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3 Supplemental   Materials   and   Methods   

4 Sample   collection   

5 Sample   collection   was   as   described   by   Youngblut   and   colleagues    (Youngblut   et   al.   
6 2019) .   Samples   used   in   this   study   were   collected   between   February   2009   and   March   2014.   
7 Only   fresh   samples   with   confirmed   origin   from   a   known   host   species   were   collected.   Table   S1   
8 lists   all   dates,   locations,   and   other   relevant   metadata   associated   with   each   sample.   All   fecal   
9 samples   were   collected   in   sterile   sampling   vials,   transported   to   a   laboratory   and   frozen   within   8   

10 hours.   DNA   was   extracted   with   the   PowerSoil   DNA   Isolation   Kit   (MoBio   Laboratories,   Carlsbad,   
11 USA).     

12 16S   rRNA   gene   sequencing   and   data   processing   
13 PCR   amplicons   for   the   V4   region   of   the   16S   rRNA   gene   were   generated   with   primers   
14 arch516F-arch915R    (Takai   and   Horikoshi   2000;   Raymann   et   al.   2017)    and   were   sequenced   with   
15 the   Illumina   MiSeq   2   ×   250   v2   Kit   at   the   Max   Planck   Institute   for   Developmental   Biology.   DADA2   
16 (Callahan   et   al.   2016)    was   used   to   generate   amplicon   sequence   variants   (ASVs).   Taxonomy   
17 was   assigned   to   ASVs   with   the   QIIME2   q2-feature-classifier    (Bokulich   et   al.   2018)    using   the   
18 SILVA   database   (v119)    (Pruesse   et   al.   2007) .   All   ASVs   not   classified   as   Archaea   were   removed.   
19 Rarefaction   analysis   using   alpha   diversity   quantified   via   the   Vegan   R   package   (Shannon   Index;   
20 (Oksanen   et   al.   2012) )   or   the   iNEXT   R   package   (Hill   numbers:   order   =   1;    (Hsieh,   Ma,   and   Chao   
21 2016) )   revealed   that   archaeal   diversity   saturated   at   a   sampling   depth   of   approximately   250   
22 (Figure   S4).   Therefore,   the   dataset   was   rarefied   to   this   depth,   with   all   samples   lacking   this   depth   
23 filtered   out.   Due   to   the   low   prevalence   of   ASVs   across   host   species   (1.8%   ±   23   s.d.),   we   did   not   
24 employ   the   standard   compositional   data   analysis   transformation   of   centered   log   ratio   (CLR),   
25 given   the   large   number   of   zero   values   in   the   dataset   that   would   need   to   be   imputed   as   non-zero   
26 values   prior   to   the   transformation.   We   found   such   imputation   by   either   using   a   pseudo   count   of   
27 1   or   imputing   via   the   Bayesian-multiplicative   replacement   method   implemented   in   the   
28 zCompositions    (Palarea-Albaladejo   and   Martín-Fernández   2015)    R   package   generated   
29 unrealistic   distributions.   QIIME2   was   used   to   calculate   alpha   and   beta   diversity.   To   limit   
30 saturation   of   star-phylogeny   beta   diversity   measures   ( i.e.,    no   overlap   of   any   ASVs   across   
31 samples   leading   to   maximum   diversity   values),   we   first   aggregated   ASV   counts   at   the   
32 genus-level.   A   phylogeny   was   inferred   for   all   ASV   sequences   with   fasttree    (Price,   Dehal,   and   
33 Arkin   2010)    based   on   a   multiple   sequence   alignment   generated   by   mafft    (Katoh   and   Standley   
34 2013) .   All   samples   lacking   relevant   metadata   used   in   the   study   were   filtered   from   the   dataset.   In  
35 cases   where   an   individual   host   was   sampled   multiple   times,   we   randomly   selected   one   sample.   
36 Samples   from   the   16S   rRNA   amplicon   dataset   of   Youngblut   and   colleagues   were   
37 previously   sequenced   and   process   in   the   same   manner   as   done   for   the   arch516F-arch915R   
38 amplicon   dataset,   with   the   exception   that   the   primers   515F-806R   were   used   and   samples   were   
39 rarefied   to   a   depth   of   5000    (Youngblut   et   al.   2019) .   To   compare   ASVs   classified   as   Archaea   in   
40 each   dataset,   we   filtered   out   all   non-archaeal   ASVs.   For   our   analyses   of   Bacteria-Archaea   
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41 interactions,   we   removed   all   archaeal   ASVs   from   the   515F-806R   dataset.   Alpha   and   beta   
42 diversity   were   calculated   as   stated   above   on   genus-level   abundances.     

43 Host   phylogeny   
44 Only   21%   of   animals   in   our   dataset   have   existing   genome   assemblies   of   any   quality   in   
45 which   to   infer   a   genome-based   phylogeny   from.   Instead,   we   used   a   dated   host   phylogeny   for   all   
46 species   from    http://timetree.org     (Kumar   et   al.   2017) .   We   created   a   phylogeny   for   all   samples   by   
47 grafting   sample-level   tips   into   each   species   node   with   a   negligible   branch   length   (Figure   S5).   

48 Intra-species   sensitivity   analysis   

49 The   dataset   consisted   of   a   differing   number   of   samples   per   host   species   and   no   
50 intra-species   phylogenetic   relatedness   data.   Instead   of   just   randomly   subsampling   one   sample   
51 per   species   or   using   branches   of   zero   length   for   phylogeny-based   hypothesis   testing,   we   
52 instead   employed   a   sensitivity   analysis   to   assess   robustness   to   intra-species   variability.   The   
53 sensitivity   analysis   was   performed   as   described   in   Youngblut   and   colleagues    (Youngblut   et   al.   
54 2019) .   Briefly,   for   each   hypothesis   test,   we   generated   100   permutation   datasets   in   which   one   
55 sample   was   randomly   selected   per   species.   A   hypothesis   test   was   considered   robustly   
56 significant   if   >95%   of   the   permutation   datasets   generated   a   significant   result   (P   <   0.05   unless   
57 otherwise   noted).   

58 Data   analysis   
59 We   used   BLASTn    (Camacho   et   al.   2009)    to   assess   similarity   of   ASVs   to   cultured   
60 representatives   in   the   SILVA   All   Species   Living   Tree   database    (Quast   et   al.   2013) ,   with   an   
61 E-value   cutoff   of   <1e-5.   All   BLAST   hits   with   an   alignment   length   <95%   of   the   query   sequence   
62 length   were   filtered   out.   
63 Multiple   regression   on   matrices   (MRM)   was   performed   with   the   Ecodist   R   package   
64 (Goslee   and   Urban   2007) .   We   used   rank-based   correlations   and   999   permutations   to   ascertain   
65 test   significance.   Regression   variables   that   were   not   inherently   distance   matrices   were   
66 converted   via   various   means.   Gower   distance   was   used   to   convert   detailed   diet   data,   detailed   
67 habitat   data,   and   “technical”   data   ( i.e.,    captive/wild   animal   and   feces/gut-contents   sample   type)   
68 to   distance   matrices.   Geographic   distance   was   calculated   as   Great   Circle   distance   based   on   
69 sample   latitude   and   longitude.   Alpha   diversity   was   converted   to   a   Euclidean   distance   matrix.   
70 Principal   coordinate   analysis   (PCoA)   ordinations   were   generated   for   each   beta   diversity   
71 measure   via   the   Vegan   R   package    (Oksanen   et   al.   2012) .     
72 Pagel’s   λ   and   the   local   indicator   of   phylogenetic   association   (LIPA)   were   calculated   via   
73 the   Phylosignal   R   package    (Keck   et   al.   2016) ,   with   999   and   9999   permutations   used,   
74 respectively.   We   tested   for   cophylogeny   with   the   Procrustes   Application   to   Cophylogenetic   
75 Analysis   (PACo)   and   ParaFit,   implemented   in   the   PACo    (Hutchinson   et   al.   2017)    and   APE   
76 (Paradis,   Claude,   and   Strimmer   2004)    R   packages,   respectively.   For   both   tests,   the   Cailliez   
77 correction    (Cailliez   1983)    for   negative   eigenvalues   was   applied,   and   999   permutations   were   
78 used   to   assess   significance.   Tests   of   trait   associations   were   performed   with   phylogenetic   
79 generalized   least   squares   (PGLS)   and   randomization   of   residuals   in   a   permutation   procedure   
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80 (RRPP),   implemented   in   the   phytools   and   RRPP   packages    (Collyer   and   Adams   2018) ,   
81 respectively.   To   ascertain   significance,   999   permutations   were   used   for   both   methods.     
82 Ancestral   state   reconstruction   models   were   fit   to   archaeal   taxon   abundances   (extant   
83 traits)   via   the   phylopars   method   as   implemented   in   the   Rphylopars   package    (Goolsby,   
84 Bruggeman,   and   Ané   2017) .   The   method   incorporates   intra-species   trait   variation,   so   all   
85 samples   were   used   instead   of   employing   an   intra-species   sensitivity   analysis   (see   above).   We   
86 first   compared   log-likelihoods   of   four   different   models:   Brownian   Motion,   Ornstein-Uhlenbeck,   
87 Early-Burst,   and   Star-Phylogeny.   Brownian   Motion   and   Ornstein-Uhlenbeck   models   had   the   
88 best   log-likelihoods   for   class-   and   genus-level   archaeal   abundances,   respectively.   Predicted   trait   
89 values   were   visualized   on   the   host   phylogeny   via   the   Phytools   R   package.   
90 Tables   S6   and   S7   list   published   body   temperature   and   methane   emission   data   used   in   
91 this   study.     
92 Significant   patterns   of   Archaea-Archaea   and   Archaea-Bacteria   co-occurrence   were   
93 inferred   via   the   cooccur   R   package    (Griffith,   Veech,   and   Marsh   2016) .   Subnetworks   in   each   
94 co-occurrence   network   were   identified   with   the   walktrap   algorithm    (Pons   and   Latapy   2005) .     
95 General   data   manipulation   and   visualization   was   performed   in   R    (R   Core   Team   2020)   
96 with   the   following   R   packages:   dplyr,   tidyr,   and   ggplot2    (Wickham   2009) .   Phylogenies   were   
97 manipulated   and   visualized   with   the   APE   and   phytools   R   packages   and   with   iTOL    (Letunic   and   
98 Bork   2016) .   Networks   were   manipulated   and   visualized   with   the   igraph    (Csardi   and   Nepusz   
99 2006) ,   tidygraph    (Pedersen   2018b) ,   and   ggraph    (Pedersen   2018a)    R   packages.   High   

100 performance   computing   cluster   job   submission   was   performed   via   the   batchtools    (Lang,   Bischl,   
101 and   Surmann   2017)    and   clustermq    (Schubert   2019)    R   packages.   For   ASV-specific   tests   ( e.g.,   
102 LIPA,   PGLS,   and   co-occurrence),   only   ASVs   present   in   >5%   of   samples   were   included.   Multiple   
103 hypothesis   testing   was   corrected   via   the   Benjamini-Hochberg   procedure.   

104 Supplemental   Results   

105 Prevalence   and   diversity   of   Archaea   across   vertebrate   clades   
106 Of   311   genomic   DNA   samples   from   5   vertebrate   taxonomic   classes,   185   (60%)   passed   
107 16S   rRNA   PCR   amplification,   MiSeq   sequencing,   and   sequence   data   quality   control   (Table   S2).   
108 Success   rates   were   highest   for   Reptilia   (73%)   and   Aves   (67%),   58%   for   Mammalia,   50%   for   
109 Amphibia,   and   50%   for   Reptilia   (Figure   S2).   The   185   successful   samples   comprised   mostly   wild   
110 individuals   (76%)   and   a   total   of   110   species,   with   a   mean   1.7   ±   4.3   s.d.   samples   per   species   
111 (Figure   S1).   Mammalia   made   up   the   majority   of   samples   (72%);   still,   non-mammalian   samples   
112 spanned   22   families   and   35   genera.   In   regards   to   diet,   success   rates   were   70,   56,   and   46%   for   
113 herbivores,   omnivores,   and   carnivores,   respectively   (Figure   S2).   Feces   samples   had   a   
114 substantially   higher   success   rate   (62%)   versus   gut   contents   (38%),   but   there   was   little   
115 difference   between   wild   and   captive   individuals   (62   versus   56%,   respectively).   The   mean   
116 per-species   success   rate   was   61%   ±   49   s.d.,   and   when   just   assessing   species   with   >1   sample   
117 (72   of   158),   the   success   rate   was   63%   ±   37.3   s.d.   Plotting   the   number   of   successful   and   failed   
118 samples   onto   a   phylogeny   of   all   species   showed   that   success   often   varied   among   individuals   of   
119 a   species   (Figure   S3).   In   addition,   some   phylogenetic   clustering   of   success   rates   could   be   
120 observed.   Indeed,   when   just   considering   mammalia,   which   made   up   the   majority   of   samples   
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121 (73%),   the   orders   Lagomorpha,   Carnivora,   and   Rodentia   had   the   lowest   success   rates   (<50%   
122 for   each),   while   success   rates   were   100%   for   Monotremata,   Perissodactyla,   and   Proboscidea   
123 (Figure   S2).   While   these   findings   are   compelling,   one   must   consider   that   failure   may   have   
124 resulted   from   many   phenomena   besides   absence   of   Archaea   from   the   gut,   such   as   PCR   
125 inhibitors   or   insufficient   DNA   for   effective   amplification.   Still,   success   across   highly   varied   host   
126 taxonomic   groups,   diets,   and   sample   types   indicates   that   Archaea   are   widespread   among   
127 vertebrates,   regardless   of   diet.   
128 Rarefaction   analysis   using   the   Shannon   index   revealed   that   archaeal   diversity   saturated   
129 at   a   low   sampling   depth   of   approximately   250   sequences,   regardless   of   the   host   class   (Figure   
130 S4).   We   confirmed   these   results   with   another   rarefaction   method   that   extrapolates   diversity   
131 beyond   obtained   sampling   depths,   with   diversity   based   on   Hill   numbers   (Figure   S4).   These   
132 results   contrast   most   gut   microbiome   studies   using   the   commonly   used   “universal”   Earth   
133 Microbiome   16S   rRNA   primer   set   515F-806R,   in   which   bacterial   and   archaeal   diversity   is   
134 usually   not   saturated   for   the   sampling   depths   reached    (Walters   et   al.   2016;   Thompson   et   al.   
135 2017;   Youngblut   et   al.   2019) .   
136 The   dataset   comprised   1891   amplicon   sequence   variants   (ASVs),   with   a   rather   diverse   
137 taxonomic   composition   for   Archaea,   comprising   6   phyla   (Asgardaeota,   Crenarchaeota,   
138 Diapherotrites,   Euryarchaeota,   Nanoarchaeaeota,   Thaumarchaeota)   and   10   classes   (Figure   1).   
139 Class-level   taxonomic   compositions   were   fairly   consistent   among   individuals   of   each   host   
140 species   (Figure   S5;   Table   S3).   We   note   that   Asgardarchaeota   and   Diapherotrites   were   each   
141 only   represented   by   1   ASV,   and   each   were   found   in   only   1   species:   Asgardaeota   in   the   the   
142 European   Otter   ( Lutra   lutra )   and   Diapherotrites   in   the   Smooth   Newt   ( Lissotriton   vulgaris ).   
143 Neither   clade   is   known   to   be   animal-associated    (Borrel   et   al.   2020) .   Also,   the   Thermococci   class   
144 (Euryarchaeota   phylum)   comprised   only   2   ASVs,   with   one   only   found   in   the   Common   Carp   
145 ( Cyprinus   carpio )   and   the   other   in   the   European   Otter.   Both   ASVs   were   classified   as   
146 Methanofastidiosales,   with   one   identified   as   Methanofastidiosum.   No   member   of   this   class   is   
147 known   to   be   host-associated    (Söllinger   and   Urich   2019;   Borrel   et   al.   2020) .   Plotting   mean   
148 abundances   of   taxonomic   classes   onto   a   tree   of   all   species   revealed   that   Methanobacteria   
149 (Euryarchaeota   phylum)   dominated   in   many   species,   but   dramatically   different   microbiome   
150 compositions   were   observed   scattered   across   the   phylogeny.   For   instance,   Thermoplasmata   
151 (Euryarchaeota   phylum)   dominated   in   multiple   non-human   primates,   while   two   Mammalia   and   
152 one   Aves   species   were   nearly   completely   comprised   of   Nitrososphaeria   (Thaumarchaeaota   
153 phylum):   the   European   badger   ( Meles   meles ),   the   Western   European   Hedgehog   ( Erinaceus   
154 europaeus ),   and   the   Rook   ( Corvus   frugilegus ).   Halobacteria   (Euryarchaoeota   phylum)   
155 dominated   the   Goose   ( Anser   anser )   microbiome,   which   were   all   sampled   from   salt   marshes.   
156 The   class   was   also   noticeably   present   in   some   distantly   related   animals   inhabiting   high   salinity   
157 biomes   ( e.g.,    the   Nile   Crocodile   and   the   Short   Beaked   Echidna;   Tables   S1   &   S3).   
158 Bathyarchaeia,   a   class   in   the   Crenarchaea   phylum   according   to   the   SILVA   database   taxonomy   
159 but   also   known   as   the   Candidatus   Bathyarchaeota   phylum,   are   not   known   to   inhabit   the   
160 vertebrate   gut    (Borrel   et   al.   2020) ;   however,   we   observed   a   total   of   9   Bathyarchaeia   ASVs   in   8   
161 samples,   comprising   6   species   spanning   4   taxonomic   classes   (all   except   Mammalia;   Table   S4).   
162 The   total   relative   abundance   was   <0.5%   in   4   of   the   species,   while   substantially   higher   (3.3%)   in   
163 the   Nile   Crocodile   ( Crocodylus   niloticus ),   and   quite   abundant   in   2   Smooth   Newt   samples   (17.9   
164 and   42.2%).   
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165 Only   40%   of   ASVs   had   a   ≥97%   sequence   identity   match   (a   pseudo-species   level)   to   any   
166 cultured   representative   in   the   All   Species   Living   Tree   database   (Figure   S6A).   Of   the   10   
167 taxonomic   classes   represented   by   all   ASVs,   5   had   no   match   at   ≥85%   sequence   identity:   
168 Odinarchaeia,   Bathyarchaeia,   Iainarchaeia,   Woesarchaeia,   and   Thermococci.   Taxonomic   
169 novelty   to   cultured   representatives   differed   substantially   among   the   other   5   classes   (Figure   
170 S6B);   only   Methanobacteria   had   >50%   ASVs   with   a   species-level   match   (52%),   while   <20%   of   
171 ASVs   belonging   to   Thermoplasmata   and   Nitrososphaeria   had   such   a   match.   These   findings   
172 suggest   that   our   dataset   consists   of   a   great   deal   of   uncultured   taxonomic   diversity.   

173 Archaea-targeting   primers   reveal   much   greater   archaeal   diversity   

174 We   compared   the   archaeal   diversity   identified   with   the   archaeal-targeting   primers   
175 (“16S-arc”)   used   in   this   study   to   the   standard   “universal”   16S   rRNA   primers   (“16S-uni”)   used   by   
176 Youngblut   and   colleagues   on   many   of   the   same   samples    (Youngblut   et   al.   2019) .   Importantly,   
177 both   datasets   were   processed   in   the   same   manner   (see   Methods).   A   total   of   140   samples   
178 overlapped   between   the   two   datasets,   with   the   majority   of   species   (77%)   consisting   of   
179 mammals,   but   all   5   classes   were   represented   (Figure   S7).   The   16S-uni   primers   generated   a   
180 total   of   169   ASVs,   which   is   only   12.1%   of   archaeal   ASVs   generated   by   the   16S-arc   primers   for   
181 the   same   samples.   All   archaeal   classes   except   the   Soil   Crenarchaeal   Group   were   substantially   
182 more   represented   in   the   16S-arc   dataset,   with   6   classes   completely   absent   from   the   16S-uni   
183 dataset:   Nitrososphaeria,   Woesarchaeia,   unclassified   Eukyarchaeota,   Iainarchaeia,   
184 Bathyarchaeia,   and   Odinarchaeia.   Besides   the   Soil   Crenarchaeal   Group,   class-level   prevalence   
185 across   host   species   was   substantially   higher   across   hosts   when   grouped   by   taxonomic   class   or   
186 diet   (Figure   S7).   For   example,   Methanobacteria   was   observed   in   all   host   species   via   the   
187 16S-arc   primers,   while   prevalence   dropped   substantially   for   16S-uni   primers   ( e.g.,    only   9%   for   
188 Aves).   These   findings   show   that   the   “universal”   NGS   16S   rRNA   primers   used   for   most   
189 microbiome   studies   can   substantially   undersample   archaeal   diversity,   as   previously   observed   
190 (Raymann   et   al.   2017;   Koskinen   et   al.   2017;   Pausan   et   al.   2019)   

191 Host   diet   and   evolutionary   history   explain   various   aspects   of   archaeal   diversity   
192 We   used   multiple   regression   on   matrices   (MRM)   to   assess   which   potential   factors   
193 explain   archaeal   beta   diversity.   We   employed   this   approach   because   archaeal   beta   diversity,   
194 host   phylogenetic   relatedness,   and   geographic   distance   can   be   inherently   represented   as   
195 distance   matrices,   while   distances   can   be   calculated   for   other   explanatory   factors   such   as   
196 similarity   of   detailed   diet   compositions   (see   Methods).   Due   to   a   lack   of   within-species   
197 phylogenetic   relatedness   data,   we   used   one   individual   per   host   species   and   assessed   
198 intra-species   variation   by   repeating   the   analysis   99   more   times,   each   time   with   one   randomly   
199 selected   individual   per   species.   Unless   otherwise   noted,   this   permutation-based   intra-species   
200 sensitivity   analysis   was   used   for   all   hypothesis   testing.   
201 Geographic   distance,   habitat,   and   technical   components   ( e.g.,    feces   versus   gut   
202 contents)   did   not   significantly   explain   beta   diversity,   regardless   of   the   diversity   metric   (Figure   
203 2A).   Host   phylogeny   significantly   explained   diversity   as   measured   by   unweighted   UniFrac,   Bray   
204 Curtis,   and   Jaccard;   however,   significance   was   not   quite   reached   for   weighted   UniFrac.   The   
205 percent   variation   explained   was   dependent   on   the   beta   diversity   measure   and   varied   from   ~28%   
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206 for   Jaccard   to   ~12%   for   unweighted   UniFrac.   In   contrast   to   host   phylogeny,   diet   was   only   
207 explanatory   for   Bray-Curtis,   with   ~12%   of   variance   explained.   Mapping   the   major   factors   onto   
208 ordinations   qualitatively   supported   our   results   (Figure   S8).   Applying   the   same   MRM   analysis   to   
209 just   non-mammalian   species   did   not   generate   any   significant   associations   between   host   
210 phylogeny   or   diet   (Figure   S9),   likely   due   to   the   low   sample   sizes   ( n    =   39).   However,   host   
211 phylogeny   did   have   comparable   coefficients   as   when   including   all   species   and   were   nearly   
212 significant   for   both   the   Bray-Curtis   and   Jaccard   indices,   while   diet   showed   no   such   trend   
213 towards   significance.   These   findings   suggest   that   host   evolutionary   history   mediates   vertebrate   
214 gut   archaeal   diversity   more   than   diet,   with   diet   mainly   altering   the   abundances   of   archaeal   ASVs   
215 shared   by   various   hosts,   while   host   phylogeny   also   alters   the   composition   of   archaeal   taxa.     
216 We   also   assessed   alpha   diversity   via   MRM   in   order   to   provide   a   consistent   comparison   
217 to   our   beta   diversity   assessment,   with   alpha   diversity   represented   here   as   a   euclidean   distance   
218 matrix   (Figure   S10).   In   contrast   to   beta   diversity,   no   factors   significantly   explained   alpha   
219 diversity   calculated   via   either   the   Shannon   Index   or   Faith’s   Phylogenetic   Diversity   (Faith’s   PD).   
220 Of   note,   geographic   distance   nearly   significantly   explained   Shannon   Index   diversity   (P   =   0.06),   
221 while   the   same   was   true   of   habitat   for   Faith’s   PD   (P   =   0.16).   

222 A   signal   of   Archaea-Vertebrata   co-phylogeny   

223 To   test   for   corresponding   phylogenetic   associations   on   both   the   host   phylogeny   and   the   
224 archaeal   16S   rRNA   phylogeny,   we   employed   two   approaches   to   quantify   signals   of   
225 co-phylogeny:   Procrustes   Application   to   Cophylogenetic   Analysis   (PACo)   and   ParaFit    (Paradis,  
226 Claude,   and   Strimmer   2004;   Hutchinson   et   al.   2017) .   Both   PACo   and   ParaFit   tests   were   both   
227 significant   (P   <   0.01)   for   each   of   the   100   permutations   of   subsampling   one   individual   per   host   
228 species,   indicating   a   signal   of   co-phylogeny   that   is   robust   to   intra-species   microbiome   variation.   
229 We   investigated   which   host   species   showed   the   strongest   signal   of   cophylogeny   by   assessing   
230 the   distribution   of   PACo   Procrustes   residuals,   which   provide   an   indication   of   local   congruence   
231 between   phylogenies   (lower   residuals   indicate   a   stronger   congruence).   Mammalia   showed   a   
232 substantially   stronger   association   relative   to   the   other   four   classes   (Figure   2D),   with   residuals   
233 decreasing   in   the   order   of   Actinopterygii   >   Amphibia   >   Reptilia    >   Aves   ≫   Mammalia,   and   these   
234 differences   were   significant   (Kruskal-Wallis   <   0.01;   pairwise   Wilcox   <   0.01   for   all).   In   regards   to   
235 diet,   residuals   were   significantly   lower   for   herbivores   relative   to   omnivores   and   carnivores   
236 (Wilcox,   P   <   0.0001),   while   carnivores   and   omnivores   did   not   significantly   differ   (Figure   2E).   

237 Specific   archaeal   ASVs   are   associated   with   host   phylogeny     
238 Given   the   evidence   of   host   phylogeny   explaining   aspects   of   archaeal   gut   microbiome   
239 diversity,   we   sought   to   further   resolve   this   association   by   testing   whether   archaeal   taxon   
240 abundance   is   clustered   on   the   host   phylogeny.   We   found   37   ASVs   to   show   significant   global   
241 phylogenetic   signal   (Pagel’s   λ,   adj.   P   <   0.05)   spanning   three   phyla:   Euryarchaota,   
242 Thaumarchaeota,   and   Crenarchaeota   (Figure   2C).   The   clade   with   the   highest   number   of   
243 significant   ASVs   ( n    =   15)   was   Methanobacteriaceae,   followed   by   Nitrososphaeraceae   ( n    =   12),   
244 and   Methanocorpusculaceae   ( n    =   5).   While   lambda   coefficients   varied   across   ASVs,   most   
245 showed   a   very   strong   association   (Pagel’s   λ   >   0.9),   with   major   exceptions   being   a   
246 Methanosarcinaceae   ASVs   and   an   unclassified   Methanomicrobia   ASV   (Figure   2C).     
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247 We   next   tested   for   local   phylogenetic   signals   to   resolve   archaeal   taxon   specificities   for   
248 particular   host   clades.   We   used   the   local   indicator   of   phylogenetic   association   (LIPA)   and   found   
249 25   ASVs   to   have   significant   associations   with   certain   host   clades.   Mapping   significant   
250 associations   on   the   host   phylogeny   revealed   that   clade-specificity   was   generally   shallow   and   
251 often   spanned   only   2   species   (Figure   S12).   For   instance,   4   Nitrososphaeraceae   ASVs   were   
252 associated   with   2   snake   species   ( Zamenis   longissimus    and    Natrix   natrix ),   3   Methanobrevibacter   
253 ASVs   were   associated   with   2   species   of   kangaroo   ( Macropus   giganeus    and    Macropus   
254 fuliginosus ),   and   a   Methanocorpusculum   ASV   was   associated   with   both   camel   species   
255 ( Camelus   dromedarius    and    Camelus   bactrianus ).   The   2   major   exceptions   to   this   trend   were   the   
256 Methanothermobacter   ASVs,   which   associated   with   many   species   of   Aves,   while   the   
257 Methanobrevibacter   and   Methanosphaera   ASVs   associated   with   many   Artiodactyla   species   
258 (true   ruminants;   Figures   S12).   Summarizing   the   number   microbe-host   clade   associations   
259 revealed   clear   partitioning   of   archaeal   taxa   by   host   clade,   except   for   Methanobrevibacter,   for   
260 which   at   least   one   ASV   was   associated   with   each   host   order   for   which   any   phylogenetic   signal   
261 was   observed   ( n    =   23;   Figure   S12B).   Altogether,   these   results   help   to   resolve   which   particular   
262 archaeal   clades   are   most   strongly   associated   with   host   evolutionary   history.     
263   We   also   tested   for   phylogenetic   signal   of   alpha   diversity   but   found   no   significant   global   
264 associations   when   measuring   diversity   via   the   Shannon   Index   or   Faith’s   PD   (P   >   0.05)   and   no   
265 local   associations   (adj.   P   >   0.05).   These   findings   correspond   with   our   MRM   analysis   of   alpha   
266 diversity   in   that   host   phylogenetic   relatedness   does   not   seem   to   correspond   with   total   archaeal   
267 diversity   in   the   gut.   

268 Specific   methanogen   ASVs   are   associated   with   diet   

269 We   used   two   methods   to   resolve   the   specific   effects   of   diet   on   the   archaeal   microbiome   
270 while   controlling   for   host   evolutionary   history:   phylogenetic   generalized   least   squares   (PGLS)   
271 and   randomization   of   residuals   in   a   permutation   procedure   (RRPP).   The   former   is   a   common   
272 test   for   association   between   traits   while   controlling   for   phylogenetic   relatedness,   while   the   latter   
273 can   exhibit   higher   statistical   power   while   minimizing   false   positives    (Revell   2010;   Collyer   and   
274 Adams   2018) .   PLGS   identified   10   ASVs   as   being   significantly   associated   with   diet   (adj.   P   <   
275 0.05;   Figure   S11).   All   ASVs   belonged   to   the   Euryarchaeota   phylum,   and   comprised   4   genera:   
276 Methanobrevibacter,   Methanosphaera,   Methanothermobacter,   and   candidatus   
277 Methanomethylophilus.   The   RRPP   analysis   identified   the   same   10   ASVs   along   with   5   more   that   
278 belonged   to   the   same   genera   (Figure   2B).   We   used   the   RRPP   models   to   predict   ASV   
279 abundances   with   95%   confidence   intervals   (CIs)   for   each   diet   in   order   to   determine   diet-specific   
280 enrichment.   Methanobacteria   ASVs   differed   in   their   responses   to   diet,   with   5   being   most   
281 abundant   in   herbivores,   while   the   other   6   were   more   abundant   in   omnivores/carnivores   (Figure   
282 2B).   Notably,   diet   enrichment   differed   even   among   ASVs   belonging   to   the   same   genus.   In   
283 contrast   to   the   Methanobacteria   ASVs,   all   4   Methanomethylophilus   ASVs   were   predicted   as   
284 more   abundant   in   omnivores/carnivores.   These   findings   suggest   that   diet   influences   the   
285 abundances   of   particular   ASVs,   and   even   closely   related   ASVs   can   have   contrasting   
286 associations   to   diet.   All   significant   ASVs   were   methanogens,   which   may   be   due   to   the   species   
287 studied   (e .g.,    a   mammalian   bias)   or   possibly   because   certain   methanogens   respond   readily   to   
288 diet,   possibly   due   to   syntrophic   associations   with   diet-specific   bacteria.  
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289 When   applied   to   alpha   or   beta   diversity,   neither   PGLS   nor   RRPP   identified   any   
290 significant   associations   with   diet   after   accounting   for   host   phylogenetic   relatedness.   These   
291 findings   correspond   with   our   MRM   analyses   by   indicating   that   diet   is   not   a   strong   moduator   of   
292 overall   archaeal   diversity   in   the   vertebrate   gut,   although   certain   ASVs   do   seem   to   be   
293 substantially   affected   (Figures   2B   &   S11).   

294 Evidence   of   widespread   Methanobacteria   presence   in   the   ancestral   vertebrate   gut   
295 We   utilized   ancestral   state   reconstruction   (ASR)   to   investigate   which   archaeal   clades   
296 were   likely   present   in   the   ancestral   vertebrate   gut.   Traits   were   defined   as   archaeal   taxon   
297 abundances.   Notably,   we   used   a   method   that   incorporated   intra-species   trait   variance,   allowing   
298 us   to   directly   utilize   the   entire   host   dataset   for   the   reconstruction   (see   Methods).   Our   model   for   
299 predicting   class-level   abundances   was   overall   quite   accurate   at   extant   species   trait   prediction   
300 (adj.   R 2    =   0.86,   P   <   2e-16;   Figure   S14).   However,   predictions   were   not   accurate   for   2   of   the   6   
301 classes   (Halobacteria   and   Nitrososphaeria,   P   >   0.1),   likely   due   to   low   prevalence   across   extant   
302 host   species   (Figures   2   &   S15).   Excluding   the   poorly   predicted   classes,   the   95%   CIs   for   
303 predicted   abundances   were   constrained   enough   to   be   informative   (mean   of   26   %   ±   29   s.d.)   
304 across   extant   and   ancestral   host   species.   The   model   revealed   that   Methanobacteria   was   
305 uniquely   pervasive   across   ancestral   nodes,   while   other   classes   were   sparsely   distributed   among   
306 extant   taxa   and   across   a   few,   more   recent   ancestral   nodes   (Figures   2   &   S15).   Moreover,   the   
307 model   predicted   that   Methanobacteria   was   the   only   class   to   be   present   in   the   last   common   
308 ancestor   (LCA)   of   all   mammals   and   the   LCA   of   all   5   host   taxonomic   classes   (Figure   3B   &   3C).   
309 We   also   generated   an   ASR   model   for   genus-level   abundances   of   all   genera   in   the   
310 Methanobacteria   class   in   order   to   resolve   the   association   between   Methanobacteria   clades   and   
311 the   ancestral   vertebrate   gut.   Our   model   was   somewhat   more   accurate   at   predicting   extant   traits   
312 than   our   class-level   model   (R 2    =   0.93,   P   <   2e-16;   Figure   S14),   and   all   4   genera   were   accurately   
313 predicted   (P   <   5.5e-10   for   all).   Predicted   trait   value   95%   CIs   were   again   informative   (mean   of   28   
314 ±   24   s.d.).   The   model   predicted   3   of   the   4   genera   to   be   present   in   the   LCA   of   all   mammals   and   
315 the   LCA   of   all   host   species   (Figure   3F   &   3G).   Of   the   3,   Methanobrevibacter   and   
316 Methanothermobacter   were   predicted   to   have   similar   abundances   for   both   LCAs   (~30-35%),   
317 while   Methanosphaera   was   much   lower   (~5%).   Mapping   predicted   abundances   onto   the   host   
318 phylogeny   revealed   that   Methanobrevibacter   was   predicted   as   most   highly   abundant   in   the   
319 Artiodactyla   and   generally   abundant   across   most   Mammalia   clades   (Figure   S16).   In   contrast,   
320 Methanothermobacter   was   predicted   to   be   most   highly   abundant   and   prevalent   across   the   Aves   
321 and   also   mammalian   clades   in   which   Methanobrevibacter   was   less   abundant   ( e.g.,    Carnivora   
322 and   Rodentia).   Methanosphaera   was   predicted   to   be   prevalent   across   most   animal   clades,   but   
323 generally   at   low   abundance.   

324 Methanothermobacter   abundance   is   correlated   with   body   temperature   
325 Methanothermobacter   is   not   known   to   be   host-associated    (Borrel   et   al.   2020) ;   still,   we   
326 observed   a   total   of   39   Methanothermobacter   ASVs   spanning   78   samples   (mean   of   18   ±   30   s.d.   
327 samples   per   ASV),   which   strongly   suggests   that   its   presence   is   not   due   to   contamination.   
328 Moreover,   the   top   BLASTn   hit   for   36   of   the   39   ASVs   was   to   a   cultured   Methanothermobacter   
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329 strain   (Figure   S17,   Table   S5),   including   the   top   15   most   abundant   ASVs,   which   indicates   that   
330 the   taxonomic   annotations   are   demonstrably   correct.     
331 The   high   prevalence   of   Methanothermobacter   among   Aves   lead   us   to   the   hypothesis   
332 that   body   temperature   significantly   affects   the   distribution   Methanothermobacter   (Figure   S18),   
333 given   that   birds   generally   have   higher   body   temperatures   than   mammals    (Clarke   and   O’Connor   
334 2014)    and   all   existing   Methanothermobacter   cultures   are   thermophiles    (Bonin   and   Boone   2006) .   
335 Moreover,   Methanothermobacter   is   not   abundant   in   Monotremata   and   Marsupialia   species   
336 relative   to   the   placental   groups,   which   reflects   a   lower   body   temperature   in   the   latter   clades   
337 (Figure   S18).   We   were   able   to   assign   published   body   temperature   data   to   73   mammalian   and   
338 avian   species   (Figure   S19A   &   S19B;   Table   S6).   Genus-level   abundances   of   
339 Methanothermobacter   significantly   correlated   with   body   temperature   (RRPP,   adj.   P   <   0.001),   
340 while   Methanobrevibacter   and   Methanosphaera   did   not   (Figures   S19C   &   S19D).   However,   the   
341 association   was   only   significant   if   not   accounting   for   host   phylogeny   (RRPP,   adj.   P   >   0.05),   
342 indicating   that   the   association   between   Methanothermobacter   and   body   temperature   could   not   
343 be   decoupled   from   host   evolutionary   history.   We   also   identified   7   Methanothermobacter   ASVs   to   
344 be   correlated   with   body   temperature   (RRPP,   adj.   P   <   0.05;   Figure   S19E),   while   no   
345 Methanobrevibacter   or   Methanosphaera   ASVs   were   correlated.   Again,   the   association   was   only   
346 significant   if   not   accounting   for   host   phylogeny.   Regardless,   we   provide   evidence   congruent   with   
347 the   hypothesis   that   Methanothermobacter   abundance   is   modulated   by   host   body   temperature   
348 and   is   thus   rather   highly   abundant   in   birds   and   various   placental   mammal   clades.   
349 We   note   that   among   the   host   species   in   which   methane   emission   data   exists    (Hackstein   
350 and   van   Alen   1996;   Clauss   et   al.   2020) ,   avian   species   with   high   abundances   of   
351 Methanothermobacter   have   emission   rates   on   the   higher   end   of   mammal   emission   rates   (Figure   
352 S20),   suggesting   that   Methanothermobacter   is   indeed   a   persistent   inhabitant   in   the   gut   of   some   
353 avian   species.   

354 Microbe-microbe   interactions   modulating   archaeal   diversity     
355 Besides   host-specific   factors   potentially   modulating   diversity,   microbe-microbe   
356 interactions   may   also   play   a   significant   role.   We   first   tested   for   solely   archaeal   interactions   by   
357 inferring   instances   of   co-occurrence   among   archaeal   ASVs.   The   co-occurrence   network   
358 contained   clearly   defined   subnetworks,   with   few   significant   positive   associations   between   them   
359 (Figure   S22),   especially   for   the   largest   6   subnetworks   (Figure   S21).   The   only   significant   
360 negative   co-occurrences   were   between   Subnetwork   1,   which   was   dominated   by   
361 Methanobrevibacter,   and   Subnetwork   4,   which   was   dominated   by   Methanothermobacter.   These   
362 2   subnetworks   differed   substantially   in   their   distributions   across   host   clades,   with   Subnetwork   1   
363 ASVs   only   highly   prevalent   among   Artiodactyla,   while   Subnetwork   4   ASVs   were   highly   prevalent   
364 across   a   number   of   mammalian   orders   ( e.g.,    Carnivora   and   Rodentia)   and   almost   all   avian   
365 orders   (Figure   S23).   Among   subnetworks,   ASV   taxonomy   was   highly   homogeneous.   Indeed,   we   
366 found   ASVs   to   significantly   and   strongly   associated   with   those   of   the   same   clade   versus   from   
367 other   clades,   regardless   of   taxonomic   level   (Figure   S21C),   although   assortativity   by   taxonomic   
368 affiliation   substantially   dropped   between   the   family   and   genus   levels.   
369 We   investigated   potential   diet-specific   archaea-archaea   interactions   by   separately   
370 testing   for   co-occurrences   across   samples   of   each   diet   (Figure   S24).   The   number   of   significant   
371 co-occurrences   dropped   from   herbivores   ( n    =   560)   to   omnivores   ( n    =   134)   to   carnivores   ( n    =   
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372 81).   In   contrast,   assortativity   by   taxonomic   group   was   generally   lowest   for   omnivores   and   
373 highest   for   carnivores,   regardless   of   taxonomic   level.   These   findings   suggest   that   the   carnivore   
374 gut   is   composed   of   simpler   and   more   taxonomically   homogenous   archaeal   consortia   relative   to   
375 omnivores   and   herbivores.     
376 We   also   assessed   Bacteria-Archaea   interactions   by   utilizing   the   overlapping   16S-uni   
377 dataset   samples   from   Youngblut   and   colleagues    (Youngblut   et   al.   2019) .   Prior   to   merging   the   
378 datasets,   we   removed   all   archaeal   ASVs   from   the   16S-uni   dataset.   Archaeal   and   bacterial   alpha   
379 diversity   were   not   correlated,   regardless   of   measuring   diversity   via   the   Shannon   Index   or   Faith’s   
380 PD   (Pearson,   P   >   0.05;   Figure   4).   Moreover,   archaeal   and   bacterial   beta   diversity   were   not   
381 correlated   (Mantel,   P   >   0.05;   Procrustes   superimposition,   P   >   0.05),   regardless   of   the   measure:   
382 Bray-Curtis,   Jaccard,   and   weighted/unweighted   UniFrac.   These   results   suggest   that   archaeal   
383 diversity   is   not   explained   by   bacterial   diversity   nor   vice   versa.     
384 Inferring   a   co-occurrence   network   of   bacterial   and   archaeal   ASVs   revealed   a   large  
385 number   of   significant   co-occurrences   ( n    =   3018;   Figure   4);   all   of   which   were   positive.   
386 Bacteria-Archaea   and   Archaea-Archaea   associations   comprised   13.1   and   6.1%   of   the   network   
387 edges,   respectively.   While   overall   network   taxonomic   assortativity   was   low,   assortativity   of   just   
388 Archaea   was   quite   high   (≥0.774   for   all   taxonomic   levels).   The   entire   network   comprised   5   
389 subnetworks,   but   only   2   included   archaea:   one   of   which   included   only   Methanobrevibacter   
390 ASVs,   while   the   other   was   dominated   by   Methanothermobacter   ASVs.   The   
391 Methanobrevibacter-only   subnetwork   also   comprised   13   bacterial   families   from   3   phyla.   
392 Firmicutes   dominated   among   the   bacterial   ASVs   (87%),   with   Bacteroidetes   as   a   distant   second   
393 (11%).   The   most   represented   bacterial   families   in   the   network   were   Ruminococcaceae   (46%),   
394 Lachnospiraceae   (13%),   and   Christensenellaceae   (11%),   which   are   known   include   hydrogen   
395 generating   species   that   often   occur   with   Methanobrevibacter    (Hansen   et   al.   2011;   Goodrich   et   
396 al.   2014;   Borrel   et   al.   2020) .   The   Methanothermobacter-dominated   subnetwork   included   much   
397 less   bacterial   diversity,   with   only   3   families:   Burkholderiaceae   (Proteobacteria   phylum);   
398 Enterococcaceae   and   Clostridiaceae   1   (Firmicutes   phylum).   These   findings   indicate   that   a   
399 subset   of   archaeal   ASVs   co-occur   with   specific   bacterial   ASVs   in   each   of   the   2   consortia:   the   
400 Methanothermobacter-dominanted   consortium   most   prevalent   among   birds   and   the   
401 Methanobrevibacter-dominated   consortium   most   prevalent   among   ruminants   and   various   other   
402 plant-consuming   mammals   (Figure   S18).   While   only   methanogens   were   observed   to   co-occur   
403 with   bacteria,   this   may   be   due   to   the   mammalian   bias   of   the   dataset,   given   that   prevalence   of   
404 non-methanogenic   archaea   is   lower   among   mammals   relative   to   other   vertebrate   classes   
405 (Figure   1).   
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406 Supplemental   Tables   

407 Table   S1.    All   relevant   metadata   for   all   samples   in   the   16S   rRNA   amplicon   dataset.   

408 Table   S2.    Metadata   for   all   samples   in   which   Archaea-targeted   16S   rRNA   amplicon   library   
409 preparation   and   sequencing   was   attempted   ( n    =   311)   and   the   samples   that   passed   all   quality  
410 control   measures   ( n    =   185).   

411 Table   S3.    Percent   relative   abundance   of   each   archaeal   taxonomic   class   in   each   sample   ( n    =   
412 185).   Classes   are   labeled   as   “Phylum;Class”.     

413 Table   S4.    Genus-level   percent   relative   abundances   of   Bathyarchaeia   in   all   samples   where   the   
414 clade   was   detected.   

415 Table   S5.    The   top   5   BLASTn   hits   of   all   Methanothermobacter   ASV   sequences   to   the   All   Species   
416 Living   Tree   dataset   (see   Methods).   Mean   percent   relative   abundances   across   all   samples   and   
417 samples   grouped   by   host   taxonomic   class   are   also   provided.     

418 Table   S6.    Publicly   available   body   temperature   data   used   in   this   study.   If   multiple   temperature   
419 data   points   per   species   were   available,   the   mean   temperature   was   used.   The   datasets   include   
420 “Clarke2010”    (Clarke,   Rothery,   and   Isaac   2010) ,   “Clarke2014”    (Clarke   and   O’Connor   2014) ,   
421 “McNab1966”    (McNab   1966) ,   “Prinzinger1991”    (Prinzinger,   Preßmar,   and   Schleucher   1991) ,   
422 “Riek2013”    (Riek   and   Geiser   2013) ,   “Sieg2009”    (Sieg   et   al.   2009) ,   and   “Teare2002”    (Teare   
423 2002) .   “No   match”   indicates   the   species   lacking   a   match   to   any   of   the   body   temperature   
424 datasets;   these   species   were   not   included   in   any   analyses   of   body   temperature   due   to   a   lack   of   
425 data.   

426 Table   S7.    Publicly   available   animal   methane   emission   data   used   in   this   study.   The   studies   
427 comprise   “Hackstein_1996”    (Hackstein   and   van   Alen   1996)    and   “Clauss_2020”    (Clauss   et   al.   
428 2020) .   
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429 Supplemental   Figures   

  

  

430 Figure   S1.    The   number   of   samples   (A   &   B)   or   host   species   (C   &   D)   in   the   final   sequence   
431 dataset,   grouped   by   host   class,   host   diet   (A   &   C)   or   host   captive/wild   status   (B   &   D).     
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432 Figure   S2.    A)   The   number   of   samples   that   passed   or   failed   PCR   amplification   and   sequence   
433 data   quality   control.   B)   The   percent   of   total   samples   that   passed   PCR   amplification   and   
434 sequence   data   quality   control   ( i.e.,    the   success   rate),   with   values   grouped   by   various   host   
435 metadata   categories.   C)   The   success   rate   among   individuals   of   the   same   species,   grouped   by   
436 host   class.   D)   The   success   rate   for   each   mammalian   taxonomic   order.   See   Table   S2   for   a   list   of   
437 all   successes   and   failures.       
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438 Figure   S3.    The   number   of   samples   that   passed   PCR   amplification   and   sequence   data   quality   
439 control   (“passed”)   and   those   that   failed   (“failed”)   mapped   onto   a   phylogeny   of   all   host   species.   
440 The   phylogeny   is   the   same   as   shown   in   Figure   1.     
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441 Figure   S4.    A)   Rarefaction   grouped   by   host   taxonomic   class,   with   subsampling   continued   up   to   
442 500   per   sample   (if   possible,   depending   on   the   sample).   The   blue   lines   are   a   smoothed   curve   fit,   
443 with   grey   regions   denoting   the   95%   CI.   B)     Rarefaction   with   extrapolation   via   iNEXT,   with   
444 subsampling/extrapolation   up   to   2000   per   sample.   Diversity   was   measured   as   Hill   numbers   
445 (diversity   order   of   1,   which   is   equivalent   to   Shannon   diversity).       
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446 Figure   S5.    The   host   phylogeny   is   that   same   as   shown   in   Figure   1,   except   tips   have   been   
447 expanded   to   include   all   individuals   of   each   species   ( n    =   185).   Relative   abundances   of   ASVs   
448 aggregated   by   taxonomic   class   are   mapped   onto   the   tree.   All   classes   with   <1%   mean   
449 abundance   are   labeled   as   “Other”,   which   includes   Woesearchaeia,   Thermococci,   Iainarchaeia,   
450 and   Odinarchaeaia.     
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451 Figure   S6.     Substantial   uncultured   archaeal    diversity   even   among   relatively   well-studied   clades .   
452 The   percent   of   ASVs   with   a   ≥1   BLASTn   hit   to   a   culture   representative   in   the   All   Species   Living   
453 Tree   database   v132   (hit   alignment   length   ≥95%   of   the   query),   depending   on   the   sequence   
454 identity   cutoff   of   the   BLASTn   hit.   Values   are   shown   for   A)   all   ASVs   and   B)   ASVs   grouped   by   
455 taxonomic   class   (facet   labels   are   “Phylum;   Class”)   for   the   subset   of   classes   in   which   any   hits   
456 were   observed   along   the   range   of   sequence   identity   cutoffs   shown.       
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457 Figure   S7.     Archaeal-targeting   primer   set   revealed   much   more   archaeal   diversity   than   standard   
458 “universal”   16S   rRNA   NGS   primers.    The   number   of   A)   samples   or   B)   host   species   that   overlap   
459 between   the   16S-arc   and   16S-uni   amplicon   sequence   datasets.   C)   The   number   of   archaeal   
460 ASVs   per   sequence   dataset.   D)   &   E)   The   number   of   archaeal   classes   across   host   species   
461 grouped   by   D)   host   taxonomic   class   or   E)   diet.     

  
   

18   



  
462 Figure   S8.    Principal   coordinates   plots   qualitatively   agree   with   the   MRM   analysis   results .   
463 Principal   coordinates   (PCoA)   ordinations   of   unweighted   and   weighted   Unifrac,   Jaccard,   and   
464 Bray-Curtis   distances   among   all   samples,   with   samples   colored   by   host   A)   class,   B)   diet,   C)   
465 habitat,   and   D)   captive/wild   status.   The   percent   variance   explained   by   PC1   and   PC2   is   18   &   9   %   
466 for   Bray-Curtis,   14   and   6   %   for   Jaccard,   29   and   19   %   for   unweighted   UniFrac,   and   72   and   12   %   
467 for   weighted   UniFrac,   respectively.     
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468

469 Figure   S9 .    Host   phylogeny   trending   to   significance   for   non-mammalian   species.    The   plots   show   
470 the   distribution   of   P-values   (“Adj.   P-value”)   and   partial   regression   coefficients   (“Coef.”)   across   
471 100   dataset   permutations   used   for   multiple   regression   on   matrix   (MRM)   tests.   Unlike   Figure   2A,   
472 all   Mammalia   species   were   excluded,   leaving   39   non-mammalian   species.   For   each   
473 permutation,   one   individual   per   host   species   was   randomly   sampled.   MRM   tests   assessed   the   
474 beta   diversity   variance   explained   by   host   diet,   geography,   habitat,   phylogeny,   and   “technical”   
475 parameters   (see   Supplemental   Methods),   with   4   beta   diversity   measures   assessed:   A)   weighted   
476 UniFrac,   B)   unweighted   UniFrac,   C)   Bray-Curtis,   and   D)   Jaccard.   Asterisks   denote   significance   
477 (adj.   P   <   0.05   for   >95%   of   dataset   subsets;   see   Methods).   Beta   diversity   calculated   on   ASVs   
478 aggregated   at   the   genus   level.   Box   centerlines,   edges,   whiskers,   and   points   signify   the   median,   
479 interquartile   range   (IQR),   1.5   ×   IQR,   and   >1.5   ×   IQR,   respectively.     
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480 Figure   S10   .     No   host   factors   significantly   explain   archaeal   alpha   diversity .   The   plots   show   the   
481 distribution   of   P-values   (“Adj.   P-value”)   and   partial   regression   coefficients   (“Coef.”)   across   100   
482 dataset   permutations   used   for   multiple   regression   on   matrix   (MRM)   tests.   For   each   permutation,   
483 one   individual   per   host   species   was   randomly   sampled.   MRM   tested   whether   inter-sample   
484 variance   of   alpha   diversity   was   significant   explained   by   host   diet,   geography,   habitat,   phylogeny,   
485 and   “technical”   parameters   (see   Methods),   with   2   alpha   diversity   measures   assessed:   A)   
486 Shannon   Index   and   B)   Faith’s   PD.   No   variables   were   significant   (defined   as   adj.   P   <   0.05   for   
487 >95%   of   dataset   permutations;   see   Supplemental   Methods).   Box   centerlines,   edges,   whiskers,   
488 and   points   signify   the   median,   interquartile   range   (IQR),   1.5   ×   IQR,   and   >1.5   ×   IQR,   
489 respectively.   
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490 Figure   S11.     Certain   methanogen   ASVs   from   multiple   lineages   are   associated   with   diet,   after   
491 accounting   for   host   phylogeny .   Phylogenetic   generalized   least   squares   (PGLS)   results   for   the   
492 ASVs   with   a   significant   association   between   ASV   abundance   and   host   diet,   while   accounting   for   
493 host   phylogenetic   relatedness.   Significance   was   defined   as   adj.   P   <   0.05   in   ≥95%   of   permuted   
494 datasets,   in   which   one   sample   per   species   was   used   per   permutation.   The   boxplots   depict   the   
495 distribution   of   PGLS   R 2    values   across   all   100   permutations.   Box   centerlines,   edges,   whiskers,   
496 and   points   signify   the   median,   interquartile   range   (IQR),   1.5   ×   IQR,   and   >1.5   ×   IQR,   
497 respectively.   
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498 Figure   S12.     The   specific   ASVs   have   similar   abundances   within   certain   vertebrate   clades.   
499 Various   archaeal   ASVs   display   local   phylogenetic   signal   to   various   host   clades.   A)   All   ASVs   with   
500 significant   local   phylogenetic   signals   (adj.   P   <   0.05)   are   mapped   onto   the   host   phylogeny.   The   
501 phylogeny   is   the   same   as   shown   in   Figure   1.   The   heatmap   depicts   local   indicator   of   
502 phylogenetic   association   (LIPA)   values   for   each   ASV–host   association,   with   higher   values  
503 indicating   a   stronger   phylogenetic   signal   of   ASV   abundance.   White   boxes   in   the   heatmap   
504 indicate   non-significant   LIPA   tests.   The   dendrogram   on   the   top   of   the   heatmap   is   a   cladogram   
505 based   on   taxonomy   for   each   ASV   (see   Figure   S13   for   the   full   taxonomy).   B)   The   bar   plots   show   
506 the   number   of   ASVs   with   significant   LIPA   indices   per   archaeal   genus   and   host   clade.   
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507 Figure   S13.    The   cladogram   as   shown   in   Figure   S12   with   the   entire   ASV   taxonomic   
508 classification   as   tip   labels.   
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509 Figure   S14.     Ancestral   state   reconstruction   models   accurately   predict   abundances   in   extant   host   
510 species.    Linear   regressions   comparing   ASR   model   predictions   of   archaeal   abundances   for   each   
511 extant   species   relative   to   the   observed   mean   abundance   of   all   individuals   per   species.   A)   All   
512 class-level   abundances,   and   B)   abundances   and   linear   regressions   colored   by   class.   C)   All   
513 genus-level   abundances   for   taxa   belonging   to   Methanobacteria,   and   D)   abundances   and   linear   
514 regressions   colored   by   genus.   Gray   areas   denote   95%   confidence   intervals   for   each   linear   
515 model.   
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516 Figure   S15.    Predicted   archaeal   class-level   abundance   for   extant   host   species   (yellow   circles)   
517 and   and   ancestral   host   species   (blue   circles):   A)   Bathyarchaeia,   B)   Halobacteria,   C)   
518 Methanomicrobia,   D)   Thermoplasmata,   and   E)   Nitrososphaeria.   The   phylogeny   is   the   same   as   
519 shown   in   Figure   1.   
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520 Figure   S16.    Predicted   archaeal   genus-level   abundance   for   extant   host   species   (yellow   circles)   
521 and   and   ancestral   host   species   (blue   circles):   A)   Methanobacterium   and   B)   Methanosphaera.   
522 The   phylogeny   is   the   same   as   shown   in   Figure   1.   
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523 Figure   S17.    Methanobacteria   genera   comprise   a   high   proportion   of   uncultured   ASVs.      Same   as   
524 Figure   S6,   but   just   Methanobacteria   genera.   The   plot   facet   labels   are   “family;   genus”.     
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525 Figure   S18.     Methanothermobacter   is   prevalent   among   avian   species   and   associates   with   host   
526 body   temperature.    The   phylogeny   is   a   pruned   version   ( n    =   74)   of   that   shown   in   Figure   1.   Host   
527 diet   and   body   temperature   are   mapped   into   the   tree   along   with   genus-level   archaeal   
528 abundances.   The   dendrogram   above   the   heatmap   is   a   cladogram   depicting   taxonomic   
529 relatedness.   “Other   Methanogen”   refers   to   all   other   methanogen   genera   not   specifically   listed,   
530 and   “Non-methanogen”   refers   to   all   non-methanogenic   clades.   
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531 Figure   S19.     Methanothermobacter   abundance   is   explained   by   host   body   temperature .   A)   The   
532 number   of   species   with   body   temperature   data,   grouped   by   the   body   temperature   dataset   (see   
533 also   Table   S6).   B)   The   distribution   of   body   temperatures   per   host   taxonomic   order   (one   data   
534 point   per   species).   C)   Relative   abundances   of   Methanobacteria   genera   as   a   function   of   host   
535 body   temperature   (celcius).   The   lines   denote   linear   regressions   with   95%   CIs   represented   by   
536 the   grey   zones.   D)   RRPP   coefficients   of   genus-level   abundances   as   a   linear   function   of   host   
537 body   temperature.   Boxplots   show   the   distribution   across   100   permutations.   E)   The   same   as   D,   
538 but   ASV-level   abundances   used,   with   only   significant   ASVs   shown.   Note   that   host   phylogeny   
539 was   not   used   for   the   RRPP   models   shown   in   D   &   E.   No   taxa   were   significant   when   accounting   
540 for   host   phylogeny.   Box   centerlines,   edges,   whiskers,   and   points   signify   the   median,   interquartile   
541 range   (IQR),   1.5   ×   IQR,   and   >1.5   ×   IQR,   respectively.   
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542

543 Figure   S20.    Published   animal   methane   emission   data   indicates   that   the   avian   species   
544 dominated   by   Methanothermobacter   emit   substantial   amounts   of   methane.    A)   The   number   of   
545 records   obtained   from   Hackstein   &   van   Alen   1996   ( n    =   27)   and   Clauss   et   al.,   2020   ( n    =   10),   
546 grouped   by   host   class   and   diet.   B)   &   C)   the   distribution   of   methane   emission   rates   per   host   
547 species,   grouped   by   class   and   C)   colored   by   host   diet.   D)   The   phylogeny   is   a   pruned   version   of   
548 that   shown   in   Figure   1.   From   left   to   right,   the   data   mapped   onto   the   phylogeny   is:   host   diet,   
549 methanogen   genus   mean   abundances,   methanogen   ASV   diversity   (Shannon   Index   &   Faith’s   
550 PD),   and   methane   emission   rates.   The   lack   of   diversity   values   for    Erinaceus   europaeus   
551 (European   hedgehog)   is   due   to   an   absence   of   detectable   methanogen   ASVs.   Box   centerlines,   
552 edges,   whiskers,   and   points   signify   the   median,   interquartile   range   (IQR),   1.5   ×   IQR,   and   >1.5   ×   
553 IQR,   respectively.   
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554 Figure   S21.     Archaeal   ASVs   generally   co-occur   with   members   of   the   same   taxonomic   group.   
555 The   network   nodes   represent   ASVs,   with   color   denoting   family-level   taxonomic   classifications,   
556 and   shape   denoting   subnetwork   (defined   by   clustering   the   network   with   the   walktrap   algorithm).   
557 Edges   represent   significant   positive   and   negative   co-occurrences   among   ASVs   as   denoted   by   
558 green   and   red   edges,   respectively.   Node   size   represents   “betweenness”,   which   is   a   measure   of   
559 node   connectedness.   For   clarity,   only   the   largest   6   subnetworks   are   shown   (but   see   Figure   
560 S22).   B)   Only   subnetworks   1   and   4   are   shown   with   node   colors   denoting   genus-level   
561 classifications.   C)   The   assortativity   of   ASVs   by   taxonomic   level,   in   which   a   value   of   1   means   
562 that   all   connected   ASVs   belong   to   the   same   taxonomic   group,   while   a   value   of   0   denotes   
563 random   association,   and   negative   values   indicate   a   dominance   of   inter-clade   associations.   The   
564 red   points   are   the   observed   values,   while   the   boxplots   denote   values   for   100   permutations   of   
565 networks   with   the   same   number   of   nodes   and   edges   as   the   true   network,   but   edges   were   
566 randomly   assigned.   Box   centerlines,   edges,   whiskers,   and   points   signify   the   median,   
567 interquartile   range   (IQR),   1.5   ×   IQR,   and   >1.5   ×   IQR,   respectively.   
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568 Figure   S22.    The   same   co-occurrence   network   as   shown   in   Figure   S21,   but   the   largest   19   
569 subnetworks   are   shown   (238   of   313   ASVs)   instead   of   just   the   largest   6   (151   of   313   ASVs).   The   
570 entire   co-occurrence   network   comprised   96   subnetworks,   but   to   be   able   to   distinguish   among   
571 shapes   denoting   network   nodes,   only   the   top   19   subnetworks   are   shown.   
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572 Figure   S23.    The   percent   of   samples   in   which   each   ASV   was   observed   (prevalence),   grouped   
573 by   the   subnetwork   to   which   each   ASV   belongs   (see   Figure   S21A)   and   faceted   by   host   
574 taxonomic   order.   Box   centerlines,   edges,   whiskers,   and   points   signify   the   median,   interquartile   
575 range   (IQR),   1.5   ×   IQR,   and   >1.5   ×   IQR,   respectively.   
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576 Figure   S24.    Co-occurrence   networks   for   A)   just   herbivore,   B)   just   omnivore,   C)   just   carnivore   
577 samples.   Node   size   represents   “betweenness”,   which   is   a   measure   of   node   connectedness.   
578 Green   and   red   edges   denote   significant   positive   and   negative   co-occurrences,   respectively.   
579 D-F)   Assortativity   of   nodes   the   graph,   determined   for   each   taxonomic   level   from   phylum   to   
580 genus.   High   assortativity   values   indicate   that   the   co-occurring   taxa   largely   belong   to   the   same   
581 taxonomic   group.   Box   centerlines,   edges,   whiskers,   and   points   signify   the   median,   interquartile   
582 range   (IQR),   1.5   ×   IQR,   and   >1.5   ×   IQR,   respectively.   

35   



  

583 Figure   S25.    Taxonomic   composition   of   the   2   sub-networks   (Figure   4D)   containing   archaeal   
584 ASVs,   with   the   number   of   ASVs   summarized   at   the   A)   family   and   B)   genus   taxonomic   levels.   
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