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Abstract 11 

Networks are powerful tools to represent and investigate biological systems. The development of 12 
algorithms inferring regulatory interactions from functional genomics data has been an active area of 13 
research. With the advent of single-cell RNA-seq data (scRNA-seq), numerous methods specifically 14 
designed to take advantage of single-cell datasets have been proposed. However, published 15 
benchmarks on single-cell network inference are mostly based on simulated data. Once applied to real 16 
data, these benchmarks take into account only a small set of genes and only compare the inferred 17 
networks with an imposed ground-truth. 18 

Here, we benchmark four single-cell network inference methods based on their reproducibility, i.e. 19 
their ability to infer similar networks when applied to two independent datasets for the same biological 20 
condition. We tested each of these methods on real data from three biological conditions: human retina, 21 
T-cells in colorectal cancer, and human hematopoiesis.    22 

GENIE3 results to be the most reproducible algorithm, independently from the single-cell sequencing 23 
platform, the cell type annotation system, the number of cells constituting the dataset, or the 24 
thresholding applied to the links of the inferred networks. In order to ensure the reproducibility and 25 
ease extensions of this benchmark study, we implemented all the analyses in  scNET, a Jupyter 26 
notebook available at https://github.com/ComputationalSystemsBiology/scNET.   27 

1 Introduction 28 

Biological systems are inherently complex, in particular because of the emergent phenotypic properties 29 
arising from the interaction of their numerous molecular components. Characterizing genotype to 30 
phenotype connections and deregulations toward disease thus requires to identify the biological 31 
macromolecules involved (e.g. genes, mRNAs, proteins), but also how these interact in a huge diversity 32 
of cellular pathways and networks (Barabási and Oltvai, 2004). 33 

In the post-genomic era, biological networks have been extensively exploited to investigate such 34 
complex interactions among biological macromolecules (Barabási et al., 2011; Sonawane et al., 2019; 35 
Silverman et al., 2020). Network-based studies brought crucial insights into cell functioning and 36 
diseases (Basso et al., 2005; Margolin et al., 2006; Ideker and Sharan, 2008). A network is a graph-37 
based representation of a biological system, where the nodes represent objects of interest (e.g. genes, 38 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.10.375923doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.10.375923
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
2 

mRNAs, proteins), while the edges represent relations between these objects (e.g. gene co-expression, 39 
or binding between two proteins). Different approaches can be used to reconstruct biological networks. 40 
Here, we focus on data-driven methods, which infer networks from gene expression data with the help 41 
of reverse engineering techniques (Sonawane et al., 2019).  42 

Network inference algorithms were first proposed to extract information from bulk gene expression 43 
data, and their development has been an active area of research for more than 20 years (Barabási et al., 44 
2011; Verny et al., 2017; Sonawane et al., 2019; Silverman et al., 2020). With the advent of single-cell 45 
RNA sequencing (scRNA-seq), we started to gather transcriptomic data from individual cells, enabling 46 
proper studies of their heterogeneity. However, the analysis of scRNA-seq data comes with a variety 47 
of computational challenges (e.g. small number of sequencing reads, systematic noise due to the 48 
stochasticity of gene expression at single-cell level, dropouts) that distinguish this data type from its 49 
bulk counterpart. For this reason, network inference methods originally developed for bulk gene 50 
expression data may not be suitable for data generated from single cells. The development of network 51 
inference algorithms has thus recently undergone a strong shift towards the design of methods targeting 52 
single-cell data (Fiers et al., 2018). 53 

Two benchmarks of single-cell network inference methods have been published (Chen and Mar, 2018; 54 
Pratapa et al., 2020). Both works evaluate network inference algorithms by comparing the inferred 55 
network with a ground-truth. These works are also mostly focused on simulated data and they apply a 56 
strong filtering on genes (leaving only 100-1,000 genes for network inference). Chen et al. (Chen and 57 
Mar, 2018) considered five methods targeting bulk data and three methods specifically designed for 58 
single-cell data. More recently, Paratapa et al. (Pratapa et al., 2020) focused on twelve methods 59 
designed for single-cell data. Both benchmarks concluded that the overall performances of all methods 60 
were quite disappointing, and that network inference remains a challenging problem.  61 

Here, we evaluate network inference algorithms based on their reproducibility, i.e. their ability to infer 62 
similar networks once applied to two independent datasets for the same biological condition (e.g. two 63 
independent scRNA-seq datasets of colorectal cancer). The rationale behind this comparison is that, if 64 
the two independent datasets are profiled from the same biological condition (e.g. colorectal cancer) 65 
involving the same cell types, we can expect that the regulatory programs underlying them should 66 
strongly overlap. As a consequence, a good network inference algorithm should infer highly 67 
overlapping networks when applied to single-cell datasets profiled from the same biological condition. 68 
Starting from the work of Paratapa et al., we selected the four algorithms that do not require an ordering 69 
of the cells according to pseudo-time and we tested the reproducibility of the inferred networks in three 70 
biological systems: human retina, T-cells in colorectal cancer and human hematopoiesis. Differently 71 
from previous benchmarks, we only applied a soft filtering on genes, thus testing the algorithms based 72 
on their performances to infer networks involving from 6000 to 12000 nodes/genes. 73 

From our benchmark, GENIE3 emerges as the most reproducible network inference algorithm. 74 
Interestingly this performance is not influenced by the single-cell sequencing platform, the cell type 75 
annotation system, the number of cells constituting the single-cell dataset, or the thresholding applied 76 
to the links of the inferred networks.  In order to ensure the reproducibility and ease extensions of this 77 
benchmark study, we implemented all the analyses in a Jupyter notebook, called scNET and available 78 
at https://github.com/ComputationalSystemsBiology/scNET.   79 

 80 

2 Materials and Methods 81 
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2.1 Single-cell network inference algorithms benchmarked 82 

Starting from the exhaustive collection of single-cell network inference algorithms presented in 83 
(Pratapa et al., 2020), two main categories of methods can be distinguished. Some methods interpret 84 
scRNA-Seq as time-course expression data, where the pseudo-time corresponds to the time 85 
information. These methods are frequently based on Ordinary Differential Equations (ODEs) and are 86 
relevant for biological systems undergoing dynamic transcriptional changes (e.g. scRNA-Seq 87 
performed on differentiating cells) (Matsumoto et al., 2017). In contrast, other methods do not use 88 
pseudo-time information to infer networks. These methods generally use statistical measures (e.g. 89 
correlation, mutual information) to infer regulatory connections and are thus better suited for 90 
transcriptomic data not affected by strong dynamical processes (e.g. retina cells in normal state).  91 

Testing reproducibility strictly requires the availability of two independent scRNA-seq datasets 92 
reflecting the same biological condition and presenting as few as possible technical variations. Indeed, 93 
the presence of technical variations due to the sequencing or experimental procedures could drastically 94 
impact the conclusions of our work. In this respect, finding independent scRNA-seq datasets reflecting 95 
dynamic transcriptional changes, generated with the same experimental procedure, is really 96 
challenging. We thus decided to focus our benchmark study on network inference methods that do not 97 
use the pseudo-time information. Four single-cell network inference methods are thus considered in 98 
this evaluation: GENIE3 (Huynh-Thu et al., 2010), GRNBoost2 (Moerman et al., 2019), PIDC (Chan 99 
et al., 2017) and PPCOR (Kim, 2015). Of note, the first three algorithms are also the best performing 100 
in the benchmark of Pratapa et al. 101 

GEne Network Inference with Ensemble of Trees (GENIE3) (Huynh-Thu et al., 2010) is a tree-based 102 
network inference method. For each gene G1 in the expression dataset, GENIE3 solves a regression 103 
problem, determining the subset of genes whose expression is the most predictive of the expression of 104 
G1. This method was the best performing algorithm in the DREAM4 In Silico Multifactorial challenge 105 
(Greenfield et al., 2010). GENIE3 requires in input the scRNA-seq expression matrix and a list of 106 
Transcription Factors (TFs). In our tests the list of human TFs provided in input corresponds to the 107 
intersection between the expressed genes and those annotated as encoding TFs by (Chawla et al., 2013). 108 
The output of GENIE3 is a weighted network linking TFs with predicted target genes. The weight 109 
associated with each link corresponds to its Importance Measure (IM), which represents the weight 110 
that the Transcription Factor has in the prediction of the level of expression of the target gene. No post 111 
processing threshold has been applied to the inferred links. 112 

GRNBoost2 (Moerman et al., 2019) has been developed as a faster alternative to GENIE3. It is thus 113 
based on a regression model, using a stochastic gradient boosting machine regression. The inputs and 114 
outputs of GRNBoost2 are the same as for GENIE3, and no post processing threshold has been applied 115 
to the inferred links. Both GRNBoost2 and GENIE3 are part of the SCENIC workflow (Aibar et al., 116 
2017). 117 

PPCOR (Kim, 2015) infers the presence of a regulatory interaction between two genes by computing 118 
the correlation of their expression patterns. To control for possible indirect effects, partial correlation 119 
is used instead of a simple correlation, where partial correlation is a measure of the relationship between 120 
two variables while controlling for the effect of other variables. The only input of PPCOR is the 121 
expression matrix. The output of PPCOR is a weighted network, where all links are weighted based on 122 
the partial correlation between the expression values of the linked nodes/genes. The network produced 123 
by PPCOR is complete, i.e. all nodes are connected with all. We thus had to filter the links of the 124 
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inferred network based on the significance of the correlation values associated to the links (P-value 125 
threshold 0.05). 126 
Partial Information Decomposition and Context (PIDC) (Chan et al., 2017) is based on concepts from 127 
information theory and uses partial information decomposition (PID) to identify potential regulatory 128 
relationships between genes. The only input of PPCOR is the expression matrix and its output is a 129 
weighted gene-gene network.  130 

2.2 Data acquisition and preprocessing 131 

Fourteen public scRNA-seq datasets have been used for this benchmark: Menon and Lukowski 132 
obtained by profiling huma retina cells; Zhang and Li profiling T-cells in colorectal cancer (CRC); Hay 133 
and Setty profiling human hematopoiesis cells. See Table 1 for a complete description of these datasets. 134 
The hematopoiesis datasets were split according to their cell type of origin. Only those cell types 135 
reported in both studies by Hay et al. and Setty et al. were considered. We thus obtained a total of 10 136 
scRNA-seq datasets in hematopoiesis spanning five cell types: HSC, CLP, Monocyte, Erythroblast and 137 
Dendritic Cell.  138 

After downloading the data, we filtered the genes based on their total count number (< 3 *0.01*number 139 
of cells), as well as on the number of cells in which they are detected (>0.01*number of cells), as 140 
described in (Aibar et al., 2017). The gene filtering is performed on each dataset independently. Then, 141 
for each biological condition (CRC T-cells, retina, hematopoiesis), only the genes retained for both 142 
datasets were selected for network inference. The number of genes retained after filtering are reported 143 
in the last column of Table 1. Finally, the data were log2-normalised before applying the different 144 
network inference algorithms. 145 

2.3 Indexes employed to measure the reproducibility of the network inference algorithms 146 

Percentage of intersection (perINT) and Weighted Jaccard Similarity (WJS) have been employed here 147 
to test the reproducibility of the network inference algorithms. The percentage of intersection is used 148 
to detect the presence of links shared between two compared networks, while WJS takes into account 149 
the similarity of the weights associated with the links shared between the compared networks.  150 

Given two networks N1 and N2 inferred respectively from scRNAseq datasets D1 and D2, and 151 
indicating as |"| the number of links in the network N, the percentage of intersection (perINT) is 152 
computed as: 153 

#$%&"'("1,"2) = 	|#$∩#&|
'()	(|#$|,|#&|), 154 

while the Weighted Jaccard Similarity (WJS) (Tantardini et al., 2019), is defined as  155 

./0("1,"2) = ∑ '()(.!",.#$)
|&|
!'"

∑ '/0(.!",.#$)
|&|
!'"

,  156 

where 1$, 1&  are the vectors of weights associated with the links in common between N1 and N2.  157 

In addition, to compare the inferred links to a ground-truth, we also considered a RcisTarget score 158 
derived from the application of the RcisTarget tool (Aerts et al., 2010; Aibar et al., 2017). Given a 159 
network of TF-gene interaction, RcisTarget predicts candidate target genes of a TF by looking at the 160 
DNA motifs that are significantly over-represented in the surroundings of the Transcription Start Site 161 
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(TSS) of all the genes that are linked to the TF. We here consider the links validated by RcisTarget as 162 
ground-truth and we compare them with the inferred networks, by computing: 163 

2345'6%7$8	53:%$("1) = 	)1'234	56	7()89	:4393);	()	#$	/)<	=/7(</;3<	2>	?@(9A/4B3;
|#$| .  164 

In the case of the methods inferring links between all genes, a selection of links connecting TFs with 165 
possible target genes is performed before computing the RcisTaget score.  166 

2.4 Testing if the number of links in the networks affects our reproducibility score  167 

The number of links inferred by the network inference algorithm can affect our reproducibility tests. 168 
For example, in the extreme case of a method inferring complete networks, the perINT score would be 169 
100%. To test whether our results were affected by the number of links inferred by the different 170 
methods, we constructed a null model. Starting from the two networks inferred in a given biological 171 
condition (e.g. human retina), we randomly reshuffled the links of the two networks independently and 172 
tested the reproducibility scores. The reshuffling of the links in GENIE3 and GRNBoost2 was realized 173 
taking into account the different roles played by TFs and the other genes in the network. After repeating 174 
this procedure 10,000 times, we could verify the positioning of the real reproducibility scores with 175 
respect to the distribution obtained with the null model, and thereby assign p-values to the scores. 176 

 177 

3 Results 178 

Starting from the work (Pratapa et al., 2020) we selected the four single-cell network inference 179 
algorithms that do not require an ordering of the cells according to pseudo-time (GENIE3, GRNBoost2, 180 
PPCOR and PIDC, see Materials and Methods) and we evaluated them based on their reproducibility, 181 
i.e. their ability to infer similar networks once applied to two independent datasets from the same 182 
biological condition (e.g. two independent scRNA-seq datasets of colorectal cancer). The 183 
reproducibility is measured based on Percentage of intersection (perINT) and Weighted Jaccard 184 
Similarity (WJS) (see Materials and Methods). In addition, we computed the intersection with a 185 
ground-truth, based on the RcisTarget score (see Materials and Methods). The evaluation is repeated 186 
across three biological conditions: human retina, T-cells in colorectal cancer and human hematopoiesis, 187 
for a total of fourteen independent scRNAseq datasets. See Figure 1 for an overview of the benchmark 188 
workflow. 189 

While in previous benchmarks (Chen and Mar, 2018; Pratapa et al., 2020) a low number of highly 190 
variable genes had been taken into account (100-1000 genes), we here tested the ability of the 191 
algorithms to infer networks involving all expressed genes (see Materials and Methods for details on 192 
the procedure used to filter genes). Indeed, filtering only the top 100-1,000 varying genes is a strong 193 
limitation. Restricting the nodes of the inferred network to a low number of genes is reasonable when 194 
a manually curated list of relevant genes is available (for example marker genes identified by wet-lab 195 
experiments). However, when such a list is not available, working only with the top 100-1000 varying 196 
genes may overlook genes and interactions playing a key role in the regulatory programs of the 197 
biological system. We thus tested the various network inference algorithms once applied to scRNAseq 198 
datasets containing 6,000-11,000 genes. 199 

In our test cases, PIDC failed to reconstruct the networks for two main reasons: (i) the algorithms was 200 
slow, especially in the discretization step required to infer the network, and (ii) the use of multivariate 201 
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information measures impose to have a number of genes much lower than the number of cells, thus 202 
requiring to drastically filter out the starting set of genes. Overall, PIDC thus resulted to be more 203 
adequate to infer small networks (100-1,000 nodes/genes), which are not the focus of this work.  204 

3.1 Reproducibility in human retina 205 

We applied GENIE3, GRNBoost2 and PPCOR to two independent scRNA-seq datasets of human 206 
retina, reported in (Menon et al., 2019) and in (Lukowsk et al., 2019) (see Materials and Methods). 207 
After filtering, the two datasets span 6,212 common genes across a comparable number of cells: 20,091 208 
in Menon versus 20,009 in Lukowski.  209 

We thus inferred a total of six networks. Of note, similar network sizes were obtained across the three 210 
network inference algorithms and across datasets, encompassing approximately one million links each 211 
(see Supplementary Table 1 for details). We then evaluated the reproducibility of each algorithm by 212 
computing the Percentage of intersection (perINT) and the Weighted Jaccard Similarity (WJS) between 213 
the networks inferred independently from the two datasets The percentage of intersection is intended 214 
to test the amount of common links between the two networks, while the WJS takes also into account 215 
the similarity of the weights associated with the common links.   216 

As shown in Figure 2A, GENIE3 is the algorithm showing the highest reproducibility according to 217 
both indexes, with a perINT reaching 100% and a WJS at 0.67. Our null model confirms that these 218 
results are not affected by the number of inferred links (see Materials and Methods for further details 219 
and Supplementary Table 2 for the corresponding P-values). At the same time, in agreement with the 220 
results of the previous benchmarks, the intersection with the ground true considered remains rather 221 
low, with RcisTarget scores ranging within 0-1.9%.   222 

3.2 Reproducibility in colorectal cancer (CRC) T-cells 223 

We further tested the performances of GENIE3, GRNBoost2 and PPCOR in colorectal cancer (CRC) 224 
T-cells. The two datasets used in this case are taken from (Zhang et al., 2019) and (Li et al., 2017) (see 225 
Materials and Methods), restricting the last dataset to only T-cells (see Materials and Methods). After 226 
filtering, we obtained datasets composed of 11,242 common genes and a widely varying number of 227 
cells: 10,805 for Zhang and 35 for Li.  228 

Applying GENIE3, GRNBoost2 and PPCOR independently to the two datasets, we observe a high 229 
variability in the number of inferred links, which tend to be much lower in Li et al. compared  to Zhang 230 
et al., presumably due to the high difference in the number of cells profiled in the two datasets (see 231 
Supplementary Table 2 for details). At the same time, variations across algorithms could be also 232 
observed, with GENIE3 inferring the highest number of links (three million and six million in Li and 233 
Zhang, respectively). Of note, PPCOR has been excluded from this comparison, as it produced partial 234 
correlation values outside the range [-1;1] for the Li et al. dataset.  235 

After computation of the perINT and WJS (Figure 2B), GENIE3 emerged as the best performing 236 
method, with a perINT of 99.9% and a WJS of 0.25. Our null model confirms that these results are not 237 
affected by the higher number of links inferred by GENIE3 (see Materials and Methods for further 238 
details and Supplementary Table 2 for the corresponding P-values). Also, in this case, the RcisTarget 239 
score reflecting the intersection with a ground-truth is quite low (3.1-3.6%). Of note, despite the low 240 
number of cells reported by Li, the RcisTarget score obtained in this dataset is comparable with those 241 
obtained in networks inferred from much larger datasets. 242 
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3.3 Reproducibility in human Hematopoiesis  243 

Human hematopoiesis has been used as the third biological context for the comparison of GENIE3, 244 
GRNBoost2 and PPCOR. The hematopoiesis datasets were split according to the different cell types 245 
profiled: HSC, CLP, Monocyte, Erythroblast and Dendritic Cell, obtaining a total of 10 scRNA-seq 246 
datasets. Networks were thus inferred on each cell type independently with GENIE3, GRNBoost2 and 247 
PPCOR, resulting in a total of 30 networks. Also, in this case, GENIE3 led to the highest number of 248 
links (approximately 2 million in all cell types), while GRNBoost2 and PPCOR led to numbers of links 249 
varying from 700 thousands to one million (see Supplementary Table 1). As for CRC T-cells, PPCOR 250 
produced networks composed of links with partial correlation higher than 1 and/or lower than -1 for 251 
some CLPs, and Monocytes. For this reason, we did not consider PPCOR in the reproducibility 252 
evaluation for these cell types.  253 

The reproducibility was then tested for each cell type using the perINT and WJS indexes (Figure 2C-254 
D). Here also, GENIE3 displayed the best performances with percentages of intersection reaching 97-255 
100% and WJS at 0.5-0.66. Our null model confirms that these results are not affected by the higher 256 
number of links inferred by GENIE3 (see Materials and Methods for further details and Supplementary 257 
Table 2 for the obtained P-values). Consistently with previous observations, the RcisTarget scores 258 
remains low (3.5-4.3%) for all cell types and all methods (Figure 2E). 259 

3.4 Stability with respect to link thresholding in the inferred networks 260 

All the networks inferred by GENIE3, GRNBoost2 and PPCOR could be thresholded based on the 261 
distribution of the weights associated with their links. In the results presented above, the networks 262 
inferred with GENIE3 and GRNBoost2 did not undergo any filtering, given that these tools already 263 
perform a selection on the links. In contrast, the networks obtained with PPCOR are complete (i.e. 264 
everything is connected with everything), calling for a filtering of the links, which was done based on 265 
the significance of the correlation values (see Materials and Methods).  266 

To test if more stringent filtering could alter our conclusions regarding the reproducibility of the 267 
benchmarked methods, we filtered the links of the inferred networks based on the distribution of the 268 
weights of these links. For all network inference methods, we imposed three thresholds on the weight 269 
distribution of the links, retaining the 40th, 80th and 90th percentiles. After thresholding, the 270 
intersection between the networks inferred on independent datasets from the same biological condition 271 
were evaluated, using the percINT and WJS as above.  272 

As shown in Figure 3, the performances of all network inference methods tend to decrease when the 273 
threshold is increased, suggesting that the weight of the links is not a good proxy for their 274 
reproducibility. Overall, GENIE3 remains the best performing method independently on the threshold 275 
employed.  276 

3.5 Stability with respect to technical variations in the input data: number of profiled cells, 277 
sequencing platform and cell type annotation 278 

In the experiments performed above, we tested the reproducibility of the network inference algorithms 279 
by using two independent datasets for each biological condition (e.g. human retina). A limitation of 280 
this approach comes from the technical differences between the protocols followed to generate these 281 
datasets: different sequencing platforms, different procedures used for the annotation of the cell types, 282 
and different number of cells. All these technical differences could impact our results.  283 
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To evaluate the stability of the results against technical variations, we used the largest dataset, from 284 
(Menon et al., 2019), encompassing 20,091 cells. We splitted this dataset into two subsets, keeping the 285 
proportions of the various cell types constant. We then applied the three network inference algorithms 286 
independently to the two subsets and we evaluated the reproducibility of the algorithms using perINT 287 
and WJS, as in the previous tests.  To further assess the effect of the number of cells on network 288 
inference, we split the same scRNAseq dataset generated by Menon et al. three times to obtain couples 289 
of datasets encompassing decreasing number of cells: 100,000,1,000 and 100.  Note that for all these 290 
comparisons, the sequencing platform and/or the method/technique used to annotate the cells are 291 
identical for all subsets 292 

PPCOR inferred networks for 100,000 and 1,000 cells, but failed at 100 cells by displaying correlation 293 
values outside the range [-1;1] (see Supplementary Table 3). In addition, as shown in Figure 4, GENIE 294 
3 emerged again as the best performing method in all cases. Of note, when varying the number of cells 295 
in the input data, the percentage of intersection and the number of links barely vary (see Figure 4 and 296 
Supplementary Table 3), while the WJS decreases more drastically (from 0.8 to 0.3 for GENIE3).   297 

3.6 The scNET Jupyter notebook  298 

To foster the reproducibility of all the results and figures presented in this study, we implemented the 299 
corresponding code in a Jupyter notebook available at 300 
https://github.com/ComputationalSystemsBiology/scNET together with the associated Conda 301 
environment containing all the required libraries installed. Importantly, scNET can be used to 302 
benchmark new network inference algorithms based on their reproducibility, or further test GENIE3, 303 
PPCOR and GRNBoost2 on user-provided datasets.  304 

 305 

4 Discussion 306 

Starting from the benchmark of Paratapa et al., we evaluated the network inference algorithms from a 307 
complementary perspective by assessing their reproducibility. We were thus interested to test if the 308 
algorithms would infer the same network once applied to pairs of independent datasets from the same 309 
biological condition (e.g. T-cells in colorectal cancer). Our benchmark focused on real patient-derived 310 
data spanning three biological contexts: human retina, T-cells in CRC, and human hematopoiesis cells. 311 
We thus span highly different biological contexts, going from cancer tissue, to isolated healthy immune 312 
cells, and to a mixture of normal retina cells combined in a single dataset. Importantly, we aimed at 313 
inferring networks involving a much higher number of genes compared to previous works. 314 

In agreement with previous benchmarks, all network inference algorithms generated networks having 315 
low intersections with ground-truth. Of note the ground-truth considered here, based on RcisTarget, is 316 
different and complementary to those used in previous benchmarks. This disappointing result might 317 
arise for different reasons, potentially adding up. Limitations can be present in the input data, as 318 
scRNAseq may not provide sufficient resolution for reliable network inference. Turning to the 319 
inference algorithm, limitations may arise from underlying statistical assumptions. Finally, the ground-320 
truth network considered here and in previous benchmarks may not be sufficiently comprehensive.  321 

GENIE3 consistently generated the most reproducible results across all the three biological contexts 322 
considered. Furthermore, its performances proved to be stable with respect to the single-cell 323 
sequencing platform, the cell type annotation system, the number of cells considered as well as with 324 
respect to the thresholding applied to the links of the inferred networks. PPCOR provided values 325 
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outside the normal range of correlation values ([-1,1]) for datasets having less than 1000 cells. Such 326 
inconsistencies are likely due to numerical problems arising when the input dataset encompasses many 327 
more genes than cells.  328 

The main limitation of this benchmark is the number of considered network inference algorithms. 329 
Future extensions of this study could include pseudotime-based network inference methods, once 330 
adequate datasets will become available. To date, available independent datasets relevant for 331 
pseudotime-based network inference algorithms (e.g. cells profiled during development stimulation) 332 
present too many experimental variations to be employed for a reliable evaluation of reproducibility. 333 
Of note, such extensions will be greatly facilitated by taking advantage of the Jupyter notebook 334 
(scNET) provided as supplementary material.       335 
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Table1. Datasets employed in this benchmark 434 
Data 
Name 

Biological 
context 

Sequencing 
technology 

Number of 
cells 

Cell type annotation 
strategy 

Associated 
publication 

Number of genes 
after preprocessing 

Menon Human retina 10X Genomics 20,091 manually curated 
marker genes 

(Menon et al., 
2019) 

6212 

Lukowski Human retina 10X Genomics 20,009 no annotation (Lukowski et 
al., 2019) 

6212 

Zhang CRC T-cells Smart-Seq2, 10,805 FACS sorted (Zhang et al., 
2019) 

11242 

Li CRC T-cells HiSeq 2000 
Illumina 

375 cells (of 
which 35 T-

cells) 

manually curated 
marker genes 

(Li et al., 2017) 11242 

Hay human 
hematopoiesis 

10X Genomics 101,935 MarkerFinder ICGS (Hay et al., 
2018) 

7038 

Setty human 
hematopoiesis 

10X Genomics 12,046 Sorted bulk 
hematopoietic 
populations 

(Setty et al., 
2019) 

7038 

 435 

Figures Legends 436 

Figure 1. Summary of the workflow followed in this benchmark. 437 
 438 
Figure 2. Reproducibility performances of the various network inference algorithms across the 439 
three biological contexts: human retina, colorectal cancer T-cells and human hematopoiesis.  A 440 
and B report summarise the Percentage of intersection (perINT), Weighted Jaccard Similarity (WJS) 441 
and RcisTarget score obtained by the benchmarked algorithms (GRNBoost2, GENIE3 and PPCOR) 442 
in human retina and colorectal cancer T-cells respectively. C-E summarize the performances of the 443 
same algorithms  in hematopoiesis, with perINT (in C), WJS (in D) and RcisTarget score (in E). 444 
 445 
Figure 3. perINT and WJS according to different network thresholding. The perINT and WJS 446 
are here reported for varying thresholds on the weight distribution of the links of the inferred 447 
networks.  THe results are reported for all the tested datasets (A) retina, (B) CRC T-cells, (C ) CLPs, 448 
(D) Dendritic cells, (E) Erythrocytes, (F) HSCs, (G) Monocytes. 449 
 450 
Figure 4. Stability of the network inference performances with respect to technical variations in 451 
the input data. Reproducibility scores of GRENBoost2 (red), GENIE3 (black) and PPCOR (yellow) 452 
across different splittings of the Menon, M. et al. retina dataset. A and B correspond to the percentage 453 
of intersection (perINT) and Weighted Jaccard Similarity (WJS), respectively.  454 
 455 
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Data Name Algorithm Number of links
PPCOR 598539

GENIE3 1552750

GRNBoost2 1421357

PPCOR 1184848

GENIE3 1552750

GRNBoost2 1355892

PPCOR 1237822

GENIE3 5833037

GRNBoost2 3006644

PPCOR NA

GENIE3 2950874

GRNBoost2 765846

PPCOR 571935

GENIE3 2448676

GRNBoost2 801816

PPCOR NA

GENIE3 2321809

GRNBoost2 764244

PPCOR NA

GENIE3 2418779

GRNBoost2 799381

PPCOR 761300

GENIE3 2461623

GRNBoost2 1787691

PPCOR 1703169

GENIE3 2453534

GRNBoost2 1184762

PPCOR 566853

GENIE3 2447457

GRNBoost2 726544

PPCOR NA

GENIE3 2332534

GRNBoost2 607112

PPCOR 514936

GENIE3 2452913

GRNBoost2 962318

PPCOR 249941

GENIE3 2448696

GRNBoost2 1143651

PPCOR 360772

GENIE3 2457673

GRNBoost2 1265417

Setty et 
al. Erythroblast

Setty et al. 
Dendritic Cell

Supplementary Table 1. Number of links in 

the various inferred networks.

Hay et 
al. Monocytes

Hay et 
al. Erythroblast

Hay et al. 
Dendritic Cell

Setty et al. HSC

Setty et al. CLP

Setty et 
al. Monocytes

Menon et al.

Lukowski et al.

Zhang et al.

Li et al.

Hay et al. HSC

Hay et al. CLP
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Data Name Algorithm P-value null model
PPCOR 0.176
GENIE3 ≤0.001
GRNBoost2 ≤0.001
PPCOR NA
GENIE3 ≤0.001
GRNBoost2 ≤0.001
PPCOR NA
GENIE3 ≤0.001
GRNBoost2 ≤0.001
PPCOR NA
GENIE3 ≤0.001
GRNBoost2 ≤0.001
PPCOR NA
GENIE3 ≤0.001
GRNBoost2 ≤0.001
PPCOR NA
GENIE3 ≤0.001
GRNBoost2 ≤0.001
PPCOR NA
GENIE3 ≤0.001
GRNBoost2 ≤0.001

CLP Hay et al.  
and Setty et al.

 Monocytes Hay 
et al. and Setty et 

al.

Erythroblast Hay 
et al.  And Setty et 

al.

 Dendritic Cell 
Hay et al. and 

Setty et al.

Supplementary Table 2. P-values null model. 
The perINT index of our experiments are here 

compared in respect to the distribution of 
perINT indexes obtained over 1000 random 

reshufflings of the networks. The value ≤0.001 
correspond to a zero over 1000 runs, which 

indicates a P-value lower than 0.001.

Retina Manon etal 
and Lukowski et 

al.

CRC T-cells 
Zhang et al. and Li 

et al.

 HSC Hay et al. 
and Setty et al.

Number of 
cells in 

subsampling
Algorithm Number of links 

dataset 1

Number of 
links 

dataset 2
PPCOR 4963433 4966521
GENIE3 2417821 2417821
GRNBoost2 1959586 1971026
PPCOR 645320 646830
GENIE3 2417602 2417653
GRNBoost2 1462312 1391567
PPCOR NA NA
GENIE3 1987003 2157024
GRNBoost2 666438 959804

10000

1000

100

Supplementary Table 3. Number of links obtained for 
different subsamplings of the human retina dataset 

(Menon et al., 2019)
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