell interaction 27	

(cell-type) effects. We cataloged SNP-gene pairs by examining the interaction of cell fraction and 28	

genetic variations in a large number of kidney compartment samples. We also noted some 29	

limitations of the eQTL(ci) approach. First, the approach is limited by the quality of the single cell 30	

gene expression data. While human kidney single cell RNA-seq data are now available, we found 31	
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that the higher quality mice dataset generated more reliable information on cell fractions (16, 58). 1	

Second, the co-linearity of cell fractions in tissue samples, such as the loss of kidney parenchyma, 2	

is associated with a relative increase in proportion of mesenchymal and immune cells, and so these 3	

methods are unable to distinguish between such closely related cell fractions. Finally, the analysis 4	

appeared to be more robust for the abundant cell types of each tissue. While eQTL(ci) is a new 5	

and exciting method, the model has not been experimentally validated. Here, we used snATAC-6	

seq data to understand whether eQTL(ci) could be linked to cell-type specific open chromatin 7	

regions. Our data supports the results from eQTL(ci)s as they showed enrichment for cell type 8	

specific regulatory regions. 9	

 10	

Our combined analyses that used LDSC (for scRNA-seq and snATAC-seq data), MAGMA and 11	

eQTL(ci) coloc have provided several meaningful insights into driver cell types for kidney disease-12	

associated endophenotypes. We demonstrated that eGFR heritability is primarily derived from 13	

eQTL influence in PT cells where metabolite levels, such as serum uric acid, are also regulated by 14	

PT functions. In contrast, SBP was associated with genes expressed specifically in endothelial 15	

cells and DCT cells.  The cell type enrichment of endophenotypes appears to be robust and highly 16	

consistent using different methods and datasets. 17	

 18	

Finally, our results provide insights into previously cryptic disease mechanisms and therapeutic 19	

targeting opportunities. Inhibitors of the renin-angiotensin-aldosterone system, such as the ACEi 20	

and ARBs, are the most commonly used medication class for SBP and preventing kidney disease 21	

progression. Yet, we lacked human genetic data supporting the therapeutic benefits of ACEi and 22	

ARB in CKD or hypertension. The ACE locus passed genome wide significance in a large SBP 23	

GWAS and our kidney eQTL annotation provided critical information for the annotation of this 24	

locus and highlighted its association with ACE expression in PTs. Our orthogonal analyses 25	

including snATAC and deltaSVM nominated rs4292 for this effect.  26	

 27	

It is also important to note that GWAS variants at the AGT locus were robustly associated with 28	

SBP, but the associations of genetic variants with gene expression using bulk eQTL datasets were 29	

not sufficient to prioritize the causal gene for this locus.  It was really the interaction effect between 30	

genetic variants and PT cell fraction variations identified from PT eQTL(ci) and snATAC data that 31	
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had helped with the target gene and cell type prioritization. Mouse model experiments are 1	

consistent with our results, notably, a linear correlation between AGT levels and blood pressure 2	

has been previously established in mouse models (59). AGT made in PT is shed into the tubular 3	

fluid (60), where it co-localizes with ACE, which is highly expressed on the brush border on the 4	

tubular surface of proximal epithelia. Overall, our study highlights the critical role of the kidney 5	

in blood pressure regulation and raises the possibility that these variants might be useful for future 6	

precision therapeutic approaches, such as to understand differences in response to ACEi and ARB.  7	

 8	

In summary, we present an integrated multi-omics study for functional interpretation of common 9	

variants associated with renal traits using kidney compartment-based eQTL and single-cell 10	

resolution open chromatin identification. The application of multiple orthogonal computational 11	

methods was critical to prioritize more than 200 genes for eGFR and SBP, highlighted the key 12	

disease-associated variants, cell types and disease pathomechanism, clarified mechanism of widely 13	

used therapeutics and highlighted new potential drugs for these kidney related diseases. 14	

 15	
  16	
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Figure legends 1	

 2	
Figure 1. Cell fraction adjusted expression quantitative trait analysis of microdissected 3	

human kidney samples  4	

A. Experimental scheme. We collected high quality genotype and RNA-seq data for 303 5	

human microdissected kidney glomeruli and 359 tubule samples. Cell fractions were 6	

estimated by deconvolution method using scRNA-seq data (29) as the reference. eQTLs 7	

were then identified using bulk and cell fraction adjusted models. 8	

B. The distribution of the relative cell fractions across 359 microdissected human kidney 9	
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tubule samples. PT: proximal tubule, ProlifPT: proliferating PT cells, ALOH: ascending 1	

loop of Henle, DLOH: descending loop of Henle, DCT: distal convoluted tubule, PC: 2	

collecting duct principal cells, IC-B: beta intercalated cells, IC-A: alpha intercalated cells, 3	

CNT: connecting tubule, CD4T: CD4 T cells, CD8T: CD8 T cells, CD8 effector: CD8 4	

effector cells, DC: CD11b+ dendritic cells, pDC: plasmacytoid DC, Granul: granulocyte, 5	

Macro: macrophage, Th17: T helper 17 cells, Treg: regulatory T cells, NK: natural killer 6	

cells, NKT: natural killer T cells, ProlifLy: proliferating lymphocyte cells, Mono: 7	

monocyte, B: B lymphocyte, Baso: Basophil, B (PB/PC): memory B cells from the 8	

peripheral blood or plasma cells. 9	

C. The distribution of the relative cell fractions across 303 microdissected human kidney 10	

glomerular samples. EndoG: glomerular endothelial cells, Endo: endothelial cells, Podo: 11	

podocyte, CD4T: CD4 T cells, CD8T: CD8 T cells, CD 8effector: CD8 effector cells, pDC: 12	

plasmacytoid DC, Granul: granulocyte, Macro: macrophage, Th17: T helper 17 cells, Treg: 13	

regulatory T cells, NK: natural killer cells, NKT: natural killer T cells, ProlifLy: 14	

proliferating lymphocyte cells, Mono: monocyte, B: B lymphocyte, Baso: Basophil, B 15	

(PB/PC): memory B cells from the peripheral blood or plasma cells. 16	

D. Venn diagram illustrating the direct overlap of previously published (7) and newly 17	

identified significant eGenes in microdissected human kidney tubules  18	

E. Venn diagram illustrating the direct overlap of previously published (7) and newly 19	

identified significant eGenes in microdissected human kidney glomeruli 20	

F. Diagram illustrating the number of tubule-specific eGenes identified by meta-analysis of 21	

eQTLs from 49 human tissues (48 GTEx v7 (34) tissues plus tubule). 22	

G. Diagram illustrating the number of glomerulus-specific eGenes identified by meta-analysis 23	

of eQTLs from 49 human tissues (48 GTEx v7 (34) tissues plus glomerulus). 24	
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 1	
Figure 2. Defining cell-type dependent activities of genetic variants on gene expression 2	
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A. Scheme of cell type interaction eQTL (eQTL(ci)). For a specific SNP, the correlation between 1	

gene expression variations and cell fraction changes are significantly varying across individuals 2	

with different genotypes on this locus. 3	

B. The y-axis is the relative expression of SYCP2 in human kidney tubules (N=356 samples), the 4	

x-axis is the PT cell fraction colored by subject (rs12481710) genotype A/A (red), A/G (green) 5	

and G/G (blue). P value was calculated by eQTL(ci) model. Each data point represents a single 6	

subject. The y-axis is the normalized expression of SYCP2 in human tubules (N=356 samples), 7	

the x-axis is the cell fraction colored by subject genotype A/A (red), A/G (green) and G/G (blue) 8	

at the rs12481710 locus. 9	

C. The number of identified eQTL(ci)s in each cell types in human kidney tubules (left panel) 10	

and glomeruli (right panel). EndoG: glomerular endothelial cells, Endo: endothelial cells, Podo: 11	

podocyte, PT: proximal tubule, ALOH: ascending loop of Henle, DCT: distal convoluted tubule, 12	

IC-B: beta intercalated cells, CNT: connecting tubule, CD4T: CD4 T cells, CD8T: CD8 T cells, 13	

DC: CD11b+ dendritic cells, Granul: granulocyte, Macro: macrophage, Th17: T helper 17 cells, 14	

Treg: regulatory T cells, NK: natural killer cells. 15	

D. A PT specific eQTL(ci) for LPA. The leftmost panel illustrates the association between 16	

genotype of SNP rs783153 and gene expression of LPA in bulk tubule samples (N=356 samples). 17	

The y-axis is the normalized expression of LPA in human kidney tubules, the x-axis is the 18	

genotype at rs783153 locus. Center lines show the medians; box limits indicate the 25th and 75th 19	

percentiles; whiskers extend to the 5th and 95th percentiles; outliers are represented by dots. P 20	

was calculated by linear regression eQTL(cf) model. The following panels show PT cell-type-21	

specificity of this eQTL(ci) across 5 different kidney function cell types in human tubules 22	

(N=356 samples). The y-axis is the normalized expression of LPA in human tubules (N=356 23	

samples), the x-axis is the cell fraction colored by subject genotype T/T (red), T/G (green) and 24	

G/G (blue) at the rs783153 locus. lm (T-stat): T-statistics calculated from linear model of 25	

eQTL(ci), mash(T-stat): T-statisitcs estimated by mash. PT: proximal tubule, ALOH: ascending 26	

loop of Henle, DCT: distal convoluted tubule, IC-B: beta intercalated cells, CNT: connecting 27	

tubule. Each data point represents one sample. 28	



	 27	

 1	
Figure 3. Single cell resolution regulatory maps for the human kidney  2	

A. Experimental scheme of snATAC-seq. Single nuclei accessible chromatin information was 3	

generated for 12,720 human kidney cells, using the 10X Genomics snATAC-seq platform. 4	

Kidney cell clusters were then identified and open chromatin peaks were called for each 5	
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cell cluster. 1	

B. The UMAP of human kidney snATAC-seq data. 8 distinct cell clusters were identified 2	

using previously defined cell type marker genes (16). Endo: endothelial cells, Podo: 3	

podocyte, PT: proximal tubule, LOH: loop of Henle, DCT: distal convoluted tubule, PC: 4	

collecting duct principal cells, IC: collecting duct intercalated cells, Immune: immune cells. 5	

C. Genome browser plots showing aggregate read density for cells within each cell cluster in 6	

the promoter region of each cell type marker gene: KDR (endothelial cells), NPHS2 7	

(podocyte), LRP2 (proximal tubule), UMOD (LOH), SLC12A3 (distal convoluted tubule), 8	

AQP2 (collecting duct principal cells), ATP6V1G3 (collecting duct intercalated cells) and 9	

LST1 (immune cells). The promoter region for each gene is highlighted in red color.  10	

D. Footprinting analysis of the HNF4A (top panel) and HNF1B (bottom panel) transcription 11	

factors across 8 major cell types. The motif logos are shown above. 12	

E. Bubble plots of enrichment of eQTL(ci)s for each cell type (row) and open human kidney 13	

snATAC-seq chromatin regions of each cell cluster (Column). The size and the color of the 14	

bubble indicates enrichment (Z-score). EndoG: glomerular endothelial cells, Endo: 15	

endothelial cells, Podo: podocyte, PT: proximal tubule, LOH: loop of Henle, ALOH: 16	

ascending loop of Henle, DCT: distal convoluted tubule, PC: collecting duct principal cells, 17	

IC: collecting duct intercalated cells, IC-B: beta intercalated cells, Immune: immune cells. 18	



	 29	

 1	
Figure 4. Single cell annotation highlights cell-type convergence of kidney relevant 2	

endophenotypes 3	
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A. Experimental scheme of cell type-specific GWAS trait heritability enrichment analysis. 1	

Here we applied MAGMA to the scRNA-seq data and LDSC to the scRNA-seq and 2	

snATAC-seq data to assess the GWAS per-SNP heritability enrichment. 3	

B. Enrichment of eGFR-SNP heritability in each of the specificity deciles for proximal tubule 4	

cells calculated using LDSC from kidney scRNA-seq data (16).  5	

C. Enrichment of SBP-SNP heritability in each of the specificity deciles in distal convoluted 6	

tubule (DCT) cells.  7	

D. Enrichment of SBP-SNP heritability in each of the specific deciles for endothelial cells. X-8	

axis is the gene expression specificity decile, Y-axis is the enrichment value calculated by 9	

LDSC. Colors of dots represent different specificity deciles. Blue line shows the linear 10	

regression slope fitted to the enrichment values. Error bars indicate the 95% confidence 11	

intervals.  12	

E. Evaluation of enrichment of common GWAS variants in each kidney cell type  scRNA-seq 13	

data (16) using MAGMA (the left panels) and human kidney snATAC-seq data using LDSC 14	

(the right panels). X-axis represents 24 different GWAS traits and y-axis is the –log10(P-15	

value). P-value was estimated by MAGMA (the left panels) and LDSC (the right panels). 16	

Endo: endothelial cells, PT: proximal tubule, Podo: podocyte, PC: collecting duct principal 17	

cells, DCT: distal convoluted tubule, Immune: T lymphocyte. 18	

 19	
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 1	
Figure 5. Comprehensive gene prioritization provides new mechanistic insights into kidney 2	

function and blood pressure regulation 3	

A. Experimental scheme. We used Bayesian colocalization which combined information from 4	
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eQTL(cf)s to annotate 264 eGFR associated loci (5) and prioritized 182 causal genes for 1	

kidney disease, where the causal variants for gene expression and kidney function are 2	

shared.  3	

B. Experimental scheme. We used Bayesian colocalization which combined information from 4	

eQTL(cf)s to annotate 340 SBP GWAS associated loci (46) and prioritized 88 causal genes 5	

for hypertension, where the causal variants for gene expression and HTN are shared.  6	

C. Miami plot showing coloc (10) prioritized genes for eGFR GWAS in tubules and glomeruli 7	

by eQTL(cf)s. Red dots define prioritized protein coding genes. X-axis represents the 8	

chromosome. Y-axis represents the GWAS significance –log10(P-value). 9	

D. Bubble plots showing coloc (10) prioritized cell type specific (eQTL(ci)) genes for eGFR 10	

and SBP GWAS loci. The size of the dot correlated with the posterior possibility of 11	

colocalization (PP4). EndoG: glomerular endothelial cells, Endo: endothelial cells, Podo: 12	

podocyte, PT: proximal tubule, ALOH: ascending loop of Henle, DCT: distal convoluted 13	

tubule, IC-B: beta intercalated cells, CNT: connecting tubule. 14	

 15	
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1	
Figure 6. Multi-omics integrative annotation highlights important therapeutics targets for 2	
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CKD and HTN  1	

A. The y-axis is the normalized expression of ACE in human kidney tubules (N=356 samples), 2	

the x-axis is the PT cell fraction, each dot represents a single sample colored by their 3	

genotype C/C (red), C/T (green) and T/T (blue) at rs4292 locus. P was calculated by 4	

eQTL(ci) model.  5	

B. eQTL meta-analysis showing the association between rs4292 and ACE in kidney 6	

compartments and of 46 human tissues from GTEx (v7). Each dot represents one tissue, 7	

and the size represents the M-value. Red dots: M-value≥0.9, blue dots: M-value≤0.1, green 8	

dots: 0.1<M-value<0.9. The y axis shows the meta-analysis P of association in each single 9	

tissue. The x axis shows the M-value; the posterior probability of the effect in each tissue 10	

estimated by METASOFT (61) 11	

C. Locuszoom plots of SBP GWAS variants (top) (46) , kidney tubule ACE eQTL(cf)s, and 12	

PT ACE eQTL(ci)s. The x-axis shows the genomic region ±100 kb around rs4292. Each 13	

data point represents a variant and the color represents the r2 (the degree of linkage 14	

disequilibrium). 15	

D. Top: PT cell Cicero-inferred co-accessibility between pairs of accessible chromatin sites at 16	

the ACE promoter. Each line is an SBP GWAS (46) significant SNP  (P<5E-08). Single cell 17	

chromatin accessibility of human kidney single nuclear ATAC-seq data. Endo: endothelial 18	

cells, Podo: podocyte, PT: proximal tubule, LOH: loop of Henle, DCT: distal convoluted 19	

tubule, PC: collecting duct principal cells, IC: collecting duct intercalated cells, Immune: 20	

immune cells.  21	

E. Gapped k-mer support vector machine (GKM-SVM) method (54) estimated importance 22	

score for each base in the ±25 bp region surrounding rs4292 for the Ref (C) and Alt (T) 23	

alleles from the gkm-SVM model corresponding to PT cell cluster. The SNP of interest is 24	

highlighted in red color. The deltaSVM value was calculated to represent the changes of 25	

the transcription factor binding activity of this 51 bp sequence after replacing allele C to 26	

allele T of rs4292. 27	

F. The y-axis is the normalized expression of AGT in human kidney tubules (N=356 samples), 28	

the x-axis is the PT cell fraction, each dot represents a single sample colored by their 29	

genotype C/C (red), C/T (green) and T/T (blue) at rs6687360 locus. P was calculated by 30	

eQTL(ci) model.  31	
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G. Results of eQTL from meta-analysis showing the association between rs6687360 and AGT 1	

using eQTLs of kidney compartments and of 46 human tissues from GTEx (v7). Each dot 2	

represents one tissue, and the size represents the M-value. Red dots: M-value≥0.9, blue 3	

dots: M-value≤0.1, green dots: 0.1<M-value<0.9. The y-axis shows the meta-analysis P of 4	

association in each single tissue. The x-axis shows the M-value; the posterior probability 5	

of the effect in each tissue estimated by METASOFT (61). 6	

H. Locuszoom plots of SBP GWAS variants (46), kidney tubule eQTL(cf)s, and PT AGT 7	

eQTL(ci)s. The x-axis shows the genomic region ±100 kb around rs6687360. Each data 8	

point represents a variant and the color represent the r2 (the degree of LD). 9	

I. Top: PT cell Cicero-inferred co-accessibility between pairs of accessible chromatin sites at 10	

the AGT gene body region. Each line is an SBP GWAS (46) significant SNP (P<5E-08). 11	

Single cell chromatin accessibility of human kidney single nuclear ATAC-seq data. Endo: 12	

endothelial cells, Podo: podocyte, PT: proximal tubule, LOH: loop of Henle, DCT: distal 13	

convoluted tubule, PC: collecting duct principal cells, IC: collecting duct intercalated cells, 14	

Immune: immune cells. The showing genomic region is chr1:230,834,647-230,850,043. 15	

J. Gapped k-mer support vector machine (GKM-SVM) method (54) estimated importance 16	

score for each base in the ±25 bp region surrounding rs6687360 for the Ref and Alt alleles 17	

from the gkm-SVM model corresponding to PT cell cluster. The SNP of interest is 18	

highlighted in red color. The deltaSVM value was calculated to represent the changes of 19	

the transcription factor binding activity of this 51 bp sequence after replacing allele C to 20	

allele T of rs6687360. 21	

 22	

 23	


