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Abstract 21 

Metagenome sampling bias for geographical location and lifestyle is partially responsible for 22 

the incomplete catalog of reference genomes of gut microbial species. Here, we present a 23 

substantially expanded microbiome catalog, the Human Reference Gut Microbiome (HRGM). 24 

Incorporating newly assembled 29,082 genomes from 845 fecal samples collected from three 25 

under-represented Asian countries—Korea, India, and Japan—the HRGM contains 232,098 26 

non-redundant genomes of 5,414 representative prokaryotic species, >103 million unique 27 

proteins, and >274 million single-nucleotide variants. This is an over 10% increase from the 28 

largest reference database. The newly assembled genomes were enriched for members of the 29 

Bacteroidaceae family, including species associated with high-fiber and seaweed-rich diet. 30 

Single-nucleotide variant density was positively associated with the speciation rate of gut 31 

commensals. Ultra-deep sequencing facilitated the assembly of genomes of low-abundance 32 

taxa, and deep sequencing (>20 million read pairs) was needed for the profiling of low-33 

abundance taxa. Importantly, the HRGM greatly improved the taxonomic and functional 34 

classification of sequencing reads from fecal samples. Finally, mapping homologous 35 

sequences for human auto-antigens onto the HRGM genomes revealed the association of 36 

commensal bacteria with high cross-reactivity potential with autoimmunity. The HRGM 37 

(www.mbiomenet.org/HRGM/) will facilitate the identification and functional analysis of 38 

disease-associated gut microbiota. 39 

  40 
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Introduction 41 

Human gut microbiome is considered the “second human genome” and plays a crucial role in 42 

various diseases1,2. Therefore, targeting gut microbes and their functional elements may 43 

provide novel therapeutic opportunities. The assembly of human reference genome, together 44 

with a catalog of protein-coding genes and genomic variants, led us to the era of genomic 45 

medicine. Likewise, transformation of human medicine by harnessing the gut microbes 46 

requires the cataloging of reference microbial genomes and their encoded functional elements. 47 

Conventional approaches for microbial genome assembly require microbial isolation and 48 

culture. Indeed, with the development of culturomics technology, the number of culturable 49 

gut microbes has increased greatly3-6. However, the culturable taxa are biased toward specific 50 

clades, and a large portion of the human gut microbiome remains unculturable7-9. To address 51 

this, culture-independent methods of metagenome assembly from whole-metagenomic 52 

shotgun sequencing (WMS) data have been developed. 53 

Recently, three independent studies have consecutively released large collections of 54 

prokaryotic genomes, including many based on metagenome assembly8-10. The metagenome-55 

assembled genomes (MAGs) from these studies were then combined with the genomic 56 

information deposited in public databases to generate integrated catalogs of prokaryotic 57 

genomes and proteins in the human gut11, the Unified Human Gastrointestinal Genome 58 

(UHGG) and Unified Human Gastrointestinal Protein (UHGP) catalogs, respectively. The 59 

UHGG contains 204,938 non-redundant genomes that represent 4,644 prokaryotic species 60 

and the UHGP catalogs approximately 95 million unique proteins.  61 

Despite the latest advances, the current human gut microbiome catalog is incomplete, 62 

partially because the metagenome sampling is biased for geographical location and lifestyle. 63 

Specifically, the UHGG is strongly biased towards fecal samples collected in China, 64 

Denmark, Spain, and the US. In the present study, to account for the under-sampling of 65 

certain metagenomes, we assembled genomes from fecal samples collected from Korea, India, 66 

and Japan. Since the genome assembly of low-abundance species in most human fecal 67 

samples may require a much deeper sequencing than usually employed, we performed ultra-68 

deep WMS (>30 Gbp or >100 million read pairs) of 90 fecal samples collected from Korea. 69 

We then collected public WMS data for 110 fecal samples from India and 805 fecal samples 70 

from Japan. We consequently assembled 29,082 prokaryotic genomes, and combined them 71 
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with the UHGG genomes to generate the Human Reference Gut Microbiome (HRGM), 72 

which substantially expands the list of representative species, genomes, proteins, and single-73 

nucleotide variants (SNVs) in the human gut microbiome. The HRGM is a freely available 74 

resource and will be invaluable to therapeutic targeting of the gut microbiota.  75 

 76 

Results 77 

Assembly of gut microbial genomes from Korea, India, and Japan 78 

We assembled prokaryotic genomes using an in-house bioinformatics pipeline 79 

(Supplementary Fig. 1a, Methods), which is more exhaustive than similar approaches8-11 80 

(Supplementary Table 1). For instance, we adopted an ensemble method for binning 81 

assembled contigs, as it showed better performance than individual binning tools12,13. We 82 

hypothesized that metagenomes harbored by individuals from under-represented geographical 83 

locations and lifestyles would expand the current catalog of human gut microbiome. 84 

Therefore, we performed de novo genome assembly of fecal samples from three Asian 85 

countries: Korea, India, and Japan (referred to here as KIJ samples, Supplementary Table 2). 86 

At the start of the current study, WMS data for 805 and 110 fecal samples from Japan and 87 

India, respectively, were publicly available but not included in the UHGG14,15. To 88 

complement these data, we generated WMS data for fecal samples collected from 90 donors 89 

recruited in Korea. We set the minimum completeness at 50% and the maximum 90 

contamination at 5% for genomes of minimum quality. We divided the genome bins into two 91 

groups: high quality (HQ) genomes with ≥90% completeness and ≤5% contamination, and 92 

medium quality (MQ) genomes (the remaining genomes). This yielded 29,082 KIJ sample 93 

MAGs: 7,767 from Korea, 563 from India, and 20,752 from Japan. 94 

 95 

Ultra-deep sequencing facilitates the genomic assembly of low-abundance taxa  96 

To investigate the impact of metagenome sequencing depth on de novo genome assembly, we 97 

performed ultra-deep sequencing of the 90 Korean fecal samples (>30 Gbp or >100 million 98 

read pairs); the depth was approximately 5-fold deeper than the normal sequencing depth 99 

(Fig. 1a). Despite sequencing at the normal depth, fecal samples from Japan had a larger total 100 
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read length than Korean samples because of a much larger sample size (Fig. 1b). For nine of 101 

the 90 Korean samples, approximately 60 Gbp was sequenced for the study of sequencing 102 

depth effect on genome assembly. We then generated 81 simulated WMS datasets (9 different 103 

depths for each of the 9 original samples with ~60 Gbp depth) and used the same pipeline of 104 

de novo genome assembly for all samples. As expected, the number of HQ and MQ genomes 105 

increased with the increasing sequencing depth. However, the growth rate simultaneously 106 

decreased and the proportion of HQ genomes became stable after the initial phase of rapid 107 

growth (Fig. 1c). Next, we investigated whether the increased sequencing depth improved the 108 

quality of assembled genomes. We compared the assembly quality of MAGs for the same 109 

species in two different simulated samples at adjacent sequencing depths (Supplementary 110 

Fig. 2; Methods). The quality of MAGs from the greater sequencing depth was significantly 111 

higher than that of genomes from the lower sequencing depth in terms of completeness, 112 

contamination, N50, and genome size (Fig. 1d,e; Supplementary Fig. 3a,b). However, the 113 

degree of improvement of the assembly quality diminished as the sequencing depth increased. 114 

We then examined the effect of sequencing depth using the actual WMS data for KIJ samples. 115 

The number of HQ and MQ genomes assembled from each sample was highest in the ultra-116 

deep sequenced samples from Korea (Fig. 1f). However, the proportion of HQ genomes in 117 

samples from Korea and Japan was not significantly different (Fig. 1g; Supplementary Fig. 118 

3c). Notably, the genome assembly yield, i.e., the number of assembled genomes divided by 119 

the total sequencing length, was highest for samples from Japan (Fig. 1g). This suggests that 120 

sequencing hundreds of samples at a depth of 5–10 Gbp may constitute the most effective 121 

strategy for cataloging MAGs for a given population.  122 

The ultra-deep sequencing may be advantageous for the genome assembly for low-abundance 123 

taxa. To test this, we compared MAGs exclusively assembled from each country but not 124 

included in the UHGG, i.e., 224, 388, and 18 genomes from Korea, Japan, and India, 125 

respectively. We then estimated their relative abundance in fecal samples in an independent 126 

population of 926 fecal samples from the US16, using Kraken217. The genomes assembled 127 

exclusively from Korean samples shifted towards low-abundance taxa compared with 128 

genomes assembled from samples from other countries (Fig. 1h), which confirmed the 129 

original hypothesis.  130 

 131 
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Cataloging reference genomes of 5,414 prokaryotic species from the human gut 132 

To construct the most comprehensive reference database for the human gut microbiome, we 133 

integrated the newly generated 29,082 MAGs from KIJ samples with the UHGG genomes 134 

using dereplication approach (Supplementary Fig. 1b, Methods). Dereplication of the 135 

29,082 MAGs resulted in 2,199 clusters of genomes. We selected a representative genome 136 

from each cluster to catalog the genomes for 2,199 representative species, which we then 137 

integrated with 4,644 representative genomes from the UHGG, via dereplication, resulting in 138 

5,414 clusters of genomes. Finally, we selected 5,414 representative genomes and assigned 139 

their phylogenetic classifications using GTDB-Tk18 (Fig. 2). Among these representative 140 

genomes, 4,531 (83.7%) genomes were exclusively assembled from metagenomic data, 141 

which confirmed the notion that the major portion of the human gut microbiome has not yet 142 

been isolated. We identified 16S rRNA sequences in 2,542 representative genomes (47%) 143 

(Supplementary Fig. 4), covering the majority of phylogenetic clades. Unlike conventional 144 

databases of 16S rRNA sequences, the new database provides opportunities for functional 145 

interpretation of the detected taxa because it contains genomes corresponding to the 16S 146 

rRNA sequences. 147 

The inclusion of MAGs from KIJ samples in the new database allowed several improvements 148 

on the UHGG. First, we reduced the data bias toward China among Asian countries 149 

(Supplementary Fig. 5a). Second, we expanded the total number of non-redundant reference 150 

genomes by 13.25% and the number of representative species by 16.6% increase 151 

(Supplementary Table 3). Among the 5,414 representative genomes, 780 genomes were 152 

assembled from KIJ samples only, and 536 representative genomes from the UHGG were 153 

replaced with new MAGs from KIJ samples. Hence, 1,316 representative genomes (28.3%) 154 

were updated in the HRGM (Supplementary Fig. 5b). 155 

 156 

New MAGs from Korea, India, and Japan are associated with diet-related lifestyles 157 

Notably, Bacteroidaceae family (Fig. 3, redtree branches) was enriched in the updated 158 

MAGs (P < 0.001, Fisher’s exact test). Almost half the genomes from this family are from 159 

the Bacteroides genus and approximately two-thirds of the other half are from the Prevotella 160 

genus (Supplementary Fig. 6). Interestingly, three widely dispersed regions in the 161 
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phylogenetic tree were highly enriched in the updated genome set. The first region (“a”) 162 

encompasses a portion of the Prevotella genus and includes 30 genomes annotated as 163 

Prevotella copri. Accordingly, westernized populations with a typically high-fat and low-164 

complex carbohydrate diet exhibit low prevalence and diversity of P. copri compared with 165 

non-westernized populations19. The second region (“b”) encompasses a portion of the 166 

Bacteroides genus and includes 22 genomes annotated as Bacteroides plebeius. This species 167 

is typically found in Japanese subjects whose diet includes seaweed-rich food, such as sushi20. 168 

It has been suggested that B. plebeius harbors genes encoding an enzyme specific for algal 169 

carbohydrates, acquired from marine microbes. The third region (“c”) also encompasses a 170 

portion of the Bacteroides genus and includes 12 genomes annotated as Bacteroides vulgatus, 171 

which is typically present in the human distal gut, where undigested plant polysaccharides 172 

and proteins exist in large quantities21. Together, these observations indicate that the new 173 

MAGs from KIJ samples are associated with the diet-related lifestyles in Japan and Korea.  174 

 175 

SNV density is positively associated with the speciation rate of gut commensals 176 

We then aligned genomes of species clusters containing �3 genomes with the representative 177 

genome and mapped SNVs (Methods). This yielded 274,543,071 SNVs from 2,821 species 178 

clusters, representing 10.07% and 13.34% increases, respectively, from the UHGG. The 179 

Actinobacteriota phylum had the highest SNV density (Fig. 3a). Phylogenetically 180 

overdispersed branches of Actinobacteriota species were apparent in both, the HRGM and 181 

UHGG. The majority of genomes from the overdispersed tree region belonged to the 182 

Collinsella genus. We divided these genomes into ones from a tree region with a modest 183 

phylogenetic dispersion (MD, 20 genomes) and those with a high phylogenetic dispersion 184 

(HD, 619 genomes) (Fig. 3b). Although the majority of genomes were not annotated at the 185 

species level, Collinsella aerofaciens was enriched in the HD group and other known 186 

Collinsella species were enriched in the MD group (Fig. 3c). SNV density in HD group was 187 

significantly higher than that of MD group (Fig. 3d). 188 

SNV, a within-species genetic variation, is a major mechanism for the adaptation of 189 

commensal species to a distinct host environment. Wide dispersion of species branches 190 

indicates rapid speciation. Accordingly, high SNV density for a species with an overdispersed 191 
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tree may indicate that the degree of within-species genetic variation may be positively 192 

associated with the speciation rate of gut commensals. To test this, we examined the 193 

correlation between SNV density of representative species and their phylogenetic distance to 194 

the five nearest species. The branch length to the neighboring species in the phylogenetic tree 195 

of a species that arose during rapid speciation tends to be short. We observed an inverse 196 

correlation between the average phylogenetic distance to the five nearest species and their 197 

SNV density (Fig. 3e), and a significantly higher SNV density for the top 10% species with 198 

shorter phylogenetic distance to the nearest five species than those for the bottom 90% 199 

species (Fig. 3f). This supports the model of a positive correlation of SNV density and the 200 

speciation rate of gut commensals. 201 

 202 

Functional landscape of 103 million proteins from human gut prokaryotes 203 

Information on proteins encoded in the human gut microbes will facilitate the functional 204 

characterization of disease-associated microbiota. Using an in-house computational pipeline 205 

for cataloging human gut prokaryotic proteins (Supplementary Fig. 1c and Supplementary 206 

Fig. 7), we first identified 64,661,728 CDS (coding sequences) from 29,082 genomes from 207 

KIJ samples using Prodigal22. To reduce redundancy in the protein catalog, we first executed 208 

CD-HIT23 at 100% similarity level and then combined with proteins cataloged by the UHGP-209 

10011. The consolidated protein catalog was next consecutively clustered by CD-HIT at lower 210 

sequence similarity levels: 95%, 90%, 70%, and 50%. This led to approximately 103.7, 20.0, 211 

14.8, 8.5, and 4.7 million proteins at the sequence similarity levels of 100%, 95%, 90%, 70%, 212 

and 50%, respectively.  213 

Unexpectedly, we observed that the UHGP contains proteins that are 100% identical, even in 214 

a catalog at 50% sequence similarity level. For instance, among the UHGP-50 proteins, 215 

GUT_GENOME232012_01109 and GUT_GENOME231777_00918 have an identical amino 216 

acid sequence. We identified 8,663, 82,507, 243,362, and 75,620,150 proteins that are 217 

redundant at 100% similarity in the UHGP-50, UHGP-90, UHGP-95, and UHGP-100, 218 

respectively. Exclusion of the UHGP proteins that were 100% identical revealed that the 219 

HRGM contains more proteins than UHGP at all levels of sequence similarity except for 50% 220 

(Supplementary Table 3). 221 
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To facilitate the functional interpretation of gut microbiome profiles, we next annotated 222 

functional genomic elements and proteins in the HRMG. We predicted and annotated non-223 

coding RNAs and functional peptides, using Prokka24; antibiotic resistance genes, using 224 

RGI25; biosynthetic gene clusters, using antiSMASH26; and 16S rRNA regions, using 225 

barrnap27. For functional annotation of proteins, we used eggNOG-mapper28. Notably, the 226 

landscape of antibiotic resistance ontology revealed that phylogenetically close species in the 227 

human gut tend to share antibiotic resistance mechanisms (Supplementary Fig. 8). A 228 

significantly large portion of the human gut prokaryotic proteins has not yet been functionally 229 

annotated. For the HRGM protein catalogs at 100%, 95%, 90%, 70%, and 50% similarity 230 

levels, 13.13%, 28.05%, 29.17%, 36.35%, and 47.62% of proteins, respectively, had no 231 

functional annotation, according to eggNOG-mapper. This effect appears to be amplified by 232 

redundant proteins, resulting in a reduced annotation rate at low similarity level. Further, the 233 

annotation rate of proteins that are shared by many species is higher than that of species-234 

specific proteins (Supplementary Fig. 9).  235 

 236 

HRGM improves taxonomic and functional classification of sequencing reads 237 

According to a recent benchmark study, whole-DNA–based methods outperform marker-238 

based methods for taxonomic classification of metagenomic sequencing reads29. The 239 

performance of whole-DNA–based methods relies on the quality of the reference genome 240 

database. The standard databases lack numerous genomes of species that exist in the human 241 

gut, which leads to false-negatives, while including many genomes from other microbial 242 

communities, which leads to false-positives29. We hypothesized that the HRGM, which is 243 

specific to the human gut microbiome and more comprehensive than other databases, can 244 

improve the taxonomic classification of sequencing reads. We used Kraken217 to compare the 245 

taxonomic classification of three genome databases: a standard database that contains 246 

RefSeq30 complete genomes (RefSeq CG) of bacterial, archaeal, and viral domains; the 247 

UHGG-based database; and the HRGM-based database. To generate independent test 248 

datasets, we compiled WMS data for 1,022 fecal samples from the US, Cameroon, 249 

Luxembourg, and Korea, which were not included in the UHGG nor HRGM. We then 250 

evaluated the efficacy of Kraken2 classification based on the proportion of classified reads 251 

(Methods). The classification efficacy using the UHGG and HRGM-based databases was 252 
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substantially higher than that of the standard database (Fig. 4a,b, P < 0.001, two-sided 253 

Wilcoxon signed-rank test). In addition, the variance of the read classification rate of custom 254 

databases was significantly smaller than that of the standard database, except for the 255 

Cameroon population (Fig. 4a, P < 0.001, Brown-Forsythe test). Importantly, the 256 

classification efficacy of the HRGM-based database was significantly improved compared 257 

with that of the UHGG-based database for the four test samples (Fig. 4a,c, P < 0.001, two-258 

sided Wilcoxon signed-rank test), which suggests that the updated reference genome database 259 

improves taxonomic classification of the gut metagenomic sequencing data. 260 

Next, we investigated the efficacy of functional classification based on the number of aligned 261 

sequencing reads from reference protein databases. Because of the extremely large number of 262 

reference proteins, we used only 40 samples randomly selected from the 1,022 fecal samples 263 

(10 samples from each population), and aligned the sequencing reads with the UHGP-95 and 264 

HRGM-95 protein catalogs (Methods). The number of aligned reads was 1.31% higher, on 265 

average, with HRGM-95 in all tested samples than with UHGP-95 (Fig. 4d), although 266 

HRGM-95 contains 0.4% more proteins than UHGP-95.  267 

Taken together, the newly assembled genomes from under-represented Asian countries 268 

significantly improve the genome and protein databases for metagenomic analysis of both, 269 

taxonomic and functional profiling. 270 

 271 

Reliable taxonomic profiling of low-abundance taxa requires deep sequencing 272 

Taxonomic profiles obtained by shallow sequencing (0.5–2 million reads) highly correlate 273 

with those obtained by ultra-deep sequencing (2.5 billion reads)31. However, this evaluation 274 

is based on entire taxa, in which highly abundant or core taxa govern the correlation measure. 275 

Further, low-abundance taxa likely play important, as yet unknown, biological roles in the gut 276 

microbial communities32,33. We therefore evaluated the impact of sequencing depth on the 277 

reliability of taxonomic profiling for different ranges of taxon abundance. We generated a 278 

simulated dataset at various sequencing depths 16 new Korean fecal samples, and not 279 

included in the HRGM. We then stratified the taxonomic features into eight different groups, 280 

according to the mean relative abundance (Fig. 5a,b). We calculated the mean Pearson 281 

correlation coefficient (PCC) and the mean Spearman correlation coefficient (SCC) between 282 
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the taxonomic profiles at different sequencing depths for different mean relative abundances 283 

(Methods). The taxonomic profile similarity between two groups showed increasing PCC 284 

and SCC with an increasing sequencing depth. For example, >10 million read pairs (3 Gbp) 285 

may need to have taxonomic profiles that highly correlate (PCC > 0.9) with those based on 286 

80 million read pairs (25 Gbp) to account for the features with lowest 13.92% of relative 287 

abundance (relative abundance < 1e–06) (Fig. 5c and Supplementary Fig. 10a). For SCC > 288 

0.9, the required sequencing depth increased to 20 million read pairs (6 Gbp) for taxonomic 289 

features with a similar level of relative abundance (Fig. 5b and Supplementary Fig. 10b). 290 

Overall, these observations suggest that deep sequencing (>20 million read pairs) may be 291 

required to obtain reliable taxonomic profiles of low-abundance taxa. 292 

 293 

Sequencing 30 Gbp is optimal for functional profiling of the human gut microbiome 294 

Next, using the protein catalog, we investigated the optimal sequencing depth for functional 295 

profiling of the human gut microbiome. Since the detection of gene content generally requires 296 

a much deeper sequencing depth than that for the detection of genomes, we analyzed the 297 

WMS data for five Korean fecal samples at a depth of approximately 200 million read pairs 298 

(60 Gbp) (Methods). The number of the detected coding genes initially grew rapidly as the 299 

sequencing depth increased, but later approached the estimated maximum count 300 

(Supplementary Fig. 11a). The curves fitted well (R2 > 0.99) two-site saturation models34, 301 

and we hence estimated the maximum number of coding genes for each sample using the 302 

regression model. Interestingly, the estimated maximum gene counts in the samples differed, 303 

reflecting the different alpha diversity of the microbial community. However, all samples 304 

showed very similar normalized maximum gene count curves, with over 80% of the gut 305 

microbial coding genes detected by sequencing 30 Gbp or 100 million read pairs in all 306 

samples (Supplementary Fig. 11b). Sequencing another 30 Gbp would fail to detect 90% of 307 

the maximum gene count. Therefore, 100 million read pairs is the optimal sequencing depth 308 

for the best trade-off between the sequencing cost and the gain-of-functional information for 309 

WMS-based studies of the human gut microbiome.  310 

 311 

Profiling cross-reactivity potential identifies autoimmune-associated commensals 312 
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Microbial peptides homologous to the host auto-antigens may stimulate host immune cells 313 

and, hence, the hypothesis of molecular mimicry has emerged as a mechanism underlying 314 

autoimmune diseases35. To systematically evaluate this hypothesis, we mapped microbial 315 

peptide sequences homologous to the human self-antigens involved in autoimmune diseases 316 

onto the genomes of HRGM representative species. We first compiled autoimmune disease-317 

related antigen set from the Immune Epitope Database (IEDB)36, and then used it for 318 

homology-searches of microbial peptide sequences from 5,414 representative species. We 319 

thus identified species with a high cross-reactivity potential based on the density of the 320 

encoded cross-reactive epitopes. Because the number of epitope-containing genes (ECG) 321 

increased as the number of coding genes increased (Fig. 6a), we divided the ECG count by 322 

the total number of genes for each species. Some human gut commensals had a relatively 323 

high cross-reactivity potential (Fig. 6b,c, Methods). On the genus level, Akkermansia, 324 

Alistipes, Bifidobacterium, Lawsonibacter, Oscillibacter, Prevotella, and Sutterella have a 325 

high cross-reactivity potential (Fig. 6d). Indeed, many of them are associated with 326 

autoimmune diseases. For example, Akkermansia muciniphila is abundant in the enthesitis-327 

related arthritis patients37, while Bifidobacterium is enriched in these37 and inflammatory 328 

bowel disease (IBD) patients38. Increased abundance of Oscillibacter is accompanied by 329 

increased levels of interleukin 639, a pro-inflammatory cytokine that can disrupt the immune 330 

homeostasis and increase the risk of autoimmune diseases. The abundance of intestinal 331 

Prevotella copri is strongly correlated with the risk of arthritis40 and Sutterella 332 

wadsworthensis is enriched in ulcerative colitis patients who do not respond to fecal 333 

microbiota transplantation41. These suggests that cross-reactivity potential of commensal 334 

genomes is predictive for human gut microbiota associated with autoimmune diseases. 335 

 336 

Discussion 337 

In the present study, we constructed an improved catalog of the human reference gut 338 

prokaryotic genomes and their proteins, by including MAGs from fecal metagenomes from 339 

under-represented Asian countries. Inclusion of the newly assembled genomes expanded the 340 

catalog size by over 10%. In addition, we demonstrated that database expansion also 341 

significantly improved the taxonomic and functional classification of sequencing reads. Many 342 

new MAGs were associated with diet-related lifestyles at the sampled geographic locations. 343 
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Therefore, complementation of metagenome datasets to account for under-sampled 344 

geographical locations and lifestyles might be an effective strategy for improving the human 345 

reference gut microbiome. 346 

We also demonstrated that the analysis of microbial DNA and peptide sequences facilitates 347 

the understanding of gut commensal speciation and interactions with the host immunity. The 348 

colonizing commensal microbes adjust to their host environment via genetic changes and 349 

selection, which lead to genetic variation within species. We cataloged the SNVs of 350 

conspecific genomes and found that the SNV density of gut prokaryotic species is inversely 351 

correlated with the phylogenetic distance to their neighboring species. This may suggest that 352 

the degree of within-species genetic variation is positively associated with the speciation rate 353 

of gut commensal microbes. Whether SNV actually enhances the speciation rate should be 354 

addressed in future investigations. Finally, we showed that systematic analysis of microbial 355 

peptide sequences homologous to the host auto-antigens allows the prediction of gut 356 

microbial taxa potentially associated with autoimmune disease via the mechanism of 357 

molecular mimicry. Such analysis is only possible if microbial protein sequences are 358 

available with the corresponding taxonomic information.  359 

As the WMS analysis for population-wide human gut microbiome profiling increases in 360 

popularity, the choice of sequencing depth is an important factor to consider in study design. 361 

Here, we demonstrated that deep sequencing (>20 million read pairs) is necessary for reliable 362 

taxonomic profiling of low-abundance commensals. The current knowledge of human gut 363 

microbiome is biased towards core taxa that are usually highly abundant. Low sequencing 364 

depth (e.g., 0.5–2 million read pairs) may be sufficient for the profiling of core taxa, but not 365 

those with low abundance. Deep sequencing may therefore be required for the WMS-based 366 

analysis of human gut microbiome to investigate the function of relatively unexplored low-367 

abundance species. Accordingly, the current study provides the guidelines for the choice of 368 

sequencing-depth for the analysis of human gut microbiome for different purposes. 369 

In conclusion, the HRGM database, which contains information on various biological entities, 370 

from DNA and protein sequences to pan-genomes of species, is a versatile resource for 371 

functional dissection of disease-associated gut microbiota. The data will be available via a 372 

web server (www.mbiomenet.org/HRGM/) and will be periodically updated as new WMS 373 

data for fecal samples become publically available. 374 
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 375 

Methods 376 

Sequencing fecal metagenome samples from Korea, India, and Japan 377 

WMS data for fecal samples from India and Japan were obtained from published studies14,15. 378 

Fecal WMS data for India were generated for 110 healthy donors in North-Central and 379 

Southern India14. Although the sequencing depth was relatively low (1.2 Gbp on average), it 380 

was expected that many novel genomes would be assembled because MAGs from India are 381 

not included in the existing catalogs. By contrast, 805 MAGs from Japan are included in the 382 

UHGG. However, it was expected that the inclusion of the recently published deep-383 

sequencing WMS data for 645 Japanese fecal samples (6.5 Gbp on average)15 would greatly 384 

expand the number of MAGs for Japan. In addition, ultra-deep WMS data (31 Gbp on 385 

average) were generated for fecal samples from 90 Koreans recruited by the Severance 386 

Hospital (Seoul, Korea; IRB No 4-2020-0309 and IRB No 4-2017-0788). Written informed 387 

consent was obtained before the study. The UHGG does not contain any MAGs from Korea.  388 

The libraries were prepared as described in the TruSeq Nano DNA Library Prep Reference 389 

Guide (Illumina #15041110). Briefly, 100 ng DNA was fragmented using LE220 Focused 390 

ultrasonicator (Covaris, Inc.). Fragmented DNA was end-repaired and approximately 350-bp 391 

fragments were obtained after size selection. After adapter ligation, eight PCR cycles were 392 

performed. Library quantification was performed as described in the Kapa Illumina Library 393 

Quantification Kit (Kapa Biosystems, #KK4854). Next, 150 bp ×2 paired-end sequencing 394 

was performed using Illumina HiSeq4000. In summary, new WMS data for 845 fecal 395 

samples collected from Korea, India, and Japan were obtained. The total read length was 7.2 396 

Tbp. All samples used in the current study are described in Supplementary Table 2. 397 

 398 

Metagenome assembly and binning 399 

The adapter sequences were trimmed, and low-quality bases and short reads were removed 400 

from WMS data using Trimmomatic v0.3942. Next, the reads were aligned with the human 401 

genome GRCh38.p7 using Bowtie2 v2.3.543, and the aligned reads were then removed. The 402 

majority of quality-controlled reads were assembled as contigs using metaSPAdes44, which is 403 
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a metagenome-specific pipeline of SPAdes v3.13.0. For unknown reasons, and regardless of 404 

sample size, metaSPAdes runtime was excessively long for 107 samples. In those cases, 405 

MEGAHIT v1.2.845 was used (Supplementary Table 2). 406 

Genome bins were generated using the ensemble approach and three binning tools: 407 

MetaBAT2 v2.1346, MaxBin2.0 v2.2.647, and CONCOCT v1.1.048. First, the reads from each 408 

sample were first aligned with the assembled contigs from the previous step using Bowtie2, 409 

and the three binning programs were initiated. The minimum size of a contig for binning was 410 

set at 1,000 bp, except for MetaBAT2, which requires at least 1,500 bp. The three binning 411 

predictions were combined for improved binning results using the bin refinement module of 412 

MetaWRAP v1.2.212, which uses CheckM v1.0.1849 to evaluate the quality of genome bins in 413 

terms of completeness and contamination rate. The minimum completeness was set at 50%, 414 

the maximum contamination at 5%, and the minimum quality score (Completeness � 5 � 415 

Contamination) at 50. The same threshold values for CheckM results were applied during the 416 

construction of the UHGG. This resulted in 7,767 genomes from Korean samples, 563 417 

genomes from Indian samples, and 20,752 genomes from Japanese samples (29,082 genomes 418 

in total). The genome bins were divided into two groups: HQ, bins with over 90% 419 

completeness and less than 5% contamination; and MQ, bins with 50–90% completeness and 420 

less than 5% contamination.  421 

 422 

Generation of genomic species clusters 423 

Groups of genomes that corresponded to species were generated using a two-step iterative 424 

procedure. Preliminary clustering was performed using Mash v2.250 algorithm. Mash 425 

distances were calculated for all possible pairs of genomes using the “-s 10,000” parameter. 426 

Next, the average-linkage–based hierarchical clustering was performed, at a cutoff of 0.2. 427 

Mash algorithm is sufficiently fast to calculate all-by-all distances for hundreds of thousands 428 

of genomes in a timely manner. However, this compromises the accuracy, especially for low-429 

coverage genome pairs51, which are common in MAGs. Therefore, to improve cluster quality, 430 

ANImf51 was calculated for every pair of genomes within each initial cluster. To avoid the 431 

over-estimation of ANI by local alignment, a minimum coverage threshold was applied for 432 

each pair. The coverage cutoff of genome A and genome B was determined at min(0.8, 433 
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Completeness of genome A � Completeness of genome B). If the alignment coverage between 434 

two genomes was lower than the cutoff, they were regarded as different genomes. The 435 

genomes were then clustered using the average linkage-based hierarchical clustering at a 436 

cutoff of 0.05 (or 95% identity), which is a widely accepted ANI threshold for species-level 437 

boundary4,9-11,52. The genome intactness score (S)9,11, S = Completeness �  5 � 438 

Contamination � 0.5 � log10(N50), was then calculated. For clusters containing more than 439 

two genomes, a genome with the highest S was selected as the representative genome for the 440 

cluster. The above two-step procedure was iterated until the clusters ceased to change. Hence, 441 

2,199 species clusters were generated for 29,082 genomes from KIJ samples, with eight 442 

iterations of the aforementioned procedure (Supplementary Fig. 1a). Finally, the 2,199 443 

genomes were combined with 4,644 genomes from the UHGG, generating 5,414 species 444 

clusters for the HRGM at the fourth iteration (Supplementary Fig. 1b). 445 

 446 

Non-redundant genome counting 447 

To count the number of non-redundant genomes, the redundant genomes were removed, 448 

similar to what was done for the UHGG pipeline11. First, the pairwise genome distance was 449 

calculated using Mash50 and the entire genomes were clustered using average-linkage–based 450 

hierarchical clustering, with a 0.001 cutoff (Mash ANI 99.9%). To reduce the computation 451 

time, the hierarchical clustering was performed only for the connected components with the 452 

distance of 0.1, because it is highly unlikely that genomes that are not within the distance of 453 

0.1 are clustered together by a distance of 0.001. In the process, 22,761 genomes were 454 

clustered into 8,508 conspecific genome bins. Multiple genomes from the same sample in the 455 

same species bin were counted only once. 456 

 457 

Taxonomic and functional annotation of representative species genomes 458 

The taxonomic annotation of 5,414 representative species genomes was performed using the 459 

“classify_wf” function of GTDB-Tk v1.0.218. The reference version was GTDB R04-RS89, 460 

released in June 2019. Genomic features, such as CDS, rRNA, and tRNA, were identified and 461 

annotated in each genome using Prokka v1.14.524 with “--kingdom Bacteria” and “--kingdom 462 

Archaea” parameters for the bacterial and archaeal genomes, respectively. With the protein 463 
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sequences predicted by Prokka, the antibiotic resistance genes were annotated using RGI 464 

v5.1.025 with default parameters. The landscape of antibiotic resistance potential of 5,414 465 

species-representative genomes is depicted in Supplementary Fig. 8. Finally, the secondary 466 

metabolite gene cluster was annotated using antiSMASH v5.1.226. For the full-featured 467 

annotation, the “--cb-general, --cb-knownclusters, --cb-subclusters, --asf, --pfam2go, --468 

smcog-trees, --cf-create-clusters” parameters were set. 469 

To render the HRGM useful for the 16S rRNA sequencing-based metagenomic analysis, the 470 

16S rRNA regions for 5,414 representative species genomes were predicted using barrnap 471 

v0.927 tool and the “--evalue 1e-05” parameter, and “--kingdom bac” and “--kingdom arc” 472 

parameters for bacterial and archaeal genomes, respectively. The 16S rRNA sequences were 473 

thus directly predicted from 1,364 representative species genomes. For the remaining 4,050 474 

representative species, the search for 16S rRNA sequences was expanded to their conspecific 475 

genomes. The barrnap analysis was used for the genomes from KIJ samples and pre-476 

established 16S rRNA region annotations were used for the genomes from the UHGG. 477 

Within the expanded search space, 16S rRNA sequences were identified for 1,178 additional 478 

genomes. Consequently, 16S rRNA sequences were generated for 2,542 species in the 479 

HRGM (Supplementary Fig. 4). 480 

 481 

Cataloging SNVs 482 

For the species bins with more than three genomes, SNVs were identified using the codes 483 

provided by the UHGG11. Briefly, non-representative genomes were aligned with the 484 

representative genome in the species bin using nucmer 4.0.0beta253. Best bi-directional 485 

alignments were identified using the delta-filter program and “-q –r” options, and SNVs were 486 

annotated using the show-snp program; nucmer, delta-filter, and show-snp are software 487 

packages of MUMmer v354. For each species bin (G) whose representative genome is r, the 488 

number of SNV per kb was calculated as follows: 489 

SNV per kb = 
∑

# ����,� 

	
���� 
�����,�/�������������

������
 490 

SNV per kb was only calculated for 1,521 species bins with �10 genomes to avoid bias. For 491 

the 1,521 genomes, the average phylogenetic distance to the five nearest species was 492 
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calculated using the IQ-Tree55. 493 

 494 

Cataloging gut prokaryotic proteins and their functional annotation 495 

Overall, 64,661,728 CDS were identified in 29,082 genomes from the KIJ set using Prodigal 496 

v2.6.322 and “-c -m -p single” parameters. Since many proteins were derived from conspecific 497 

genomes, the catalog may have included many homologous proteins. To reduce the 498 

redundancy in the protein catalog, CD-HIT v4.8.123 was adopted. To reduce CD-HIT running 499 

time, identical proteins were first clustered and then CD-HIT was executed at 100% 500 

similarity level. The cataloged proteins were then combined with those in UHGP-10011. The 501 

consolidated protein catalog was subsequently submitted to CD-HIT clustering analysis at 502 

five different sequence similarity levels, 100%, 95%, 90%, 70%, and 50%. For accurate and 503 

efficient clustering, a multi-step iterative clustering method recommended by the CD-HIT 504 

tutorial was adopted. For instance, the CD-HIT-95 protein catalog (a 95% similarity level 505 

protein catalog) was constructed based on CD-HIT-100 proteins, and the CD-HIT-90 protein 506 

catalog was constructed based on CD-HIT-95 proteins. This resulted in approximately 103.7 507 

million, 20.0 million, 14.8 million, 8.5 million, and 4.7 million proteins at the sequence 508 

similarity levels of 100%, 95%, 90%, 70%, and 50%, respectively. The overall pipeline for 509 

protein catalog construction is depicted in Supplementary Fig. 7. 510 

Representative protein sequences in the five protein catalogs were functionally annotated 511 

using eggNOG-mapper v2.0.128, which is based on the eggNOG protein database v5.056. The 512 

resultant annotations include eggNOG orthologs and functional terms from several databases, 513 

including Gene Ontology (GO)57 and Kyoto Encyclopedia of Genes and Genomes (KEGG)58. 514 

Further, for each protein cluster, taxonomic origins of all member proteins and the lowest 515 

common ancestor of the cluster were tracked and annotated.  516 

The numbers of shared species and shared phyla of proteins in the HRGM-50 protein catalogs 517 

were annotated based on the taxonomic annotation of member proteins. The number of 518 

shared species was binned at the bin size of 10, then the annotation rate for each protein bin 519 

was calculated as the number of annotated proteins divided by the number of proteins in the 520 

bin. 521 

 522 
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Reconstruction of the phylogenetic tree 523 

For the bacterial and archaeal genomes, 120 and 122 universal marker genes, respectively, 524 

were predicted by the GTDB-Tk18. Using the concatenated sequences of marker genes, the 525 

maximum-likelihood tree was generated using IQ-TREE55. The phylogenetic tree of bacterial 526 

genomes was visualized using iTOL59. 527 

 528 

Kraken2 databases 529 

The Kraken2 v2.0.8-beta17 custom database for the HRGM representative genomes was 530 

prepared based on the taxonomic annotations in GTDB-TK18. When two or more genomes 531 

were annotated to the same taxon, they were discriminated at the succeeding lower rank. For 532 

example, if genome a and genome b were both annotated to species_A, genome a and genome 533 

b were annotated as Species_A;strain_1 and Species_A;strain_2, respectively. By doing so, 534 

the user can select a taxonomic rank, thereby measuring species abundances together or 535 

individually. 536 

The Kraken2 database for the UHGG11 was downloaded from UHGG FTP on March 6, 2020. 537 

The Kraken2 standard database was downloaded and constructed using “kraken2-build --538 

standard” command on July 14, 2020. 539 

 540 

Measuring taxonomic classification rate of sequencing reads 541 

WMS data were compiled for publicly available data for 926, 54, and 26 fecal samples from 542 

the US16, Cameroon60, and Luxembourg61,62, respectively. WMS data for 16 fecal samples 543 

collected from Korea, which were not included in the HRGM, were also used. These 1,022 544 

fecal samples were neither used for the UHGG nor for the HRGM. The data were pre-545 

processed and taxonomically classified using Kraken2 with standard database, UHGG-based 546 

database, and HRGM-based database. The taxonomic classification rate was then calculated 547 

based on the proportion of aligned sequence reads in a sample with respect to the database. 548 

 549 

Measurement of functional classification rate of sequencing reads 550 
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The functional classification rate of sequencing reads was determined based on the number of 551 

aligned reads against the protein catalog. For the analysis, WMS data were randomly selected 552 

for ten fecal samples from the Cameroon, Korea, US, and Luxembourg cohorts (the same 553 

samples were used for the taxonomic classification assessment). After pre-processing, 40 554 

samples were aligned with the UHGP-95 and HRGM-95 protein databases using blastx of 555 

DIAMOND v0.9.35.136 63. The results were filtered at >80% query coverage (read coverage) 556 

and >95% alignment identity thresholds. A pair of reads was treated as two independent reads. 557 

For multiple alignments of a read, only the best alignments by bit score and e-value were 558 

considered. 559 

 560 

Finding the optimal sequencing depth for gene-level analysis of the gut microbiome 561 

For five Korean fecal samples, WMS data generated at a sequencing depth of >60 Gbp, the 562 

reads were aligned against the HRGM-95 protein database using blastx of DIAMOND63. 563 

Alignment results with >80% read coverage and 80% identity were included in further 564 

analysis. For each sample, the number of detected genes with at least one aligned read was 565 

counted by iteratively removing 1000 randomly selected reads. The number of the detected 566 

genes for a given sequencing depth exhibited a saturation curve. The curve fitted well (R2 > 567 

0.99 for all samples) the two-site binding model34. The required sequencing depth for a given 568 

gene coverage was determined based on the estimated maximum number of genes according 569 

to the equation. 570 

 571 

Evaluation of the effect of sequencing depth on de novo genome assembly 572 

Nine Korean samples with sequencing depth of >52.5 Gbp (Supplementary Table 2) were 573 

selected for analysis. Then, 0.5, 2.5, 5, 10, 20, 40, 80, 125, and 175 million read pairs were 574 

randomly sampled from each of these samples. As the average read-pair length was 300 bp, 575 

the sequencing depths of these random samples corresponded to 150 Mbp, 750 Mbp, 1.5 Gbp, 576 

3 Gbp, 6 Gbp, 12 Gbp, 24 Gbp, 37.5 Gbp, and 52.5 Gbp, respectively (Supplementary Fig. 577 

2). For the 81 simulated samples (9 samples × 9 depths), de novo genome assembly was 578 

performed using the same pipeline as that used for the database construction. 579 

Two adjacent sequencing depths (e.g., 125 vs. 175 million read pairs) were compared to 580 
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evaluate the effect of sequencing depth on the de novo genome assembly. Samples with a 581 

greater sequencing depth may yield more MAGs with over 50% completeness, yet with a 582 

lower average quality, than those with a lower sequencing depth because of MAGs that 583 

barely pass the completeness threshold. Therefore, instead of the average quality scores of all 584 

assembled genomes, two genomes assembled at different sequencing depths for the same 585 

species clusters were compared. Mash50 clustering of genomes from two random samples was 586 

performed for a comparison based on the average-linkage–based hierarchical clustering, at a 587 

threshold of 0.1 (90% identity). Mash clustering was sufficient for clustering conspecific 588 

genomes in the simulated samples. Indeed, no cluster had more than two genomes from the 589 

same sequencing depth. The assembly quality (completeness, contamination, N50, and 590 

genome size) of conspecific genomes at adjacent sequencing depths was then compared.  591 

 592 

Evaluation of the effect of sequencing depth on taxonomic profiling 593 

To avoid overestimation of performance, WMS data for 16 Korean fecal samples that have 594 

not been used for the HRGM construction and generated at a sequencing depth of >24.5 Gbp 595 

were used. From each of the 16 samples, 1, 5, 10, 20, 40, 60, and 80 million read pairs that 596 

corresponded to 300 Mbp, 1.5 Gbp, 3 Gbp, 6 Gbp, 12 Gbp, 18 Gbp and 24 Gbp, respectively, 597 

were randomly sampled. Taxonomic profiling was then conducted using Kraken2 and the 598 

HRGM-based database. Based on the hypothesis that profiling of low-abundance taxa is more 599 

affected by sequencing depth than abundant ones, the taxonomic features were stratified at 600 

eight different levels of relative abundance, ranging from 1e–07 to 1 with every ten-fold 601 

increase (Fig. 5a,b). PCC and SCC between the taxonomic profiles at different sequencing 602 

depths were then calculated for each group of features for different levels of relative 603 

abundance. 604 

 605 

Profiling cross-reactivity potential of the gut prokaryotic genomes 606 

Epitope sequences from autoimmune disease-related self-antigen were compiled from 607 

IEDB36. “Epitope: Linear epitope”, “Antigen: Organism: Homo sapiens”, “Host: Homo 608 

sapiens”, and “Disease: Autoimmune Disease” filters from the IEDB web portal were applied. 609 

Epitope sequences that required post-translational modification (e.g., citrullination and 610 
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deamination) and epitopes shorter than five amino acids were removed. Next, 24,461 unique 611 

epitope sequences were aligned with the protein sequences encoded by 5,414 species 612 

representatives using BLASTP 64. For meticulous alignment of short peptide sequences, “-613 

word_size 4”, “-evalue 10000”, and “-max_target_seqs 100000” options were applied. For 614 

every epitope-to-gene pairwise alignment, the Alignment Score (AS) was calculated, as 615 

follows: 616 

AS = (match length - gap length) / epitope length 617 

AS = 1 alignments were used and the number of protein-coding genes of autoimmune disease 618 

epitopes was calculated for every representative species. The number of ECGs was positively 619 

correlated with the number of genes. Therefore, the number of ECGs was normalized to the 620 

number of genes. To identify epitope-enriched taxonomic clades, EGC per gene of each 621 

taxonomic group were compared with the entire 5,414 genomes, and Mann–Whitney P-622 

values and fold-change were calculated. 623 

 624 

Data availability 625 

Raw metagenomic sequencing data are available from the Sequence Read Archive (accession 626 

number will be released upon publication). By accessing the web server, 627 

www.mbiomenet.org/HRGM/, users can browse and download all genomes for 5,414 628 

representative species, their annotations, and metadata, including geographical origin, 629 

taxonomy, genomic content, and genome statistics. The five classes of protein catalogs, 16S 630 

rRNA sequences, and SNVs are also provided with their functional annotation and taxonomic 631 

origin. 632 
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 818 

Figure legends 819 

Fig. 1 | Effect of sequencing depth on de novo genome assembly. a, Sequencing depth of 820 

samples from Korea, Japan, and India. Red data points, nine samples used for the generation 821 

of simulated samples for different sequencing depths. b, Total read length of samples from 822 

Korea, Japan, and India. c, The average number of HQ and MQ genomes (left axis) and the 823 

proportion of HQ genomes (right axis) from nine samples. d,e, Completeness (d) and N50 (e) 824 

of assembled genomes from lower sequencing depth (left box of each column) and greater 825 

sequencing depth (right box of each column). f, The number of the assembled genomes from 826 

Korea, Japan, and India. g, Total number of the assembled genomes from Korea, Japan, and 827 

India, and genome assembly yields. h, The relative abundance of 224 Korea-specific, 338 828 

Japan-specific, and 18 India-specific assembled genomes in independent fecal samples from 829 

the US (n = 926). P-values were calculated by two-sided Mann–Whitney U test (**: P < 0.01; 830 

***: P < 0.001). 831 

Fig. 2 | Phylogenetic tree of 5,386 representative genomes of prokaryotic species from 832 

the human gut contained in the HRGM. Maximum-likelihood phylogenetic tree 833 

reconstructed from 120 bacterial marker genes (Methods). Representative genomes were 834 

annotated by their isolated genome availability (1st layer from the inside), phylum 835 

classification (2nd layer), whether they were from UHGG or assembled from KIJ samples 836 

(3rd layer), 16S rRNA sequence availability (4th layer), and genome completeness (the 837 

outermost layer). Red branches represent 410 genomes from the Bacteroidaceae family that 838 

are enriched in the representative genome set updated by including KIJ samples.  839 

Fig. 3 | SNV density analysis of the relationship between within-species variation and 840 

speciation of gut microbes. a, The number of SNVs per kb pair of the aligned region. SNV 841 

density is summarized for each phylum. Boxes are sorted by the median. Arc, archaeal 842 

phylum. b, The phylogenetic tree for Actimobacteriota phylum. Inside annotation indicates 843 

the Collinsella genus, divided into Collinsella with modest phylogenetic dispersion (MD 844 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.09.375873doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.375873
http://creativecommons.org/licenses/by/4.0/


29 

 

Collinsella, Red) and Collinsella with high phylogenetic dispersion (HD Collinsella, Orange). 845 

Black annotations in the outer circle represent Collinsella aerofaciens, Collinsella 846 

aerofaciens_A, Collinsella aerofaciens_E, and Collinsella aerofaciens_F, according to the 847 

GTDB-TK annotation. c, GTDB-TK based taxonomic annotation of MD Collinsella and HD 848 

Collinsella. d, SNV density of HD Collinsella, MD Collinsella, Non-collinsella 849 

actinobacteriota, and other species. e, Scatter plot analysis of SNV density and average 850 

phylogenetic distance to the five nearest species of each representative species. Orange points 851 

denote species of HD Collinsella and black points represent other species. f, Comparison of 852 

SNV density between the top 10% and bottom 90% species sorted from the lowest average 853 

phylogenetic distance to the five nearest species. Statistical significance was calculated by 854 

two-sided Mann–Whitney U test (n.s.: not significant; *: P < 0.05; ***: P < 0.001). 855 

Fig. 4 | Effect of HRGM on taxonomic and functional classification of sequencing reads. 856 

a, Proportion of taxonomically classified sequencing reads of WMS data from four different 857 

populations. The significance of the improvement was calculated by Wilcoxon signed-rank 858 

test. Brown–Forsythe test was used to evaluate the decrease of variance. b,c, Percent 859 

improvement of the read classification proportion in HRGM-based database compared with 860 

the standard database (b) and the UHGG-based database (c). d, The number of reads aligned 861 

to the UHGP-95 and HRGM-95 protein catalogs. Statistical significance was calculated by 862 

using Wilcoxon signed-rank test. 863 

Fig. 5 | Effect of sequencing depth on the reliability of taxonomic profiles. a, The 864 

distribution of taxonomic features over different mean relative abundances. b, The 865 

cumulative proportion of taxonomic features at different thresholds of mean relative 866 

abundance. c,d, Pearson correlation coefficient (PCC) (c) and Spearman correlation 867 

coefficient (SCC) (d) of the taxonomic profiles at the given sequencing depth and 80M 868 

fragments. The x-axis (the mean relative abundance threshold) indicates the upper boundary 869 

of the mean relative abundance. 870 

Fig. 6 | Landscape of cross-reactivity potential of gut prokaryotic genomes. a, The 871 

number of genes and autoimmune epitope sequence-containing genes (ECG) in 5,414 872 

genomes of species representatives. Red and orange points, species with the top 1% and 5% 873 

ECG per gene, respectively. b, Volcano plot of the enrichment of ECG density. Taxonomic 874 

clades with positive log2 fold-change and P < 1e–5 are highlighted with different colors. 875 
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Taxonomic clades denoted by the same color have an inclusive relationship (e.g., 876 

g_Prevotella belongs to f_Bacteroidaceae), with the exception of p_Bacteroidota, 877 

c_Bacteroidia, and o_Bacteroidales. The first character of each clade name indicates the 878 

taxonomic levels (p: phylum; c: class; o: order; f: family; and g: genus). c, The red-879 

highlighted area from (b). d, Maximum-likelihood phylogenetic tree with taxonomic 880 

annotations of clades with high ECG density. The first layer represents clades with the top 1% 881 

(red) and 5% (orange) ECG density [annotations and color designations are the same as in 882 

(a)]. The second and third layers represent enriched taxonomic clades in the volcano plot 883 

[taxonomic annotations and color designations are the same as in (b) and (c)]. The second 884 

layer represents above-genus level annotations. The third layer represents genus-level 885 

taxonomic clades. 886 

 887 
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