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Supplementary Information 1: Framework for general form functional type response 

 

Here we demonstrate how the framework can be applied to the Rosenzweig-MacArthur 

model(Rosenzweig & MacArthur 1963) with the general form of the functional response (i.e. 

not confined to the Holling type II). The model equations are: 

 

𝑑𝑅

𝑑𝑡
= 𝑟 (1 −

𝑅

𝐾
) 𝑅 −

𝑎𝑅𝑞

1+𝑎ℎ𝑅𝑞 𝐶  (S1.1) 

 

𝑑𝐶

𝑑𝑡
= (𝑒

𝑎𝑅𝑞

1+𝑎ℎ𝑅𝑞 − 𝑚)𝐶  (S1.2) 

 

𝑅 is the resource species biomass density and 𝐶 the consumer species biomass density [
𝑔

𝑚3]. 

Resource growth is assumed to be logistic, with an intrinsic growth rate 𝑟 [
1

𝑑
] and carrying 

capacity 𝐾 [
𝑔

𝑚3]. Resource biomass density is limited by the consumer through the functional 

response with consumer attack rate 𝑎 [
𝑚3𝑞

𝑔𝑞𝑑
] and handling time, ℎ [𝑑]. Consumer growth is 

proportional to the assimilated consumed biomass, with 𝑒 the dimensionless assimilation 

efficiency, while losses occur due to metabolic costs, 𝑚 [
1

𝑑
]. 𝑞 – a dimensionless parameter – 

determines the shape of the functional response; for the Holling type II response, 𝑞 = 1, for 

Holling type III, 𝑞 = 2. We should note that the biomass densities and carrying capacity need 

not be with respect to volume, [
𝑔

𝑚3]; the equations apply equally to surface, [
𝑔

𝑚2]. This would 

require the attack rate to have units, [
𝑚2𝑞

𝑔𝑞𝑑
]. 

 

The coexistence equilibrium for the general form is:   

 



𝑅𝑆 = (
𝑚

𝑎(𝑒−𝑚ℎ)
)

1/𝑞

       (S1.3) 

 

𝐶𝑆 =
𝑟

𝑎𝐾
(

𝑚

𝑎(𝑒−𝑚ℎ)
)

1−𝑞

(𝐾 − (
𝑚

𝑎(𝑒−𝑚ℎ)
)

1

𝑞
)(

𝑒

𝑒−𝑚ℎ
)   (S1.4) 

 

ℬ =
𝐶𝑆

𝑅𝑆
=

𝑟

𝑎𝐾
((

𝑚

𝑎(𝑒−𝑚ℎ)
)

1

𝑞
)

1−𝑞

(𝐾 − (
𝑚

𝑎(𝑒−𝑚ℎ)
)

1

𝑞
)(

𝑒

𝑒−𝑚ℎ
)  (S1.5) 

 

The aggregate parameters are the maximal energetic efficiency, 𝜌, and interaction strength, 𝜅. 

𝜌 is determined as the maximal possible energetic gains of the consumer, which is reflected by 

the ratio of maximal potential feeding rate to metabolic losses (Yodzis & Innes 1992). Maximal 

feeding rate means a saturated functional response (i.e. unlimited resources and no consumer 

self-limitation). The functional response, 𝑓(𝑅) =
𝑎𝑅𝑞

1+𝑎ℎ𝑅𝑞 saturates at max(𝑓(𝑅)) =
1

ℎ
. Thus, 

the term for 𝜌 will be: 

 

𝜌 = 𝑒⏟
𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟 

𝑎𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑡𝑖𝑜𝑛
𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑐𝑛𝑦

∗
1

ℎ⏟
𝑚𝑎𝑥𝑖𝑚𝑎𝑙

𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒

∗
1

𝑚⏟
𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟 
𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑐 

𝑙𝑜𝑠𝑠

=
𝑒

𝑚ℎ
   (S1.6) 

 

The interaction strength, 𝜅, is defined as the ratio of the resource equilibrium in the absence of 

consumers (i.e. carrying capacity) to the resource equilibrium with consumers (i.e. coexistence 

resource equilibrium)(Berlow et al. 1999; Gilbert et al. 2014).  

 

𝜅 =
𝐾

(
𝑚

𝑎(𝑒−𝑚ℎ)
)

1/𝑞 = 𝐾 (𝑎ℎ (
𝑒

𝑚ℎ
− 1))

1/𝑞

  (S1.7) 

 



Biologically meaningful values require that 𝑅𝑆 and 𝐶𝑆 are positive, which gives us two 

conditions on the existence of the coexistence steady state:  

 

𝑒 − 𝑚ℎ > 0 ⇔ 𝜌 > 1     (S1.8)   

𝐾(𝑎(𝑒 − 𝑚ℎ))
1

𝑞 − 𝑚
1

𝑞) > 0 ⇔ 𝜅 > 1  (S1.9) 

 

As explained in the main text, condition (S1.9) is necessary and sufficient for coexistence. 

Therefore, the community feasibility boundary is determined by (S1.9).  

 

The Hopf bifurcation condition can be expressed in terms of 𝜌 and 𝜅 for the general form of 

the functional response. The Hopf bifurcation occurs when the trace of the characteristic 

matrix, calculated at the equilibrium values of resource and consumer, becomes zero. The 

condition is:  

 

𝑚
1

𝑞(𝐾 (
𝑎(𝑒−𝑚ℎ)

𝑚
)

1

𝑞
− 1))(1 −

𝑞(𝑒−𝑚ℎ)

𝑒
) − 𝑚

1

𝑞 = 0 (S1.10) 

 

By introducing 𝜌 and 𝜅 this becomes:  

 

(𝜅 − 1) (1 −
𝑞(𝜌−1)

𝜌
) − 1 = 0 ⇔ 𝜅 =

𝜌(2−𝑞)+𝑞

𝜌(1−𝑞)+𝑞
 (S1.11) 

 

Thus, we have shown how the aggregate parameters can be applied to determine the community 

feasibility threshold (S1.9) and the Hopf bifurcation (S1.11) for the general form of the 

functional response.  

 



Below we demonstrate that our framework can be applied to the biomass ratio and stability for 

the general form of the functional response. For the biomass ratio, we derive the elasticities, 

but for stability no metric exists that covers the general form of the functional response. 

Therefore, we will illustrate how the qualitative aspects of the framework’s approach can still 

be applied to investigate stability properties in the 𝜌 − 𝜅 plane.  

 

Biomass ratio:  

 

The biomass ratio was determined to be ℬ =
𝑟

𝑎𝐾
((

𝑚

𝑎(𝑒−𝑚ℎ)
)

1

𝑞
)

1−𝑞

(𝐾 − (
𝑚

𝑎(𝑒−𝑚ℎ)
)

1

𝑞
)(

𝑒

𝑒−𝑚ℎ
). 

The elasticities with respect to each parameter, 𝑥, are defined as 𝜕𝑥ℬ =
𝜕 ln(ℬ)

𝜕ln (𝑥)
 . Then, the 

elasticities for the general form functional response will be:  

 

Table S1: Elasticities of the biomass ratio (𝜕𝑥ℬ) with respect to the six original model 

parameters. All sensitivities are expressed in terms of 𝜌 and 𝜅. 

 

 

Parameter 

Consumer-resource biomass 

ratio, ℬ 

𝑥 𝜕𝑥ℬ =
𝜕 ln(ℬ)

𝜕ln (𝑥)
 

𝑟 1 

𝐾 
1

𝜅 − 1
 

𝑎 
1

𝑞

1

𝜅 − 1
 



ℎ −
1

𝑞

1

(𝜌 − 1)(𝜅 − 1)
 

𝑒 
1

𝑞

𝜌

(𝜌 − 1)(𝜅 − 1)
+ 1 

𝑚 −
1

𝑞

𝜌

(𝜌 − 1)(𝜅 − 1)
− 1 

 

As we argued, all elasticities are expressible in terms of 𝜌 and 𝜅. Interestingly, the important 

results of our sensitivity analysis hold. In particular, far from the consumer extinction, when 𝜅 

is large, 𝜕𝐾ℬ, 𝜕𝑎ℬ, 𝜕ℎℬ all tend towards 0, 𝜕𝑒ℬ and 𝜕𝑚ℬ towards 1 and −1, respectively. 

Therefore, 𝜕𝑒ℬ = −𝜕𝑚ℬ ≈ 𝜕𝑟ℬ = 1 will be the group of largest elasticities and 𝑒, 𝑚 and 𝑟 

will be have the highest relative impact on biomass distributions away from the community 

boundaries. Similarly, close to the community feasibility boundary, 𝜅 = 1, all elasticities 

𝜕𝑒ℬ, 𝜕𝑚ℬ, 𝜕𝐾ℬ, 𝜕𝑎ℬ, 𝜕ℎdiverge  apart from 𝜕𝑟ℬ = 1 which remains constant.  

 

Stability 

 

We have already shown that the condition for the Hopf bifurcation can be expressed solely in 

terms of 𝜌 and 𝜅 (S1. 11, Fig. S1).  The stability metric used in the main study (Johnson & 

Amarasekare 2015), effectively  measures the distance from the Hopf bifurcation in the 𝜌 − 𝜅 

plane. Therefore, any distance metric with respect to the Hopf bifurcation and its sensitivities 

will be expressible in terms of of 𝜌 and 𝜅, as will its sensitivities.    

 

We see that with increasing 𝑞, the Hopf bifurcation condition becomes steeper. This means 

that the area below the curve which corresponds to stable equilibrium dynamics grows and 

hence that a type III functional response leads to more stable dynamics, as has been previously 



demonstrated (Uszko et al. 2017; Daugaard et al. 2019). In terms of the effects of warming on 

stability, two distinct regions emerge: at low maximal energetic efficiency, 𝜌 < 2, changes in 

interaction strength, 𝜅, determine whether warming will stabilise (decreasing 𝜅) or destabilise 

(increasing 𝜅) dynamics. At higher values of 𝜌, 𝜌 > 2, dynamics are effectively stable.  

 

 

 

Figure S1. The Hopf bifurcation  in the of 𝜌 − 𝜅 plane for different values of of 𝑞, i.e. functional 

response types. 𝑞 = 1 corresponds to the Holling type II and 𝑞 = 2 to the Holling type III.



Supplementary Information 2: type II functional response alternative formulation  

 

The relationship between consumer per capita feeding rate and resource density, 𝑓(𝑅) [
1

𝑡𝑖𝑚𝑒
], 

simply known as the functional response can be represented in terms of attack (or search) rate, 

𝑎 [
𝑣𝑜𝑙𝑢𝑚𝑒

𝑚𝑎𝑠𝑠∗𝑡𝑖𝑚𝑒
], and handling time (or inverse maximal intake rate), ℎ [𝑡𝑖𝑚𝑒] (Holling 1959), for 

a type II response:  

 

𝑓(𝑅) =
𝑎𝑅

1+𝑎ℎ𝑅
    (eq S2. 1) 

 

Alternatively, the functional response can be reformulated as the Michaelis-Menten equation 

where the shape of the curve is controlled by the  maximum consumption rate, 𝐽 [
1

𝑡𝑖𝑚𝑒
], and 

half-saturation density, 𝑅0 [
𝑚𝑎𝑠𝑠

𝑣𝑜𝑙𝑢𝑚𝑒
] - the resource density corresponding to the point of half-

saturation of the functional response, 𝑓(𝑅0) =
1

2
max 𝑓(𝑅). Thus, the functional response 

becomes:  

 

𝑓(𝑅) =
𝐽𝑅

𝑅0+𝑅
    (eq. S2.2) 

 

The two formulations are interchangeable through a simple transformation:  

 

𝐽 =
1

ℎ
     (eq. S2.3) 

 

𝑅0 =
1

𝑎ℎ
   (eq. S2.4) 

 



 

The coexistence steady state becomes:  

 

𝑅𝑆 =
𝑚𝑅0

𝑒𝐽−𝑚
   (eq. S2.5) 

 

 

𝐶𝑆 = 𝑒𝑟𝑅0
𝐾(𝑒𝐽−𝑚)−𝑚𝑅0

𝐾(𝑒𝐽−𝑚)2
 (eq. S2.6) 

 

The aggregate parameters: 

 

𝜌 =
𝑒𝐽

𝑚
, 𝜅 =

𝐾(𝑒𝐽−𝑚)

𝑚𝑅0
=

𝐾

𝑅𝑆
 (eq. S2.7) 

 

 

Parameter 

C:R biomass ratio, ℬ Stability metric, 𝒮 

𝑥 𝜕𝑥ℬ =
𝜕 ln(ℬ)

𝜕ln (𝑥)
 𝜕𝑥𝒮 =

𝜕𝒮

𝜕ln (𝑥)
 

𝑟 1 0 

𝐾 
1

𝜅 − 1
 −

𝜅

𝜌 − 1
 

𝑅0 −
1

𝜅 − 1
 

𝜅

𝜌 − 1
 

𝑎 
1

𝜅 − 1
 −

𝜅

𝜌 − 1
 

ℎ −
1

(𝜌 − 1)(𝜅 − 1)
 

𝜅(1 − 𝜌) + 2𝜌

(𝜌 − 1)2
 



𝐽 
𝜌

(𝜌 − 1)(𝜅 − 1)
+ 1 −

2𝜌

(𝜌 − 1)2
 

𝑒 
𝜌

(𝜌 − 1)(𝜅 − 1)
+ 1 −

2𝜌

(𝜌 − 1)2
 

𝑚 −
𝜌

(𝜌 − 1)(𝜅 − 1)
− 1 

2𝜌

(𝜌 − 1)2
 

 

Table S2. Sensitivities of biomass ratio and stability to all parameters, including maximum 

consumption rate, 𝐽, and half-saturation density, 𝑅0.    

 

Thus, we can see that:  

 

𝜕𝐾ℬ = 𝜕𝑎ℬ = −𝜕𝑅0
ℬ and 𝜕𝐾𝒮 = 𝜕𝑎𝑆 = −𝜕𝑅0

𝑆 

 

𝜕𝑒ℬ = 𝜕𝐽ℬ = −𝜕𝑒ℬ and 𝜕𝑒𝑆 = 𝜕𝐽𝑆 = −𝜕𝑒𝒮 

 

Therefore, our results in the main text directly apply to the Michaelis-Menten formulation of 

the functional response. We also see that when using 𝐽 and 𝑅0 the sensitivities can be reduced 

to two groupings, which simplifies analyses further.  

    



Supplementary Information 3: Stability metric adjustment 

 

In our study, we qualified stability in terms of the steady state being a stable equilibrium or a 

limit cycle (oscillations around unstable equilibrium). To this end we used a metric which 

quantifies the tendency for oscillations in consumer-resource dynamics (Johnson & 

Amarasekare 2015). The metric was defined as 𝜙 = 𝑎ℎ𝐾; the smaller the value the more 

‘stable’ the dynamics. In particular, if 𝜙 < 1 the dynamics are stable, if 𝜙 > 1 they are 

unstable. Effectively, this metric was deduced as, what its authors referred to, a ‘conservative’ 

criterion for stability (for details see derivation of eq. (5) in (Johnson & Amarasekare 2015).   

 

Expressed in terms of the the aggregates 𝜌 and 𝜅, 𝜙 =
𝜅

𝜌−1
. We adjusted 𝜙 = 1 to create a 

metric, 𝑆, which vanished (𝑆 = 0) at the Hopf bifurcation, was positive for the stable 

equilibrium (𝑆 > 0) and negative for oscillations around the unstable equilibrium (𝑆 < 0). The 

Hopf bifurcation in terms of 𝜙 is given by 𝜙𝐻 =
𝜌+1

𝜌−1
. Therefore, for 𝑆 to vanish at the Hopf 

bifurcation, we took 𝑆 = 𝜙𝐻 − 𝜙 =
𝜌+1

𝜌−1
−

𝜅

𝜌−1
=

−(𝜅−𝜌−1)

𝜌−1
. Thus, 𝑆 = 0 at the Hopf 

bifurcation, 𝑆 > 0 when the equilibrium is stable and 𝑆 < 0 when the oscillations around the 

unstable equilibrium occur.  

 

 

 



Supplementary Information 4: Temperature parameterisations from the literature 

 

In our study, we used the Rosenzweig-MacArthur model (Rosenzweig & MacArthur 1963) to 

derive the framework combining a sensitivity analysis and the aggregate parameters, maximal 

energetic efficiency, 𝜌, and interaction strength, 𝜅. We argued that the framework can be 

applied to any temperature parameterisation which can be fitted to the Rosenzweig-MacArthur 

model. We implemented parameterisations from six studies from the literature with 

empirically-derived thermal dependencies of certain parameters and assumptions about the 

thermal dependence of others. We should note that not all studies measured or reported a 

thermal performance curve for the resource growth rate, 𝑟. Therefore, the consumer-resource 

biomass ratio (eqs. 5 and S1.5) was evaluated  and presented only for two studies (Fig. 2). 

However, biomass ratio sensitivities can be expressed in terms of 𝜌 =
𝑒

𝑚ℎ
 and 𝜅 =

𝑎ℎ𝐾 (
𝑒

𝑚ℎ
− 1) and hence no 𝑟 thermal dependence is necessary to plot the parameterisation 

trajectories in the 𝜌 − 𝜅 plane. As such, all six studies utilised in our application of the 

framework (Fig. 4 and 7) reported parameterisations enabling us to derive the thermal 

dependencies of 𝜌 and 𝜅. Finally, we note that these paramtersiations all assumed a type II 

functional response. Below we briefly describe each study before providing details of how we 

implemented their parameterisations.  

 

Brief description of studies:   

 

Uszko et al. (2017)investigated the effects of warming on the stability of consumer-resource 

communities using the Rosenzweig-MacArthur model. Their model was parameterised for the 

crustacean Daphnia hyaline feeding on the green alga Monoraphidium minutum.  

 



Fussmann et al. (2014) combined a meta-analysis of global invertebrate data and literature 

sources to determine the thermal dependencies of biological rates implemented in a 

bioenergetic model (Yodzis & Innes 1992). The functional response was represented in terms 

of maximum consumption rate, 𝐽, and resource half-saturation density, 𝑅0 (see Supplementary 

Information S2).  

 

Vucic-Pestic et al. (2011): an empirical study of how the functional response (attack rate, 

handling time) and consumer metabolism scale with temperature in a predator-prey community 

with three different size-classes of predators and two types of prey (mobile and resident). Other 

parameter values were taken from the literature. No model was employed, though the energetic 

efficiency term was based on Vasseur and McCann (2005).   

 

Binzer et al. (2016) performed a modelling study of the interactive effects of eutrophication 

and warming on food webs parameterised from the literature. The population dynamics 

between successive trophic levels were described using a bio-energetic model (Yodzis & Innes 

1992). 

 

Sentis et al. (2012): experimental data from a ladybeetle (C. Maculata lengi) feeding on a green 

peach aphid (Myzus Persicae) used to estimate how the functional response scaled with 

temperature. No model was employed, though the energetic efficiency term was based on 

Vasseur and McCann (2005). 

 

Archer et al. (2019): a comparison of the thermal dependence of the functional responses 

derived from field and lab measurements. A sedentary (larvae of L. riparia) and a mobile 

(larvae of P. cingulatus) predator fed on a common prey (blackfly larvae from the Simuliidae 



family). A per capita energy feeding rate was derived, which was then transformed to the 

dimensionless energetic efficiency – as in the previous studies.   

 

Parameter values in studies:  

 

In the following equations, temperature 𝑇 is in Kelvin, where 273.15K corresponds to 0℃. In 

all Arrhenius-based parameterisations, 𝑘 = 8.62 × 10−5  [𝑒𝑉𝐾−1] is the Boltzmann constant. 

𝑟 is the resource population growth rate (time-1), 𝑎 is the attack or search rate (surface or 

volume per unit of time and resource unit), ℎ is the handling time (time), 𝑚 is the metabolic 

rate (time-1) or 𝑚𝐸 the standard metabolic rate (energy*time-1), 𝐽 is the maximum feeding rate 

(time-1), 𝑅0 the resource-half saturation density (biomass or resource unit per surface or 

volume), 𝐾 is the resource carrying capacity (biomass or resource unit per surface or volume) 

and 𝑒 is the consumer assimilation efficiency (unitless). 

 

Uszko et al. (2017):  

 

𝑟(𝑇) = 𝑟0𝑒
− 

(𝑇−𝑇𝑜𝑝𝑡)

2𝑠2

2

with 𝑟0 = 2.2, 𝑇𝑜𝑝𝑡 =  298.15, 𝑠 = 12, [𝑑−1] 

𝑎(𝑇) = 𝑎0𝑒
− 

(𝑇−𝑇𝑜𝑝𝑡)

2𝑠2

2

with 𝑎0 = 6, 𝑇𝑜𝑝𝑡 =  296, 𝑠 = 9.4, [𝑚3𝑔−1𝑑−1] 

ℎ(𝑇) = ℎ0𝑒
(𝑇−𝑇𝑜𝑝𝑡)

2𝑠2

2

with ℎ0 = 0.2, 𝑇𝑜𝑝𝑡 =  294.1, 𝑠 = 7.2, [𝑑] 

 

𝑚(𝑇) = 𝑚0𝑒
−𝐸𝑚

𝑘𝑇 with 𝑚0 = 4.4 ∗ 108, 𝐸𝑚 = 0.55, [𝑑−1] 

 

𝐾 and 𝑒 are not functions of temperature; we used 𝑒 = 0.385  and 𝐾 = 2, [𝑔𝑚−3]. 



 

Fussmann et al. (2014)  

 

Reference temperature 𝑇𝑟𝑒𝑓 = 20°𝐶 = 293.15𝐾. Carnivore assimilation efficiency was used: 

𝑒 = 0.85 

 

𝑟(𝑇) = 𝑟0𝑒

𝐸𝑟(𝑇−𝑇𝑟𝑒𝑓)

𝑘𝑇𝑇𝑟𝑒𝑓 with 𝑟0 = 8.715 ∗ 10−7, 𝐸𝑟 = 0.84, [𝑠−1] 

𝐾(𝑇) = 𝐾0𝑒

𝐸𝐾(𝑇−𝑇𝑟𝑒𝑓)

𝑘𝑇𝑇𝑟𝑒𝑓 with 𝐾0 = 5.623, 𝐸𝐾 = −0.772, [𝑔𝑚−2] 

𝑅0(𝑇) = 𝑅00
𝑒

𝐸𝑅0
(𝑇−𝑇𝑟𝑒𝑓)

𝑘𝑇𝑇𝑟𝑒𝑓 with 𝑅00
= 3.664, 𝐸𝑅0

= −0.114, [𝑔𝑚−2] 

𝐽(𝑇) = 𝐽0𝑒

𝐸𝐽(𝑇−𝑇𝑟𝑒𝑓)

𝑘𝑇𝑇𝑟𝑒𝑓 with 𝐽0 = 8.408 ∗ 10−6, 𝐸𝐽 = 0.467, [𝑠−1] 

𝑚(𝑇) = m0𝑒

𝐸𝑚(𝑇−𝑇𝑟𝑒𝑓)

𝑘𝑇𝑇𝑟𝑒𝑓 with 𝑚0 = 2.689 ∗ 10−6, 𝐸𝑚 = 0.639, [𝑠−1] 

 

 

Vucic-Pestic et al. (2011): 

 

𝑇𝑟𝑒𝑓 = 290.65𝐾 and 𝑒 = 0.85.  

 

Predators were split into three mass classes.Predator masses within the same size-classes varied 

with temperature, so we used the mean value over all temperatures to obtain the mean mass of 

each size class. Additionally, predator masses varied between the experiments for the two prey 

types.  

 



Prey mass (𝑚𝑅) [𝑚𝑔] 1.91 (mobile) 23.26 (resident) 

Small predator mass (𝑚𝐶) [𝑚𝑔] 66.1617 72.6217 

 

Medium predator mass (𝑚𝐶) [𝑚𝑔] 121.2167 

 

134.8133 

 

Large predator mass (𝑚𝐶) [𝑚𝑔] 147.8683 

 

160.6550 

 

 

Parameter thermal dependencies also scale with body mass. For the dimensions in the equations 

to be correct, we introduce a reference body mass for consumers and resources, 𝑚𝐶0
= 1𝑚𝑔 

and 𝑚𝑅0
= 1𝑚𝑔, respectively.  

 

We also note that the study does not explicitly measure or define a resource carrying capacity. 

However, it does provide an equation of the thermal dependence of the prey population. We 

assumed this to be the carrying capacity in our calculation of 𝜅. 

 

Finally, in this study, the authors measure the standard metabolic rate with units of energy over 

time [𝐽ℎ−1]. For the calculation of maximal energetic efficiency, the maximal feeding rate 

[
1

ℎ𝑎𝑛𝑑𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒
] was converted from [

1

𝑡𝑖𝑚𝑒
] to an energetic equivalent, [𝐽ℎ−1]. The conversion – 

described in the original study - is from per capita to per capita biomass (multiply with prey 

biomass 𝑚𝑅) and then to energy per capita (multiply with the weight [𝑘𝑔] - energy [𝐽] 

conversion factor of 7 × 106). Note, 𝑚𝑅 = [𝑚𝑔] = 10−6[𝑘𝑔]. 

 

𝜌 = 7 × 106 × 10−6 × 𝑚𝑅 ×
1

ℎ
×

𝑒

𝑚
 



 

Similarly, for 𝜅 = 𝑎ℎ𝐾(
𝑒

𝑚ℎ
− 1), the first term required a correction, since ℎ needed a 

conversion from per capita [ℎ 𝐼𝑛𝑑−1] to per capita biomass time [ℎ 𝑚𝑔−1] to match the 

dimensions of 𝐾. Hence, we divided handling time by the prey biomass:  

 

𝜅 = 𝑎(
1

𝑚𝑅
ℎ)𝐾(𝜌 − 1) 

 

The parameter values we used for calculating 𝜌 and 𝜅: 

 

The carrying capacity: 

 

𝐾(𝑇) = 𝐾0 (
𝑚𝑅

𝑚𝑅0

)
𝑠

𝑒−
𝐸𝐾
𝑘𝑇 𝜎𝑧𝑒𝑡𝑙0(𝑡𝑙−1)  

 

where 𝐾0 = 𝑒−31.15, 𝑚𝑅 is the prey body mass, 𝑠 = −0.72, 𝐸𝐾 = −0.71, 𝑧 = 1.03, 𝑡𝑙0 =

2.86, 𝑡𝑙 = 1.5.  

 

𝜎 = 𝜎0𝑒

−𝐸𝜎(𝑇𝑟𝑒𝑓−𝑇)

𝑘𝑇𝑇𝑟𝑒𝑓 [𝑔𝐶𝑚−2𝑦−1], where 𝜎0 = 600 and 𝐸𝜎 = 0.35. 

 

Attack rate [𝑚2ℎ−1] and handling time [ℎ 𝐼𝑛𝑑−1] varied with prey type: 

 

𝑎(𝑇) = 𝑎0 (
𝑚𝐶

𝑚𝐶0

)
𝑠

 𝑒
− 

𝐸𝑎(𝑇𝑟𝑒𝑓−𝑇)

𝑘𝑇𝑇𝑟𝑒𝑓   

with: 

𝑎0 = 𝑒−1.77, 𝐸𝑎 = 0.37, 𝑠 = −.48 for mobile prey  



𝑎0 = 𝑒−5.94, 𝐸𝑎 = −0.27, 𝑠 = 0.91 for resident prey 

 

ℎ(𝑇) = ℎ0 (
𝑚𝐶

𝑚𝐶0

)
𝑠

 𝑒
− 

𝐸ℎ(𝑇𝑟𝑒𝑓−𝑇)

𝑘𝑇𝑇𝑟𝑒𝑓   

with:  

ℎ0 = 𝑒2.99, 𝐸ℎ = −0.24, 𝑠 = −0.66 for mobile prey and   

ℎ0 = 𝑒6.85, 𝐸ℎ = −0.23, 𝑠 = −1 for resident prey 

 

Metabolic rate was measured in terms of energy per unit of time, 𝑚𝐸(𝑇).  

𝑚𝐸(𝑇) = 𝑚0 (
𝑚𝐶

𝑚𝐶0

)
𝑠

𝑒
− 

𝐸𝑚(𝑇𝑟𝑒𝑓−𝑇)

𝑘𝑇𝑇𝑟𝑒𝑓 with 𝑚0 = 𝑒−3.91, 𝐸𝑚 = 0.61, 𝑠 = 0.62, with units [𝐽ℎ−1] . 

 

𝑚𝐶 varieswith the predator size-class.   

 

Binzer et al. (2016): 

 

𝑚𝑅 and 𝑚𝐶 are the unit biomass [𝑔] of prey and predator, respectively. For the dimensions in 

the following equations to be correct, we introduce a reference body mass for resource and 

consumer, 𝑚𝑅0
= 1𝑔 and 𝑚𝐶0

= 1𝑔, respectively. We assumed a 100:1 consumer-resource 

body-mass ratio. 𝑇𝑟𝑒𝑓 = 20°𝐶 = 293.15𝐾 and 𝑒 = 0.85.  

 

𝑟(𝑇) = 𝑟0 (
𝑚𝑅

𝑚𝑅0

)
𝑠

𝑒

𝐸𝑟(𝑇𝑟𝑒𝑓−𝑇)

𝑘𝑇𝑇𝑟𝑒𝑓 with 𝑟0 = 𝑒15.68, 𝐸𝑟 = −0.84, 𝑠 = −0.25, [𝑠−1] 

𝐾(𝑇) = 𝐾0𝑒

𝐸𝐾(𝑇𝑟𝑒𝑓−𝑇)

𝑘𝑇𝑇𝑟𝑒𝑓 with 𝐸𝐾 = 0.71, [𝑔𝑚−2] 

 



In the original study 𝐾0 varied between 1 and 20, so we selected two scenarios, 𝐾0 = 5 for 

‘low enrichment’ and 𝐾0 = 15 for ‘high enrichment’ (Fig. 4c, 7c). 

 

𝑎(𝑇) = 𝑎0 (
𝑚𝑅

𝑚𝑅0

)
𝑠𝑅

(
𝑚𝐶

𝑚𝐶0

)
𝑠𝐶

𝑒

𝐸𝑎(𝑇𝑟𝑒𝑓−𝑇)

𝑘𝑇𝑇𝑟𝑒𝑓 with 𝑎0 = 𝑒13.1, 𝐸𝑎 = −0.38, 𝑠𝑅 = 0.25, 𝑠𝐶 = −0.8, 

[𝑚2𝑠−1] 

 

ℎ(𝑇) = ℎ0 (
𝑚𝑅

𝑚𝑅0

)
𝑠𝑅

(
𝑚𝐶

𝑚𝐶0

)
𝑠𝐶

𝑒

𝐸ℎ(𝑇𝑟𝑒𝑓−𝑇)

𝑘𝑇𝑇𝑟𝑒𝑓 with ℎ0 = 𝑒9.66, 𝐸ℎ = 0.26, 𝑠𝑅 = −0.45, 𝑠𝐶 = 0.47, 

[𝑠] 

 

𝑚(𝑇) = 𝑚0 (
𝑚𝐶

𝑚𝐶0

)
𝑠

𝑒

𝐸𝑚(𝑇𝑟𝑒𝑓−𝑇)

𝑘𝑇𝑇𝑟𝑒𝑓 with 𝑚0 = 𝑒16.54, 𝐸𝑚 = −0.69, 𝑠 = −0.31, [𝑠−1] 

 

Sentis et al (2012):   

 

Certain parameterisations were not fully provided in the original manuscript. We have retrieved 

them from the authors and used these for the calculation of maximal energetic efficiency, 𝜌, 

and interaction strength, 𝜅.  

 

The prey and predator masses are 𝑚𝑅 = 0.5031 [𝑚𝑔] and 𝑚𝐶 = 8.7 × 10−3 [𝑔], respectively. 

For the dimensions in the parameter equations to be correct, we introduce a reference body 

mass for the consumer, 𝑚𝐶0
= 1𝑔. 

 

We note that this study too does not explicitly measure or define a resource carrying capacity. 

However, it does provide a gradient of prey densities based on which their energetic efficiency 



was calculated. We used a low and a high value from the gradient as our carrying capacity 

values. 

 

Similarly to Vucic-Pestic et al. (2011), standard metabolic rate was measured [energy*time-1]. 

Hence we needed to convert ℎ from [𝑑 𝐼𝑛𝑑−1] into an energetic equivalent for its units to 

cancel out with 𝑚 [𝐽𝑠−1]. We applied the conversion described in the original study, to per 

capita biomass (multiply with 𝑚𝑅) and then to energy per capita (multiply with the weight [𝑘𝑔] 

- energy [𝐽] conversion factor of 7 × 106). Note, 𝑚𝑅 = [𝑚𝑔] = 10−6[𝑘𝑔]. Additionally, we 

scaled  𝑚 up from seconds to a daily rate. 

 

𝜌 = 7 × 106 × 10−6 × 𝑚𝑅 ×
1

ℎ
×

1

86400𝑚
× 𝑒  

 

𝜅 = 𝑎ℎ𝐾(𝜌 − 1) did not require any scalings, since the product 𝑎ℎ𝐾 was unitless.  

 

The parameter values for calculating 𝜌 and 𝜅 were:  

 

𝑎(𝑇) = 𝑎0(𝑇 − 𝑇0)(𝑇1 − 𝑇)
1

2 with 𝑎0 = 0.061, 𝑇0 = 11.05 + 273.15, 𝑇1 = 38.00 + 273.15, 

[𝑚2𝑑−1] 

 

ℎ(𝑇) = ℎ0𝑒
𝐸ℎ

𝑇−273.15 with ℎ0 = 0.0083, 𝐸ℎ = 44.7569, [𝑑 𝑖𝑛𝑑−1] 

 

𝑚𝐸(𝑇) = 𝑚0 (
𝑚𝐶

𝑚𝐶0

)
𝑠

𝑒
−𝐸𝑚

𝑘𝑇 with 𝑚0 = 2.86 ∗ 107, 𝐸𝑚 = 0.65, 𝑠 = 0.75, [𝐽𝑠−1] 

 



𝐾 [𝑖𝑛𝑑 𝑚−2] corresponnds to prey density values of the original study. We used 𝐾 = 5 and 

𝐾 = 60 for the ‘low enrichment’ and ‘high enrichment’ scenarios, respectively (Fig. 4d, 7d). 

 

Archer et al. (2019):  

 

𝑇𝑟𝑒𝑓 = 283.15𝐾  

 

For the dimensions in the parameter equations to be correct, we introduce a reference body 

mass for the consumer, 𝑚𝐶0
= 1𝑚𝑔. 

 

No carrying capacity values were explicitly defined or provided. We derived the carrying 

capacity, 𝐾, from Fig. 3c of the manuscript which demonstrates the temperature-depedence of 

the prey density.  

 

For the metabolic rate of P. cingulatus we did not include additional the quadratic term used in 

the fitting of the curve to the original data.  

 

To attain a unitless aggregate parameter 𝜌 =
𝑒

𝑚ℎ
 we converted ℎ from [𝑑 𝐼𝑛𝑑−1] into an 

energetic equivalent for its units to cancel out with 𝑚 [𝐽ℎ−1] – as in the original study.  The 

per capita handling time was converted to per capita energy handling time using the prey body 

mass (0.546 𝑚𝑔) and the prey energy content (23.1 𝐽𝑚𝑔−1)  - these scaling were provided in 

the original study. Finally, we converted 𝑚 from an hourly to a daily rate to match the feeding 

rate temporal scale.  

 



𝜌 = 0.546 × 23.1 ×
1

ℎ
×

1

24𝑚
× 𝑒 

 

𝜅 = 𝑎ℎ𝐾(𝜌 − 1) did not require any scalings, since the product 𝑎ℎ𝐾 was unitless.  

 

The parameter values used were the following:  

 

For the sedentary (L. riparia) predator:  

 

𝑎(𝑇) = 𝑎0𝑒
− 

𝐸𝑎(𝑇𝑟𝑒𝑓−𝑇)

𝑘𝑇𝑇𝑟𝑒𝑓 with 𝑎0 = 0.241 (Lab 2013), 𝑎0 = 0.802 (Lab 2015) or 𝑎0 = 1.889 

(Field 2015) and 𝐸𝑎 = 0.74 (for all measurements), with units [𝑚2𝑑−1] 

 

ℎ = 4.033, [𝑑 𝑖𝑛𝑑−1] – no temperature dependence  

 

𝑚𝐸(𝑇) = 𝑚0 (
𝑚𝐶

𝑚𝐶0

)
𝑠

𝑒
−𝐸𝑚

𝑘𝑇 with 𝑚0 = 𝑒−4.171 ∗ 107, 𝐸𝑚 = 0.687, 𝑚𝐶 = 100.25, 𝑠 = 0.525, 

[𝐽ℎ−1] 

 

For the mobile predator (P. cingulatus):  

 

𝑎(𝑇) = 𝑎0𝑒
− 

𝐸𝑎(𝑇𝑟𝑒𝑓−𝑇)

𝑘𝑇𝑇𝑟𝑒𝑓 with 𝑎0 = 1.529 (Lab 2015) or 𝑎0 = 5.515 (Field 2015) and 𝐸𝑎 =

0.229 (for all measurements), with units [𝑚2𝑑−1] 

 

ℎ = 0.644, [𝑑 𝑖𝑛𝑑−1] – no temperature dependence  

 



𝑚𝐸(𝑇) = 𝑚0𝑒
−𝐸𝑚

𝑘𝑇 with 𝑚0 = 𝑒−1.056 ∗ 107, 𝐸𝑚 = 1.072, with no effects of body mass, [𝐽ℎ−1] 

 

And for all calculations:  

 

 

𝐾(𝑇) = 100.16(𝑇−273.15), with units [𝑖𝑛𝑑 𝑚−2] 

 

𝑒(𝑇) =
𝑒0𝑒

−𝐸𝑒(𝑇0−𝑇)
𝑘𝑇𝑇0

𝑒0𝑒

−𝐸𝑒(𝑇0−𝑇)
𝑘𝑇𝑇0 +1

, with 𝑒0 = 𝑒2.266, 𝐸𝑎 = 0.164, 𝑇0 = 293.15𝐾  

 



Supplementary Information 5: Biomass ratio and stability sensitivity values in the 𝝆 − 𝜿 

plane  

 

Since all parameter sensitivities can be expressed in terms of 𝜌 and 𝜅, the sensitivity values of 

each parameter are fully determined in the 𝜌 − 𝜅 plane. Here we present figures with contours 

of the parameter values in the aggregate parameter plane. These combined with the ‘rankings 

regions’ from the main manuscript, provide a complete picture of the parameter sensitivities in 

the 𝜌 − 𝜅 plane.  

 

 

 

Figure S5.1. Values of biomass ratio sensitivities with respect to (‘wrt’) individual parameters 

(different panels) derived from the expressions in Table 1 of the main manuscript.  

 



 

 

Figure S5.2. Values of stability metric sensitivities with respect to (‘wrt’) to individual 

parameters (different panels) derived from the expressions in Table 1 of the main manuscript. 
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