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ABSTRACT

Context dependency is a key feature in sequential structures of human language, which requires
reference between words far apart in produced sequence. Assessing how long the past context has
effect on the current status provides crucial information to understand the mechanism for complex
sequential behaviors. Birdsongs serve as a representative model for studying the context dependency
in sequential signals produced by non-human animals, while previous reports were upper bounded by
methodological limitations. Here we show that birdsongs have a long context dependency comparable
to grammatical structure in human language. We newly estimated the context dependency in birdsongs
in a scalable way using a neural-network-based language model whose accessible context length is
sufficiently long. Quantitative comparison with the parallel analysis of English sentences revealed
that the context dependency in the birdsong was much shorter than that in the sentence, but was
comparable to the grammatical structure when semantic factors were removed. Our findings are in
accordance with the previous generalization in comparative studies that birdsong is more homologous
to human language syntax than the entirety of human language including semantics.

Keywords birdsong, context dependency, Bengalese finch, language modeling, discrete variational autoencoder,
unsupervised clustering, individual normalization

Introduction1

Making behavioral decisions based on past information is a crucial task in the life of humans and animals live (Friston,2

2003, 2010; Friston and Stephan, 2007). Thus, it is an important inquiry in biology how far past events have an effect3

on animal behaviors. Such past records are not limited to observations of external environments, but also include4

behavioral history of oneself. A typical example is human language production; The appropriate choice of words to utter5

depends on previously uttered words/sentences. For example, we can tell whether ‘was’ or ‘were’ is the grammatical6

option after a sentence ‘The photographs that were taken in the cafe and sent to Mary ’ only if we keep track of the7

previous words sufficiently long, at least up to ‘photographs’, and successfully recognize the two closer nouns (cafe8

and station) as modifiers rather than the main subject. Similarly, semantically plausible words are selected based on the9

topic of preceding sentences, as exemplified by the appropriateness of olive over cotton after “sugar” and “salt” are10

used in the same speech/document. Such dependence on the production history is called context dependency and is11

considered a characteristic property of human languages (Harris, 1945; Chomsky, 1957; Larson, 2017; Khandelwal12

et al., 2018; Dai et al., 2019).13

Birdsongs serve as a representative case study of context dependency in sequential signals produced by non-human14

animals. Their songs are sound sequences that consist of brief vocal elements, or syllables (Hosino and Okanoya, 2000;15
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Okanoya, 2004). Previous studies have suggested that those birdsongs exhibit non-trivially long dependency on previous16

outputs (Katahira et al., 2011; Warren et al., 2012; Markowitz et al., 2013). Complex sequential patterns of syllables have17

been discussed in comparison with human language syntax from the viewpoint of formal linguistics (Okanoya, 2004;18

Berwick et al., 2011, 2012; Berwick and Chomsky, 2016). Neurological studies also revealed homological network19

structures for the vocal production, recognition, and learning of songbirds and humans (Kuypers, 1958; Wild et al.,20

1997; Prather et al., 2008). In this line, assessing whether birdsongs exhibit long context dependency is an important21

instance in the comparative studies, and several previous studies have addressed this inquiry using computational22

methods (Katahira et al., 2011; Markowitz et al., 2013). However, the reported lengths of context dependency were23

measured using a limited language model (Markov/n-gram model) that was only able to access a few recent syllables24

in the context. Thus, it is unclear if those numbers were real dependency lengths in the birdsongs or merely model25

limitations. Moreover, the use of a limited language model is problematic for comparative studies because human26

languages are not modeled precisely by a Markov process (Chomsky, 1956; Rabin and Scott, 1959).27

The present study aimed to assess the context dependency in songs of Bengalese finches (Lonchura striata var.28

domestica) using modern techniques for the natural language processing. Recent advancements in the machine learning29

field, particularly in artificial neural networks, provide powerful language models (Vaswani et al., 2017; Devlin et al.,30

2018; Dai et al., 2019), which are suitable for analyses of birdsong data, and can potentially refer to 200–900 syllables31

from the past when the data include such long dependency (Khandelwal et al., 2018; Dai et al., 2019). We performed32

the context dependency analysis in two steps: unsupervised classification of song syllables and context-dependent33

modeling of the classified syllable sequence. The classification allowed us to assess the sequential property of birdsongs34

in the same wat as human language data. Moreover, it it preferable to have a common set of syllable categories, which35

is shared among classifications for all birds, to represent general patterns in the sequences. Conventional classification36

methods depending on manual labeling by human experts could spoil such generality due to arbitrariness in integrating37

the category sets across different birds. To satisfy these requirements, we employed a novel, end-to-end, unsupervised38

clustering method (“seq2seq ABCD-VAE”, see Fig. 1). Then, we assessed the context dependency in sequences of39

the classified syllables by measuring the effective context length (Khandelwal et al., 2018; Dai et al., 2019), which40

represents how much portion of the song production history impacts on the prediction performance of a language model.41

The language model we used (“Transformer”, see Fig. 3) behaves as a simulator of birdsong production, which exploits42

the longest context among currently available models (Vaswani et al., 2017; Devlin et al., 2018; Dai et al., 2019). The43

proposed method is data-agnostic and, thus, enabled a direct comparison between Bengalese finches’ songs and human44

language sentences.45

Here, we demonstrate that the context dependency in Bengalese finch’s song is much shorter than in English sentences,46

but is slightly longer than and more comparable to the dependency in purely syntactic representation of the sentences,47

where words were replaced with grammatical category labels (such as noun and verb) to remove semantic information.48

These findings corroborate the idea that birdsong sequences are more homologous to human language syntax than49

the entirety of human language including semantics (Berwick et al., 2011; Gibson and Tallerman, 2012; Miyagawa50

et al., 2013) and provide a new piece of evidence for the hypothesis that human language modules, such as syntax51

and semantics, evolved from different precursors that are shared with other animals (e.g., birdsongs and alarm calls52

respectively; Okanoya, 2007; Okanoya and Merker, 2007; Miyagawa et al., 2013, 2014; Nóbrega and Miyagawa, 2015).53

Results54

Unsupervised, individual-invariant classification of song syllables55

The context dependency analysis requires discrete representations, or “labels”, of song syllables. Recent studies have56

explored fully unsupervised classification of animal vocalization based on acoustic features extracted by an artificial57

neural network, called variational autoencoder or VAE (Kingma and Welling, 2014; Coffey et al., 2019; Goffinet et al.,58

2019; Sainburg et al., 2019b). We extended this approach and newly proposed an end-to-end unsupervised clustering59

method named ABCD-VAE, which utilizes the attention-based categorical sampling with the Dirichlet prior. This60

method automatically classifies syllables into an unspecified number of statistically optimal categories. It also allowed61

us to exploit the speaker-normalization technique developed for unsupervised learning of human language from speech62

recordings (van den Oord et al., 2017; Chorowski et al., 2019; Dunbar et al., 2019; Tjandra et al., 2019), yielding63

syllable classification modulo individual variation.64

We used a dataset of Bengalese finches’ songs that was originally recorded for previous studies. Song syllables in the65

recorded waveform data were detected and segmented by amplitude thresholding. We collected 465,310 syllables in66

total from 18 adult male birds, and fed them to the unsupervised classifier (Fig. 1A). The classifier consisted of two67

concatenated recurrent neural networks (RNNs, see Fig. 1B). We jointly trained the entire network such that the first68
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Figure 1. Schematic diagram of newly proposed syllable classification. (A) Each sound waveform segment was
converted into the time-frequency representations (spectrograms), and was assigned to one of syllable categories by the
unsupervised classification. (B) The unsupervised classification was implemented as a sequence-to-sequence version of
the variational autoencoder, consisting of the attention-based categorical sampling with the Dirichlet prior (“seq2seq
ABCD-VAE”). The ABCD-VAE encoded syllables into discrete categories between the encoder and the decoder. A
statistically optimal number of categories was detected under an arbitrarily specified upper bound thanks to the Dirichlet
prior. The identity of the syllable-uttering individual was informed to the decoder besides the syllable categories;
Accordingly, individual-specific patterns need not have been encoded in the discrete syllable representation.

RNN represented the entirety of each input syllable in its internal state (“encoding” Fig. 1B) and the second RNN69

restored the original syllable from the internal representation as precisely as possible (“decoding”). The encoded70

representation of the syllable was mapped to a categorical space (“embedding”) before the decoding process. The71

number of syllable categories was automatically detected as a statistical optimum owing to the Dirichlet prior (Bishop,72

2006; O’Donnell, 2015; Little, 2019).73

As a result, the classifier detected 39 syllable categories in total for all the birds (Fig. 2). Syllables that exhibit similar74

acoustic patterns tended to be classified into the same category across different birds (Fig. 2A). Almost all birds produced75

not all but a part of syllable categories in their songs (Fig. 2B). The syllable repertoire of each bird covered 26 to 3876

categories (34.78± 3.19). Conversely, each category consisted of syllables produced by 8 to 18 birds (16.05± 2.52).77

The detected categories appeared to align with major differences in the spectrotemporal pattern (Fig. 2C).78

Quantitative evaluation of syllable classification79

We assessed the reliability of the detected classification by its alignment with manual annotations by a human expert80

(see Tachibana et al., 2014). We scored the alignment using two metrics. One was Cohen’s Kappa coefficient (Cohen,81

1960), which has been used to evaluate syllable classifications in previous studies (Katahira et al., 2011; Tachibana82

et al., 2014). A problem with this metric is that it requires two classifications to use the same set of categories while83

our model predictions and human annotations had different numbers of categories and, thus, we needed to force-align84

each of the model-predicted categories to the most common human-annotated label to use the metric. To get rid of the85

force-alignment and any other post-processing, we also evaluated the classification using a more recently developed86

metric called V-measure (Roseberg and Hirschberg, 2007). The two evaluation metrics showed that the unsupervised87

classification was mostly consistent with manual annotations assigned by a human expert (Table 1; see also Fig 2D);88

Even the lowest Kappa coefficient reached the level of “almost perfect agreement” (Landis and Koch, 1977) and the89

lowest V-measure score among the birds was significantly greater than the chance level (p < 0.0001). Hence, our90

unsupervised clustering of syllables is as reliable as the manual classification by the expert.91

To evaluate the individual-invariance of the model-predicted classification, we also measured the identifiability of each92

individual bird from the category of a syllable it uttered, fitting the conditional categorical distribution to 90% of the93

syllables by the maximum likelihood criterion and then evaluating the prediction accuracy on the other 10%. As a94

baseline, we also measured the individual predictability from continuous-valued features of syllables extracted by95

the canonical VAE (Kingma and Welling, 2014; Coffey et al., 2019; Goffinet et al., 2019; Sainburg et al., 2019b, see96

Method for details). The feature-to-individual classifier for this baseline was implemented by a feed-forward neural97
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Figure 2. Clustering results of Bengalese finch syllables based on the ABCD-VAE. (A) Syllable spectrograms and their
classification across individuals. Syllables in each of the first to third rows (yellow box) were sampled from the same
individual. Each column (blue frame) corresponds to the syllable categories assigned by the ABCD-VAE. The bottom
row provides the median spectrogram of each category over all the 39 individuals. The examples had the greatest
classification probability (> 0.999) among the syllables of the same individual and category. (B) Relative frequency of
syllable categories (columns) per individual (rows). (C) Median spectrogram of each syllable category predicted by
the ABCD-VAE. (D) Relative frequency of syllable categories (columns) per label manually annotated by a human
expert. Only data from a single individual (b03) were presented because the manual annotations were not shared across
individuals. (E) Comparison between syllable embeddings by the canonical continuous-valued VAE with the Gaussian
noise (scatter points) and classification by the ABCD-VAE (grouped by the dotted lines). The continuous representation
originally had 16 dimensions and was embedded into the 2-dimensional space by t-SNE. The continuous embeddings
included notable individual variations represented by colors, whereas the ABCD-VAE classification ignored these
individual variations.
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Table 1. Scores of the clustering by the ABCD-VAE. Cohen’s kappa coefficient and V-measure evaluated the alignment
of the clustering by the ABCD-VAE to manual annotations by a human expert. Since the manual annotation was not
shared across individuals, we scored each individual separately and report the median, maximum, and minimum over
the individuals. Even the minimum V-measure score was statistically significantly greater than the random baseline
(obtained from 10,000 samples of shuffled manual annotation) and the minimum kappa coefficient exhibited so-called
“almost perfect agreement”. The individual predictability scored the amount of individuality included in the syllable
categories yielded by the ABCD-VAE. The score was defined by the accuracy of predictions of the individual uttering
a test syllable (10% of the entire data) based on the greatest probability assigned by a classifier fitted to the other
90% of the syllables by the maximum likelihood optimization. The individual predictability from the ABCD-VAE
categories was notably smaller than that from the continuous representation obtained via the canonical VAE (the
embedding-to-individual classifier was implemented by a feed-forward neural network with a single hidden layer),
evidencing the individual-invariance of the ABCD-VAE categories.

Metric Score Note

Cohen’s kappa
(vs. human annotation)

Median 0.9376
Max 0.9929
Min 0.8101 “Almost perfect agreement”

V-measure
(vs. human annotation)

Median over individuals 0.7985
Max 0.8879
Min 0.6527 p < 0.0001

Individual predictability 0.2670 � 0.8662 of the canonical VAE

network with a single hidden layer. The individual predictability from the discrete syllable categories was notably98

smaller than that from the continuous-valued features (Table 1). Thus, the proposed clustering is considered to have99

ignored individual variations (and other minor differences) visible in the syllable embeddings obtained via the canonical100

continuous-valued VAE (see also Fig. 2E).101

Birdsong sequence more context-dependent than English syntax102

The classification described above provided us sequences of categorically represented syllables. To assess the context103

dependency in the sequence, we then measured differences between syllables predicted from full-length contexts and104

truncated contexts. This difference become large as the length of the truncated context gets shorter and contains less105

information. And, the difference should increase if the original sequence has a longer context dependency (Fig. 3A).106

Thus, the context dependency can be quantified as the maximum length of the truncated contexts where the difference is107

statistically detectable (Khandelwal et al., 2018; Dai et al., 2019). For the context-dependent prediction, we employed108

the Transformer language model (Vaswani et al., 2017; Devlin et al., 2018; Dai et al., 2019).109

Each sequence included syllables that form a continuous song performance, or “bout”. We obtained a total of 9,139110

bouts, and used 9,039 of them to train the Transformer. The remaining 100 bouts were used to score its predictive111

performance from which the dependency was calculated. The model predictions were provided of the log conditional112

probability of the test syllables (x) given the preceding ones in the same bout. We compared the model predictions113

between the full-context (“Full”, Fig. 3A) and the truncated-context (“Truncated”) conditions. Then, the context114

dependency was quantified by a statistical measure of the effective context length (Khandelwal et al., 2018; Dai et al.,115

2019), which is the maximum length of the truncated context wherein the mean prediction difference between the two116

contexts was significantly greater than the canonical 1% threshold in perplexity (at 0.05 level of significance estimated117

from 10,000 bootstrapped samples; Khalighinejad et al., 2017). For comparison, we performed the same analysis on118

English sentence datasets (12,327 training sentences and 2,006 test sentences; Silveira et al., 2014) in two different119

forms. One of them represented the words by their lemma (i.e., original word forms without grammatical inflection;120

e.g., ‘fixed’ was represented as ‘fix’). The other form contained only the grammatical information by replacing words121

with the part-of-speech (PoS) tags such as nouns and verbs (Perfors et al., 2011a). This process made the analyzed122

context dependencies free of semantic factors such as co-occurrences of topic-specific words at distance (e.g., ‘salt’ and123

‘sugar’ co-occur in cooking recipes irrespective of a grammatical relation).124

The statistically effective context length (SECL) of the Bengalese finch song was eight (pink line in Fig. 3B). In other125

words, restricting available contexts to eight or less preceding syllables significantly decreased the prediction accuracy126

comparing with the full-context baseline, while the difference became marginal when nine or more syllables were127

included in the truncated context. This number is lower than the SECL of the English sentence data, which was ten or128
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Figure 3. (A) Schematic diagram of the evaluation metric. Predictive probability of each categorized syllable (denoted
by x) was computed using the trained language model, conditioned on the full and truncated contexts consisting of
preceding syllables (highlighted in blue and orange, respectively). The logarithmic difference of the two predictive
probabilities was evaluated, and SECL was defined by the maximum length of the truncated context wherein the
prediction difference is statistically significantly greater than a canonical threshold. (B) The differences in the mean loss
(negative log probability) between the truncated- and full-context predictions. The x-axis corresponds to the length of
the truncated context. The error bars show the 90% confidence intervals estimated from 10,000 bootstrapped samples.
The loss difference is statistically significant if the lower side of the intervals are above the threshold indicated by the
horizontal dashed line.

greater (black line, achieved the upper bound). On the other hand, the SECL in English decreased to five when we129

replaced words with the PoS tags and removed the semantic factors (gray line). Hence, the context dependency in130

Bengalese finch songs is more comparable to that in the English syntax than in the full English including semantics.131

Discussion132

This study assessed the context dependency in Bengalese finch’s song to investigate how long individual birds must133

remember their previous vocal outputs to generate well-formed song bouts. We addressed this question by fitting a134

state-of-the-art language model, Transformer, to the bouts, and evaluating the decline in the model’s performance135

upon truncation of the context. We also proposed an end-to-end clustering method of Bengalese finch syllables, the136

ABCD-VAE, to obtain discrete inputs for the language model. In the section below, we discuss the results of this137

syllable clustering and then move to consider context dependency.138

Clustering of syllables139

The clustering of syllables into discrete categories played an essential role in our analysis of context dependency in140

Bengalese finch songs, particularly for the comparison to human language in text. Various studies have observed how141

fundamental the classification of voice elements is to animal vocalization (Payne and McVay, 1971; Seyfarth et al.,142

1980; Hosino and Okanoya, 2000; Kojima, 2003; Suzuki et al., 2006; Kakishita et al., 2007; Markowitz et al., 2013;143

Kershenbaum et al., 2016; Sainburg et al., 2019a, but see Katahira et al., 2011; Morita and Koda, 2019; Sainburg et al.,144

2019b for categorization-free approaches).145

Our syllable clustering is based on the AVCD-VAE and features the following advantages over previous approaches. First,146

the ABCD-VAE works in a completely unsupervised fashion. The system finds the statistically optimal classification147

of syllables instead of generalizing manual labeling of syllables by human annotators (as opposed to Tachibana et al.,148

2014). Thus, the obtained results are more objective and reproducible (cf. Janik, 1999). Second, the ABCD-VAE detects149

the statistically optimal number of syllable categories rather than pushing syllables into a pre-specified number of150

classes (as opposed to Jang et al., 2017; van den Oord et al., 2017; Chorowski et al., 2019). This update is of particular151

importance when we know little about the ground truth classification—as in the cases of animal song studies—and need152

a more non-parametric analysis. Third, the ABCD-VAE adopted the speaker-normalization technique used for human153

speech analysis and finds individual-invariant categories of syllables (van den Oord et al., 2017; Chorowski et al., 2019;154

Tjandra et al., 2019). Finally, the end-to-end clustering by the ABCD-VAE is more optimal than the previous two-step155

approach—acoustic feature extraction followed by clustering—because the feature extractors are not optimized for156
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clustering and the clustering algorithms are often blind to the optimization objective of the feature extractors (Coffey157

et al., 2019; Goffinet et al., 2019; Sainburg et al., 2019b). Chorowski et al. (2019) also showed that a similar end-to-end158

clustering is better at finding speaker-invariant categories in human speech than the two-step approach.159

It should be noted that the classical manual classification of animal voice was often based on visual inspection on160

the waveforms and/or spectrograms rather than auditory inspection (Payne and McVay, 1971; Katahira et al., 2011;161

Tachibana et al., 2014). Similarly, previous VAE analyses of animal voice often used a convolutional neural network162

that processed spectrograms as images of a fixed size (Coffey et al., 2019; Goffinet et al., 2019). By contrast, the present163

study adopted a RNN (specifically, a version called the long short-term memory, abbreviated as LSTM Hochreiter164

and Schmidhuber, 1997) to process syllable spectra frame by frame as time series data. Owing to the lack of ground165

truth as well as empirical limitations on experimental validation, it is difficult to adjudicate on the best neural network166

architecture for auto-encoding Bengalese finch syllables and other animals’ voice. Nevertheless, RNN deserves close167

attention as a neural/cognitive model of vocal learning. There is a version of RNN called reservoir computer that has168

been developed to model computations in cortical microcircuits (Maass et al., 2002; Natschläger et al., 2003; Jaeger169

and Haas, 2004). Future studies may replace the LSTM in the ABCD-VAE with a reservoir computer to build a more170

biologically plausible model of vocal learning (cf. Dehaene et al., 1987). Similarly, we may filter some frequency171

bands in the input sound spectra to simulate the auditory perception of the target animal (cf. the Mel-frequency cepstral172

coefficients, MFCCs, are used in human speech analysis; Chung et al., 2016; Chorowski et al., 2019; Tjandra et al.,173

2019), and/or adopt more anatomically/bio-acoustically realistic articulatory systems for the decoder module (cf. Wang174

et al., 2020, implemented the source-filter model of vocalization based on an artificial neural network). Such Embodied175

VAEs would allow constructive investigation of vocal learning beyond mere acoustic analysis.176

A visual inspection of classification results shows that the ABCD-VAE can discover individual-invariant categories of177

the Bengalese finch syllables (Figure 2). This speaker-normalization effect is remarkable because the syllables exhibit178

notable individual variations in the continuous feature space mapped into by the canonical VAE and cross-individual179

clustering is difficult there (see Figure 2E and the supporting information S1.4; Coffey et al., 2019; Goffinet et al.,180

2019; Sainburg et al., 2019b). Previous studies on Bengalese finch and other songbirds often assigned distinct sets of181

categories to syllables of different individuals, presumably because of similar individual variations in the feature space182

they adopted (Katahira et al., 2011; Markowitz et al., 2013; Tachibana et al., 2014; Kershenbaum et al., 2016; Sainburg183

et al., 2019b).184

The end-to-end classification by the ABCD-VAE can be applied to a broad range of studies on animal vocalization,185

including cases where sequential organization of voice units is not at issue. The limitations of the proposed method186

are the prerequisite for appropriate voice segmentation as it operates on predefined time series of sound spectra, and a187

single category is assigned to each time series. Although birdsongs often exhibit clear pauses and researchers use them188

to define syllable boundaries, appropriate voice segmentation is not necessarily clear for other animals (Kershenbaum189

et al., 2016; Sainburg et al., 2019b), including human speech (Chiu et al., 2017; Dunbar et al., 2017, 2019; Rao et al.,190

2017). A possible solution to this problem (in accordance with our end-to-end clustering) is to categorize sounds191

frame by frame (e.g., by spectrum and MFCC) and merge contiguous classmate frames to define a syllable-like span192

(Chorowski et al., 2019; Tjandra et al., 2019).193

Context dependency194

According to our analysis of context dependency, Bengalese finches are expected to keep track of up to eight previously195

uttered syllables—not just one or two—during their singing. This is evidenced by the relatively poor performance of the196

song simulator conditioned on the truncated context of one to eight syllables compared to the full-context condition. Our197

findings add a new piece of evidence for long context dependency in Bengalese finch songs found in previous studies.198

Katahira et al. (2011) showed that there are at least two dependent context lengths. They compared the first order and199

second order Markov models, which can only access the one and two preceding syllable(s), respectively, and found200

significant differences between them. A similar analysis was performed on canary songs by Markowitz et al. (2013),201

with an extended Markovian order (up to seventh). The framework in these studies cannot scale up to assess longer202

context dependency owing to the empirical difficulty of training higher-order Markov models (Katz, 1987; Kneser and203

Ney, 1995; Bengio et al., 2001, 2003; Goldwater et al., 2006; Teh, 2006). By contrast, the present study exploited204

a state-of-the-art neural language model (Transformer) that can effectively combine information from much longer205

contexts than previous Markovian models and potentially refer up to 900 tokens (Dai et al., 2019). Thus, the dependency206

length reported in this study is not likely to be upper-bounded by the model limitations and provides a more precise207

estimation of the real dependency length in a birdsong than previous studies. The long context dependency in Bengalese208

finch songs is also evidenced by experimental studies. Warren et al. (2012) reported that several pairs of syllable209

categories had different transitional probability depending on whether or not the same transition pattern occurred in the210

previous opportunity. In other words, P(B | AB . . . A ) 6= P(B | AC . . . A ) where A, B, C are distinct syllable211
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categories, the dots represent intervening syllables of an arbitrary length (63 A), and the underline indicates the position212

of B whose probability is measured. They also found that the probability of such history-dependent transition patterns213

is harder to modify through reinforcement learning than that of more locally dependent transitions. These results are214

consistent with our findings. It often takes more than two transitions for syllables to recur (12.17 syllables on average215

with the SD of 11.30 according to our own bout data, excluding consecutive repetitions); therefore, the dependency on216

the previous occurrence cannot be captured by memorizing just one or two previously uttered syllable(s).217

Our study also found that Bengalese finch songs are more comparable to human language syntax than to the entirety218

of human language including semantics. This was demonstrated by our analysis of English sentences represented219

by sequences of lemmas and PoS categories. While the lemma-represented English sentences exhibited long context220

dependency beyond ten words as reported in previous studies (Khandelwal et al., 2018; Dai et al., 2019), the dependency221

length decreased to five—below the Bengalese finch result—when the PoS representation was used and semantic222

information was removed from the sentences. The gap between the two versions of English suggests that the major223

factor of long-distance dependencies in human language is the semantics, not the syntax. This is consistent with previous224

studies reporting that human language syntax prefers shorter dependency (Gibson, 1998; Futrell et al., 2015). Moreover,225

comparative studies between birdsong and human language often argue the former’s lack of semantic function (Berwick226

et al., 2011, 2012; Gibson and Tallerman, 2012; Miyagawa et al., 2013, 2014), without referential variations seen in227

alarm calls (Seyfarth et al., 1980; Ouattara et al., 2009; Suzuki et al., 2016). This claim led to the hypothesis that human228

language syntax and semantics evolved from different precursors—sequence-generating system, such as animal song,229

and information-carrying system such as alarm calls—which were integrated to shape the entirety of human language230

(Okanoya, 2007; Okanoya and Merker, 2007; Miyagawa et al., 2013, 2014; Nóbrega and Miyagawa, 2015). Our findings231

are in accordance with this view, providing a novel relative similarity between birdsong and human language syntax232

compared to the whole linguistic system. Note that this kind of direct comparative study of human language and animal233

song was not feasible until flexible language models based on neural networks became available.234

The reported context dependency on eight previous syllables also has an implication for possible models of Bengalese235

finch syntax. Feasible models should be able to represent the long context efficiently. For example, the simplest and236

traditional model of the birdsong and voice sequences of other animals—including human language before the deep237

learning era—is the n-gram model, which exhaustively represents all the possible contexts of length n− 1 as distinct238

conditions (Katz, 1987; Kneser and Ney, 1995; Hosino and Okanoya, 2000; Goldwater et al., 2006; Teh, 2006). This239

approach, however, requires an exponential number of contexts to be represented in the model. In the worst case, the240

number of possible contexts is 398 = 5, 352, 009, 260, 481 when there are 39 syllable types and the context length is241

eight as detected in this study. Such an exhaustive representation is not only hard to store and learn—for both real242

birds and simulators—but also uninterpretable to researchers. Thus, a more efficient representation of the context243

syllables is required (cf. Morita and Koda, 2020). Katahira et al. (2011) assert that the song syntax of the Bengalese244

finch can be better described with a lower-order hidden Markov model (Rabiner, 1989; Beal et al., 2002, HMM;)245

than the n-gram model. Moreover, hierarchical language models used in computational linguistics (e.g., probabilistic246

context-free grammar) are known to allow a more compact description of human language (Perfors et al., 2011b) and247

animal voice sequences (Morita and Koda, 2019) than sequential models like HMM. Another compression possibility is248

to represent consecutive repetitions of the same syllable categories differently from transitions between heterogeneous249

syllables (cf. Kershenbaum et al., 2014). This idea is essentially equivalent to the run length encoding of digital signals250

(e.g., AAABBCDDEEEEE can be represented as 3A2B1C2D5E where the numbers count the repetitions of the following251

letter) and is effective for data including many repetitions like Bengalese finch’s song. For the actual implementation in252

birds’ brains, the long contexts can be represented in a distributed way (Nishikawa et al., 2008): Activation patterns of253

neuronal ensemble can encode a larger amount of information than the simple sum of information representable by254

individual neurons, as demonstrated by the achievements of artificial neural networks (Bengio et al., 2001, 2003; Ryeu255

et al., 2001; Tsuda, 2001; Maass et al., 2002; Jaeger and Haas, 2004; Nishikawa and Okanoya, 2006).256

While this study discussed context dependency in the context of memory durability required for generating/processing257

birdsongs (cf. Katahira et al., 2011; Warren et al., 2012; Markowitz et al., 2013), there are different definitions of258

context dependency designed for different research purposes. Sainburg et al. (2019a) studied the mutual information259

between birdsong syllables—including Bengalese finch ones—appearing at each discrete distance. Following a study260

on human language by Lin and Tegmark (2017), Sainburg et al. analyzed patterns in the decay of mutual information to261

diagnose the generative model behind the birdsong data, instead of addressing the question about memory. Importantly,262

their mutual information analysis cannot replace our model-based analysis to assess the memory-oriented context263

dependency: Mutual information is a pairwise metric of probabilistic dependence between two tokens (e.g., words in264

human languages, syllables in birdsongs), and thus, everything in the middle is ignored. To see the problem, suppose265

that some tokens reflect the individuality of the speaker (see Figure S3.1a in the supporting information; section S3.1266

also provides a more concrete, mathematical example of this problematic situation, and S3.2 introduces other examples267

that demonstrate difficulties in the mutual information analysis). Two occurrences of speaker-encoding tokens are268
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dependent on each other regardless of their distance if the other tokens between the two are ignored, and this pairwise269

dependence is what mutual information accounts for. It should be clear now that such pairwise dependence does not270

necessarily match the agent-oriented concept of context dependency as the only thing relevant to the song recognition271

task (or speaker identification in this toy example) is the most recent occurrence of the correlating tokens. By contrast,272

our language modeling approach captured the agent-oriented concept of context dependency as desired. Dependency273

on a token in the past is detected if the prediction of upcoming tokens becomes notably more difficult by limiting the274

available context to the more recent tokens (Figure S3.1b; Khandelwal et al., 2018; Dai et al., 2019). In other words,275

reference to a token in the distant past is considered unnecessary if the same information (e.g., speaker identity) is276

available from more recent tokens. Therefore, the present study complements, rather than repeats/replaces, the mutual277

information analysis and findings from it.278

We conclude the present paper by noting that the analysis of context dependency via neural language modeling is279

not limited to Bengalese finch’s song. Since neural networks are universal approximators and potentially fit to any280

kind of data (Cybenko, 1989; Hornik, 1991; Jin et al., 1995; Maass et al., 2002; Lu et al., 2017), the same analytical281

method is applicable to other animals’ voice sequences (Payne and McVay, 1971; Suzuki et al., 2006; Markowitz et al.,282

2013; Morita and Koda, 2019). Moreover, the analysis of context dependency can also be performed in principle on283

other sequential behavioral data besides vocalization, including dance (Frith and Beehler, 1998; Scholes, 2006, 2008)284

and gestures (van Lawick-Goodall, 1968; de Waal, 1988; Tanner and Byrne, 1996; Liebal et al., 2006). Hence, our285

method provides a crossmodal research paradigm for inquiry into the effect of past behavioral records on future decision286

making.287

Materials & Methods288

Recording and segmentation of Bengalese finch’s song289

We used the same recordings of Bengalese finch songs that were originally reported in our earlier studies Tachibana290

et al. (2014, 2015). The data were collected from 18 adult males (>140 days after hatching), each isolated in a birdcage291

placed inside a soundproof chamber. The microphone (Audio-Technica PRO35) was installed above the birdcages. The292

output of the microphone was amplified using a mixer (Mackie 402-VLZ3) and digitized through an audio interface293

(Roland UA-1010/UA-55) at 16-bits with a sampling rate of 44.1 kHz. The recordings were then down-sampled to294

32 kHz (see Tachibana et al. (2014, 2015) for more information about the recording).295

Song syllables were segmented from the continuous recordings using the thresholding algorithm proposed in the296

previous studies (Tachibana et al., 2014, 2015). We defined a sequence of the syllables as a bout if every two adjacent297

syllables in the sequence were spaced at most 500 msec apart. These segmentation processes yielded 465,310 syllables298

and 9,139 bouts in total (≈ 10.79 hours).299

Clustering of syllables300

To perform an analysis parallel to the discrete human language data, we classified the segmented syllables into discrete301

categories in an unsupervised way. Specifically, we used an end-to-end clustering method, named the seq2seq ABCD-302

VAE, that combined (i) neural network-based extraction of syllable features and (ii) Bayesian classification, both of303

which worked in an unsupervised way (i.e., without top-down selection of acoustic features or manual classification304

of the syllables). This section provides an overview of our method, with a brief, high-level introduction to the two305

components. Interested readers are referred to S1 in the supporting information, where we provide more detailed306

information. One of the challenges to clustering syllables is their variable duration as many of the existing clustering307

methods require their input to be a fixed-dimensional vector. Thus, it is convenient to represent the syllables in such308

a format (but see Bellman and Kalaba, 1959; Levenshtein, 1966; Morita and O’Donnell, To appear, for alternative309

approaches). Previous studies on animal vocalization often used acoustic features like syllable duration, mean pitch,310

spectral entropy/shape (centroid, skewness, etc.), mean spectrum/cepstrum, and/or Mel-frequency cepstral coefficients311

at some representative points for the fixed-dimensional representation (Katahira et al., 2011; Tachibana et al., 2014;312

Mielke and Zuberbühler, 2013; Morita and Koda, 2019). In this study, we took a non-parametric approach based on a313

sequence-to-sequence (seq2seq) autoencoder (Bowman et al., 2016; Chung et al., 2016; Zhao et al., 2017; Sainburg314

et al., 2019b). The seq2seq autoencoder is a RNN that first reads the whole spectral sequence of an input syllable frame315

by frame (encoding; the spectral sequence was obtained by the short-term Fourier transform with the 8 msec Hanning316

window and 4 msec stride), and then reconstructs the input spectra (decoding; see the schematic diagram of the system317

provided in the upper half of Figure 1B). Improving the precision of this reconstruction is the training objective of318

the seq2seq autoencoder. For successful reconstruction, the RNN must store the information about the entire syllable319
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in its internal state—represented by a fixed-dimensional vector—when it transitions from the encoding phase to the320

decoding phase. And this internal state of the RNN served as the fixed-dimensional representation of the syllables.321

We implemented the encoder and decoder RNNs by the LSTM (Hochreiter and Schmidhuber, 1997, the encoder was322

bidirectional; Schuster and Paliwal, 1997).323

One problem with the auto-encoded features of the syllables is that the encoder does not guarantee their interpretability.324

The only thing the encoder is required to do is push the information of the entire syllables into fixed-dimensional vectors,325

and the RNN decoder is so flexible that it can map two neighboring points in the feature space to completely different326

sounds. A widely adopted solution to this problem is to introduce Gaussian noise to the features, turning the network327

into the variational autoencoder (VAE; Kingma and Welling, 2014; Bowman et al., 2016; Zhao et al., 2017, see also328

Coffey et al., 2019; Goffinet et al., 2019; Sainburg et al., 2019b for its applications to animal vocalization). Abstracting329

away from the mathematical details, the Gaussian noise prevents the encoder from representing two dissimilar syllables330

close to each other. Otherwise, the noisy representation of the two syllables will overlap and the decoder cannot331

reconstruct appropriate sounds for each.332

The Gaussian VAE represents the syllables as real-valued vectors of an arbitrary dimension, and researchers need to333

apply a clustering method to these vectors in order to obtain discrete categories. This two-step analysis has several334

problems:335

i The VAE is not trained for the sake of clustering, and the entire distribution of the encoded features may not336

be friendly to existing clustering methods.337

ii The encoded features often include individual differences and do not exhibit inter-individually clusterable338

distribution (see Figuref 2E and the supporting information S1.4).339

To solve these problems, this study adopted the ABCD-VAE, which encoded data into discrete categories with a340

categorical noise under the Dirichlet prior, and performed end-to-end clustering of syllables within the VAE (Figure 1B).341

The ABCD-VAE married discrete autoencoding techniques (Jang et al., 2017; van den Oord et al., 2017; Chorowski342

et al., 2019) and the Bayesian clustering popular in computational linguistics and cognitive science (e.g., Anderson,343

1990; Kurihara and Sato, 2004, 2006; Teh et al., 2006; Kemp et al., 2007; Goldwater et al., 2009; Feldman et al., 2013;344

Kamper et al., 2017; Morita and O’Donnell, To appear). It has the following advantages over the Gaussian VAE +345

independent clustering (whose indices, except iii, correspond to the problems with the Gaussian VAE listed above):346

i Unlike the Gaussian VAE, the ABCD-VAE is optimized for clustering, aiming at optimal discrete encoding of347

the syllables.348

ii The ABCD-VAE can exploit a speaker-normalization technique that has proven effective for discrete VAEs:349

The “Speaker Info.” is fed directly to the decoder (Figure 1B), and thus individual-specific patterns need not350

be encoded in the discrete features (van den Oord et al., 2017; Chorowski et al., 2019; Tjandra et al., 2019, this351

is also the framework adopted in the ZeroSpeech 2019, a competition on unsupervised learning of spoken352

human languages; Dunbar et al., 2019).353

iii Thanks to the Dirichlet prior, the ABCD-VAE can detect the optimal number of categories on its own (under354

an arbitrarily specified upper bound; Bishop, 2006; O’Donnell, 2015; Little, 2019). This is the major update355

from the previous discrete VAEs that eat up all the categories available (Jang et al., 2017; van den Oord et al.,356

2017; Chorowski et al., 2019).357

Note that the ABCD-VAE can still measure the similarity/distance between two syllables by the cosine similarity of358

their latent representation immediately before the computation of the classification probability (i.e., logits; cf. Mikolov359

et al., 2013; Deng et al., 2018).360

The original category indices assigned by the ABCD-VAE were arbitrarily picked up from 128 possible integers and361

not contiguous. Accordingly, the category indices reported in this paper were renumbered for better visualization.362

Evaluation metrics of syllable clustering363

The syllable classification yielded by the ABCD-VAE was evaluated by its alignment with manual annotation by a364

human expert. We used two metrics to score the alignment: Cohen’s Kappa coefficient (Cohen, 1960) and V-measure365

(Roseberg and Hirschberg, 2007). Cohen’s Kappa coefficient is a normalized index for the agreement rate between366

two classifications, and has been used to evaluate syllable classifications in previous studies (Katahira et al., 2011;367

Tachibana et al., 2014). One drawback of using this metric is that it only works when the two classifications use the368

same set of categories. This requirement was not met in our case, as the model predicted classification and human369

annotation had different numbers of categories, and we needed to force-align each of the model-predicted categories370
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Table 2. The size of the training and test data used in the neural language modeling of Bengalese finch songs and the
English language. The “SECL” portion of the test syllables was used to estimate the SECL.

Data type Usage # of bouts/sentences # of syllables/words
Total SECL

Bengalese finch Training 9,039 458,753 —
Test 100 6,557 4,657

English Training 12,327 179,456 —
Test 2,006 21,759 8,833

to the most common human-annotated label to compute Cohen’s Kappa (following Katahira et al., 2011). On the371

other hand, the second metric, V-measure, can score alignment between any pair of classifications, even with different372

numbers of categories. V-measure is defined based on two desiderata: (i) Each of the predicted clusters should only373

contain members of a single ground truth class (homogeneity); (ii) The members of each ground truth class should be374

clustered into the same category (completeness). The two metrics are defined on a scale of 0 (worst) to 1 (best), and375

their harmonic mean yields the V-measure.376

Language modeling377

After the clustering of the syllables, each bout, x := (x1, . . . , xT ), was represented as a sequence of discrete symbols,378

xt. We performed the analysis of context dependency on these discrete data.379

The analysis of context dependency made use of a neural language model based on the current state-of-the-art380

architecture, Transformer (Vaswani et al., 2017; Al-Rfou et al., 2018; Dai et al., 2019). We trained the language model381

on 9,039 bouts, containing 458,753 syllables (Table 2). These training data were defined by the complement of the 100382

test bouts that were selected in the following way so that they were long enough (i) and at least one bout per individual383

singer was included (ii):384

i The bouts containing 20 or more syllables were selected as the candidates.385

ii For each of the 18 finches, one bout was uniformly randomly sampled among those uttered by that finch.386

iii The other 82 bouts were uniformly randomly sampled from the remaining candidates.387

The training objective was to estimate the probability of the whole bouts x conditioned on the information about the388

individual s uttering x: That is, P(x | s). Thanks to the background information s, the model did not need to infer the389

singer on its own. Hence, the estimated context dependency did not comprise the correlation among syllables with390

individuality, which would not count as a major factor especially from a generative point of view.391

The joint probability, P(x | s), was factorized as P(x | s) =
∏T

t=1 P(xt | x1, . . . , xt−1, s), and, the model took a form392

of the left-to-right processor, predicting each syllable xt conditioned on the preceding context <sos>, x1, . . . , xt−1,393

where <sos> stands for the special category marking the start of the bout. See the supporting information S2 for details394

on the model parameters and training procedure.395

Measuring context dependencies396

After training the language model, we estimated how much of the context x1, . . . , xt−1 was used effectively for the397

model to predict the upcoming syllable xt in the test data. Specifically, we wanted to know the longest length L of the398

truncated context xt−L, . . . , xt−1 such that the prediction of xt conditioned on the truncated context was worse (with399

at least 1% greater perplexity) than the prediction based on the full context (Figure 3A). This context length L is called400

the effective context length (ECL) of the trained language model (Khandelwal et al., 2018).401

One potential problem with the ECL estimation using the Bengalese finch data was that the test data was much smaller402

in size than the human language corpora used in the previous study. In other words, the perplexity, from which the ECL403

was estimated, was more likely to be affected by sampling error. To obtain a more reliable result, we bootstrapped the404

test data (10,000 samples) and used the five percentile of the bootstrapped differences between the truncated and full405

context predictions. We call this bootstrapped version of ECL the statistically effective context length (SECL).406
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It is more appropriate to estimate the SECL by evaluating the same set of syllables across different lengths of the407

truncated contexts. Accordingly, only those that were preceded by 20 or more syllables (including <sos>) in the test408

bouts were used for the analysis (4.657 syllables in total, Table 2).409

English data410

For comparison, we also estimated the SECL of the language model trained on English data. The data were constructed411

from the Universal Dependencies English Web Treebank (the training and test portions; Silveira et al., 2014). The412

database consists of textual English sentences and each word is annotated with the lemma and PoS category. We413

constructed two versions of training and test data using these lemma and PoS representations of the words: Words414

may exhibit correlation with one another due to their semantics (e.g., same topic) when they are coded as the lemma.415

By contrast, the PoS representation of words removes such semantic information, and allowed us to assess the purely416

syntactic dependencies among the words (cf. Perfors et al., 2011b). Note that this semantics-free data may serve as a417

more appropriate baseline for the study of birdsongs, whose variation is considered not to encode different meanings418

(Okanoya, 2007; Okanoya and Merker, 2007; Berwick et al., 2011, 2012; Gibson and Tallerman, 2012; Miyagawa et al.,419

2013, 2014) unlike alarm calls (Seyfarth et al., 1980; Ouattara et al., 2009; Suzuki et al., 2016).420

The words that were preceded by ten or more tokens (including <sos>) in the test data sentences were used to estimate421

the SECL. Accordingly, the upper bound on the SECL (=10) was lower than in the analysis of the Bengalese finch data422

(=20). The reason for the different settings is that the English sentences were shorter than the Bengalese finch bouts:423

The quartiles of the bout lengths were 22, 44, and 68, while those of the sentence lengths were 7, 14, and 22 (where424

both the training and test data were included).425
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