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Abstract Usually, the comparison among genomic prediction models is based on validation schemes 13 

as Repeated Random Subsampling (RRS) or K-fold cross-validation. Nevertheless, the design of 14 

training and validation sets has a high effect on the way and subjectiveness that we compare models. 15 

Those procedures cited above have an overlap across replicates that might cause an overestimated 16 

estimate and lack of residuals independence due to resampling issues and might cause less accurate 17 

results. Furthermore, posthoc tests, such as ANOVA, are not recommended due to assumption 18 

unfulfilled regarding residuals independence. Thus, we propose a new way to sample observations to 19 

build training and validation sets based on cross-validation alpha-based design (CV-α). The CV-α was 20 

meant to create several scenarios of validation (replicates x folds), regardless of the number of 21 

treatments. Using CV-α, the number of genotypes in the same fold across replicates was much lower 22 

than K-fold, indicating higher residual independence. Therefore, based on the CV-α results, as proof 23 

of concept, via ANOVA, we could compare the proposed methodology to RRS and K-fold, applying 24 

four genomic prediction models with a simulated and real dataset. Concerning the predictive ability 25 

and bias, all validation methods showed similar performance. However, regarding the mean squared 26 

error and coefficient of variation, the CV-α method presented the best performance under the 27 

evaluated scenarios. Moreover, as it has no additional cost nor complexity, it is more reliable and 28 

allows the use of non-subjective methods to compare models and factors. Therefore, CV-α can be 29 

considered a more precise validation methodology for model selection. 30 

 31 
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Introduction 33 

Genomic prediction (GP) proposed by Meuwissen et al. (2001) evolved over the years, but it 34 

aims to estimate breeding values of unevaluated genotypes. Hence, it is an important tool for plant 35 

breeders to shorten the breeding cycle, increase selection accuracy, and assess genetic variation (Heff 36 

et al. 2010; Crossa et al. 2017). Usually, to evaluate the prediction accuracy of the genomic prediction 37 

models, the data is divided into training and validation sets. The first set is used to fit the genomic 38 

prediction model and estimate the marker effects, whereas the validation set is used to validate the 39 

effects estimated in the training set and estimate the accuracy of the predictions (Crossa et al. 2011).  40 

In the genomic prediction context, several methods and parameters have been proposed for the 41 

comparison of prediction models (Blondel et al. 2015). Nevertheless, the predictive ability and the 42 

bias of the measures are two of the most commonly utilized to evaluate the superiority and goodness 43 

of models and scenarios. The former is estimated by Pearson’s correlation between the predicted and 44 

true breeding values of individuals contained in the validation set. The latter is obtained by regressing 45 

the predicted breeding values over the true ones to obtain the regression coefficient, which indicates 46 

the shrinkage (compression) between both (Piepho et al. 2008; Luan et al. 2009).  47 

Some studies have shown that the model accuracy is influenced by the training and validation set 48 

(Akdemir et al. 2015; Wu et al. 2015; Auinger et al. 2016), being the main schemes to design training 49 

and validation sets in GP studies are K-fold cross-validation (Burgueño et al. 2012; Crossa et al. 2014; 50 

Fè et al. 2016) and Repeated Random Subsampling (RRS), also called Monte Carlo CV (Würschum 51 

et al. 2014; Yu et al. 2016; Zhang et al. 2016). The first consists of splitting the data into k groups 52 

(folds) and fit a model using each fold as training and validation sets. Is this sense, if k = 5, the model 53 

will be fitted five times. The second consists of randomly split the dataset into training and validation 54 

sets. Both schemes are generally repeated n times (see Arlot and Celisse, 2010). 55 

The accuracy estimate obtained by K-fold might be affected by the number of folds, fold size, 56 

and the number of replicates (Wong 2015). Likewise, in cross-validation schemes, the RRS is 57 

influenced by the relation between training and validation sets and the number of replicates (Kohavi 58 
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1995). Furthermore, some factors may lead to biased estimates of predictive ability, such as 59 

overlapping between the training and validation set and different relatedness between individuals 60 

through sets (Runcie e Cheng 2019). The overlap between training and validation sets over replicates 61 

may cause biased results due to the predictions be correlated and non-independent residuals (Amer e 62 

Banos 2010). Therefore, neither validation schemes guarantee independence among replicates due to 63 

resampling issues. Thus, researchers cannot use standard and non-subjective methods to compare 64 

models and factors, such as ANOVA and other multiple comparison tests, due to assumptions 65 

unfulfilled regarding residuals independence. 66 

It is import point out that as the number of treatments increases, it becomes a challenge to design 67 

orthogonal training and validation sets across the replicates without increase substantially the number 68 

of replicates. This problem is similar to experimental field designs involving a large number of 69 

treatments. However, the balanced incomplete blocks design seeks to maintain homogeneity among 70 

blocks and orthogonality across replicates (Yates, 1936). These schemes are widely used to evaluate 71 

the quality of models and their selection for field experiments. Moreover, an extension of cross-72 

validation (CV) schemes applying balanced incomplete block design was first proposed by Shao 73 

(1993), considering that each fold is treated as "block" and each genotype as a "treatment." The 74 

orthogonal distribution of the treatments across the blocks within replicates in the balanced 75 

incomplete block designs will guarantee that every pair of treatments appears together according to 76 

some rules. Therefore, the CV schemes using the incomplete block design may increase the quality 77 

of estimates (Fuchs e Krautenbacher 2016), residuals independence, and may allow further multiple 78 

comparison analyses.  79 

Based on described above, in this study, we propose a new method to design the training and 80 

validation sets for genomic prediction studies based on an alpha-lattice design scheme, called cross-81 

validation alpha-based design (CV-α) and compare its performance to the methods commonly applied 82 

in GP studies for model selection. Also, based on the CV-α results, a case of study, via analysis of 83 
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variance (ANOVA), we could compare the proposed methodology to RRS and K-fold, applying four 84 

genomic prediction models with a simulated and real dataset.   85 
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Material and Methods 86 

In order to demonstrate the properties of the proposed cross-validation scheme, we aimed to 87 

mimic a standard genomic prediction study, for instance, comparing kernels and statistical methods. 88 

Thus, our aim is not comparing genomic matrices or Bayesian and frequentists approaches but simply 89 

show that our cross-validation scheme allows multiple comparison tests. For that, we create a 90 

simulated population (knowing the true parameters) and also used a well-known real dataset. 91 

  92 

Simulated dataset 93 

We simulated a population of maize single-crosses from inbred parents to perform genomic 94 

prediction studies. For this, we used the AlphaSimR package (Gaynor 2019). A founder population of 95 

1,000 individuals was simulated with ten chromosomes containing 30,000 segregating loci (SNPs). 96 

The individuals were inbred and diploid. Forty-nine individuals were randomly sampled and crossed 97 

to compose a partial diallel to obtain 906 hybrids. The phenotypic value (adjusted mean based on 98 

heritability) was simulated by randomly sampling 500 QTN from the segregating loci with mean 100 99 

and variance 50. The narrow and broad-sense heritabilities were set to be equal to 0.30 and 0.50, 100 

respectively. Finally, to understand the effect of the validation methods in the predictive ability and 101 

bias of the true genetic (TGV) and phenotypic value, we performed genomics prediction using both 102 

metrics. We repeated the simulations 25 times and averaged the estimates above. 103 

 104 

An empirical case of study: USP maize dataset 105 

We used a dataset of 906 maize single-crosses from a full diallel among 49 tropical inbred 106 

lines, according to Griffing’s method 4 (Griffing 1956). The experiments were evaluated in two 107 

locations, two years, and under two nitrogen levels. The genotypic information from the 49 tropical 108 

inbred lines was obtained from Affymetrix® Axiom® Maize Genotyping Array, containing about 109 

614,000 SNPs (Unterseer et al. 2014). For more details about the phenotypic and genotypic data, see 110 

(Fristche-Neto et al. 2018). 111 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2020. ; https://doi.org/10.1101/2020.11.11.376343doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.11.376343
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

The markers with a lower call rate (< 95%), heterozygous loci on at least one individual, and 112 

linkage disequilibrium (> 0.90) were removed. The missing markers were imputed using the Beagle 113 

4.0 algorithm (Browning e Browning 2009) from the synbreed R package (Wimmer et al. 2012).  114 

Later, the genotype of each hybrid was built by combining the genotypes of its parental lines and 115 

hybrids with minor allele frequency (MAF < 0.05) were removed. After quality control, a total of 116 

32,207 SNPs was available for further analysis. 117 

To perform the genomic prediction studies, we evaluated the grain yield (GY, Mg ha-1), 118 

corrected to 13% moisture, and stand across the eight environments. It was used to estimate the BLUP 119 

for hybrids following the model: 120 

𝒚 =  𝑺𝒍 + 𝑿𝒃 + 𝑾𝒄 + 𝑻𝒈 + 𝑼𝒊 +  𝜺 121 

where y is the vector of the phenotypic value of hybrids; l is the vector of fixed effects of the 122 

environment (the combination of site x year x N level); b is the vector of fixed effects of blocks within 123 

an environment; c is the vector of fixed effects of checks; g is genotypic values, where 𝒈~𝑁(0, 𝑰𝜎𝑔
2); 124 

i is the interaction between environments and checks, where 𝒊~𝑁(0, 𝑰𝜎𝑔𝑒
2 ); ε is the vector of random 125 

residuals from checks and hybrid by environments effects, where 𝜺~𝑁(0, 𝑰𝜎𝜀
2). 𝜎𝜀

2  was jointly 126 

estimated based on e environments with r replicated checks in each site. S, X, W, T, and U are the 127 

incidence matrices for l, b, c, g, and i (Fristche-Neto et al. 2018). 128 

 129 

Genomic prediction 130 

To perform the genomic prediction, we used the additive GBLUP model and the Reproducing 131 

Kernel Hilbert Spaces regression (RKHS). The following model equation is the general form of these 132 

two approaches:  133 

�̂� = 𝟏𝜇 + 𝒁𝒂 + 𝜺 134 

where �̂� is the vector of BLUP; μ is the intercept; a is the vector of additive genetic effects 135 

with 𝒂~𝑁(0, 𝑮𝜎𝑎
2); and ε is the vector of random residuals with 𝜺~𝑁(0, 𝑰𝜎𝜀

2).  𝟏 is the incidence 136 

vector of μ, and Z is the incidence matrix for 𝒂. G is the genomic relationship matrix (Ga – additive 137 
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genomic relationship matrix, and K – for Gaussian kernel), and I is the identity matrix. 𝜎𝑎
2 is the 138 

additive genetic variance for Ga or genetic variance for K, and 𝜎𝜀
2 is the residual variance. The 139 

additive genomic relationship matrix (Ga) was calculated as 𝑮𝒂 = 𝑾𝑾′ 2 ∑ 𝑝𝑖(1 − 𝑝𝑖)
𝑛
𝑖=1⁄ , where 140 

W is the centered matrix of SNPs, and 𝑝𝑖 is the frequency of the allele 𝑝 in locus i (VanRaden 2008). 141 

The Gaussian kernel (K) was calculated as 𝐾(𝒙𝑖, 𝒙𝑗) = exp (−ℎ𝑑𝑖𝑗
2 𝑞0.05⁄ ), where xi and xj are the 142 

marker vectors for the ith and jth individuals, respectively, and q0.05 is the fifth percentile for the 143 

squared Euclidean distance 𝑑𝑖𝑗
2 = ∑ (𝑥𝑖𝑘 −  𝑥𝑗𝑘)

2
𝑘  (Pérez-Elizalbe et al., 2015). The h value was 144 

considered equal to 1. 145 

We used fitted two prediction models considering two statistical approaches (frequentist and 146 

Bayesian Genomic Best Linear Unbiased Predictor - GBLUP), resulting in four scenarios: 1) GBLUP 147 

with Ga kernel (GA_MM); 2) GBLUP with K kernel (GK_MM); 3) Bayesian GBLUP with Ga kernel 148 

(GA_Bayes), and 4) Bayesian GBLUP with K kernel (GK_Bayes).  149 

The analyses were performed using ASReml-R (Butler et al. 2009), and BGLR (Pérez and de 150 

los Campos, 2014) packages for R. For Bayesian GBLUP models were performed using 10,000 151 

iterations, 3,000 burn-in, and 5 thinning values. The convergence checks for Bayesian models are 152 

available in the Supplemental Figure S1 and S2.  153 

 154 

Cross-validation alpha-based design 155 

The cross-validation alpha-based design (CV-α) is an extension of the methodology presented 156 

by (Shao 1993) and consists of assigning treatments to folds in each replication by applying the alpha-157 

lattice sorting premises. The CV-α was intended to create scenarios with two, three, or four replicates, 158 

regardless of the number of treatments. Each replicate is split into folds, and the number of folds will 159 

determine the percentage of training and validation sets. Each fold across replicates is based on the 160 

α(0,1) lattice design aiming to reduce the concurrences of any two treatments in the same fold (block) 161 

across the replicates (Patterson e Williams 1976). 162 

However, the α(0,1)-lattice design assumptions involve the number of blocks (s) and block 163 
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size (k) (number of the folds and fold size, in our context) to determine the number of treatments 164 

(Patterson e Williams 1976). As the number of treatments is variable in a real scenario, we compute 165 

the nearest smallest number to attend the assumptions above, and the remaining treatments are 166 

randomly allocated into the folds. The alpha lattice design was created using the agricolae package 167 

(Mendiburu 2019), and the scripts are available at Github (https://github.com/allogamous/CV-Alpha). 168 

In order to compare CV-α with the other two benchmarks schemes, we simulated two 169 

scenarios: 5-folds with four replicates and 10-folds with two replicates. First, we simulated a scenario 170 

with the number of treatments varying from 200 to 2,000 and computed the percentage of remaining 171 

treatments that were randomly assigned into folds for each scenario. After, we compared the same 172 

two benchmarks schemes according to the mean and standard deviation of the concurrence of any 173 

two genotypes, i.e., the number of folds containing both genotypes. The simulations were replicated 174 

ten times.    175 

 176 

Model comparison 177 

To evaluate the cross-validation alpha-based design (CV-α) performance, we compared it to 178 

benchmark validation schemes: repeated random subsampling (RRS) and K-fold using real and 179 

simulated datasets for genomic prediction. For RRS, we used 100 replicates, each with 80% of the 180 

data for the training set, and the remaining 20% of the data for the validation set, whereas for CV-α 181 

and K-fold were used five-folds and four replicates. The number of replicates or folds for each method 182 

considers the most common values for genome prediction studies using Bayesian and frequentist 183 

approaches (Zhao et al. 2013; Zhang et al. 2015, 2016; Yu et al. 2016).  184 

From those, we obtained the predictive ability of each statistical model for the different CV 185 

methods. The predictive ability was estimated as Pearson's correlations between the predicted and 186 

observed phenotypes. For each CV method, we estimated the slope coefficient for the regression of 187 

the predicted values of the validation sets on its phenotypes. For this, the regression coefficient 188 

between predicted and genetic value was considered the prediction bias, measuring the degree of 189 
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inflation/deflation of prediction genomics. Nonbiased models are expected to have a regression 190 

coefficient equal to 1. For CV-α and K-fold, the level of averaging considered was at replicates. 191 

Although RRS and K-fold schemes do not have independence between replicates, ANOVA have been 192 

used to compare the predictive abilities from different models, even breaking the independence 193 

assumption. To verify how variance components of models are affected by these methods, we perform 194 

the ANOVA test considering the following model: 195 

𝒍 =  𝟏𝜇 + 𝑿𝟏𝒎 + 𝑿𝟐𝒏 + 𝑿𝟑𝒐 + 𝜺 196 

where l is the vector of Pearson correlation transformed by Fisher z-transformation using the 197 

R package DescTools (Signorell et al., 2019); μ is the overall mean; m is the vector of statistical 198 

approach effect; n is the vector of relationship kernel; o is the vector of interaction between statistical 199 

approach and kernel; and ε is the vector of residuals. X1, X2 e X3 are incidence matrices for m, n, and 200 

o, respectively. Quadratic components were estimated by the method of moments based on mean 201 

square expectation.   202 
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Results 203 

CV-α 204 

We performed several analyses to evaluate cross-validation alpha-based design (CV-α) 205 

performance. For this, we computed the number of treatments that were randomly assigned among 206 

folds and the concurrence between pairs of treatments in the same fold across replicates (Figure 1). 207 

The results reveal that the proportion of treatments randomly assigned among folds reduces as the 208 

number of treatments increases and tends to converge to 0.38% and 0.27% for five-folds with four 209 

replicates and ten folds with two replicates, respectively (Figure 1). Considering the concurrence 210 

between pairs of treatments in the same fold across replicates, the CV-α reveals lower mean and 211 

standard deviation in both evaluated scenarios when compared with the K-fold CV (Figure 2).  212 

 213 

Genomic prediction (simulated dataset) 214 

To understand the effects of validation schemes on genomic prediction, we simulated 215 

populations to obtain true genetic values (TGV) and phenotypic values. The validation methods did 216 

not significantly influence the average prediction ability of TGV and phenotypic values. 217 

Nevertheless, the RRS has several “extreme” values when compared to K-fold and CV- α. Besides, 218 

RRS showed a more substantial variation for bias, with several values overtaking 0.5 and 1.5 for 219 

phenotypic and TGV. (Figure 3).  220 

For PA and bias, TGV, and phenotypic value, in terms of mean and standard deviation, the 221 

three validation methods do not differ among them (Table 1), except for phenotypic bias for RRS. On 222 

the other hand, when we considered mean squared error (MSE) and coefficient of variation (CV), 223 

CV-α showed the lowest CV for all scenarios evaluated, when compared with RRS and K-fold. 224 

 225 

 226 

Proof of concept 227 

For the maize dataset, PA and bias showed similar mean values for all validation methods. In 228 

terms of SD, K-fold, and CV-α presented similar performance and were lower than RRS (Table 2). 229 
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For mean squared error and coefficient of variation, CV-α presented lower values than K-fold and 230 

RRS. The coefficient of variation for K-fold was 34.70% and 10% higher than CV-α for PA and bias, 231 

respectively (Table 2).   232 

We applied the CV-α to validate two statistical approaches (Bayesian and Mixed models) and 233 

two types of kernels (Additive and Gaussian kernel) for genomic prediction models (Table 3). For 234 

this, we applied a two-way ANOVA, and it was observed significative effects for types of the kernel 235 

for predictive ability and bias. Gaussian kernel (K) presented higher PA (0.44) than Ga (0.42) and 236 

lower bias (1.00 and 0.98, for K and Ga, respectively). For the type of two statistical approaches, the 237 

Bayesian reveals a more biased estimation (0.98) when compared with GBLUP (1.01) (Table 3).   238 

We can note that the proportion of phenotypic variance explained variation by each source of 239 

variation vary across validation schemes (Figure 3). PA and bias had similar performance across CV 240 

schemes for residual variance but vary for other variances. The RRS presented higher residual 241 

variance and lower variances due to model effects. For the interaction, K-fold showed higher values 242 

for PA. CV-α presented lower proportions of residual variances and higher variance due to the kernel 243 

and statistical approaches effects.  244 

  245 
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Discussion 246 

The main advantages of considering the α-design instead of the balanced incomplete block 247 

design (BICV) are the flexibility regarding the number of treatments and folds (Singh e Bhatia 2017), 248 

reduce the concurrence between pairs of treatments, increase the quality of estimates (Fuchs e 249 

Krautenbacher 2016) and residuals independence, allowing further multiple comparison analyses. 250 

The α-design is widely used in plant breeding experiments as well as its ANOVA (Alam et al. 2017; 251 

Ta et al. 2018; Galic et al. 2019). Based on this, in the context of genomic prediction, the flexibility 252 

of the CV-α is a good alternative to compare genomic selection models.  253 

Our results reveal that CV-α reduces the concurrence between pairs of treatments (genotypes) 254 

in the same fold across replicates and its standard deviation when compared with the K-fold scheme 255 

(Figure 2). The concurrence of any two treatments causes dependence among folds, and comparative 256 

tests become less precise. Thus, the CV-α designs fold and replicates with few or non-concurrence 257 

across folds, generating a more independent and better scheme for composing training and validation 258 

sets in a genomic prediction context.  259 

Comparison between CV-α, K-fold, and RRS must be pondered since they have a different 260 

level of averaging and different numbers of replicates compared with RRS, although CV-α and K-261 

fold are equivalent (Wong 2015). RRS showed a higher number of outliers, probability as results of 262 

the different levels of average. However, it is an internal procedure for the method. The strategy to 263 

divide folds and replicates according to the alpha-lattice design, as we suggest into CV-α, permits we 264 

consider as replicate level mean, similar to replicate the effect in the alpha-lattice design.  265 

Moreover, the RRS showed a large variation in the estimates for PA and, especially, for 266 

prediction bias. We expected values for bias around 1.0. However, the RRS showed several values 267 

overtaking 0.5 and 1.5, which shows a considerable inflation/deflation on the estimates. These results 268 

indicate that RRS is a less accurate method, mainly when we use few replicates. 269 

Estimates more accurate combined with few replicates to run a CV scheme is desirable, 270 

especially when we consider a large number of genotypes, which is common in plant and animal 271 
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breeding. In these cases, to compute the inverse matrix, the genomic relationship matrix is a 272 

challenge, and several studies have been aiming this (Misztal et al. 2014; Misztal 2016). Based on 273 

this, CV- α is a good alternative to design CV schemes and has a more precise estimative in a case 274 

where the number of replicates is a limitation. 275 

The simulated and real datasets reveal that CV-α had a similar performance to K-fold and 276 

RRS when compared in terms of mean and standard deviation for predictive ability and bias. On the 277 

other hand, when we consider in terms of MSE and coefficient of variation, CV-α has better 278 

performance due to higher independence across replicates. 279 

Traditionally, in genomic prediction studies, model comparison and selection are based on 280 

subjective methods such as mean and standard deviation without a comparative test. Some studies 281 

also considered ANOVA and other statistical tests. Although due to assumption unfulfilled regarding 282 

residuals independence and our results, this is not be recommended. CV-α reveals the lesser 283 

occurrence of pairs of genotypes in the same fold across replicates, causing a more precise estimative. 284 

The CV-α methodology consists of applying α(0,1) lattice design to design the folds across replicates, 285 

and because of this, it allows post hoc test to model comparison. 286 

The results above indicate that CV-α had a more precise estimative trough the reduction of 287 

coefficient of variation, and the variance components were better discriminated across the factors in 288 

the two-way ANOVA. It reveals how the impact of folds design across each replicate shift the 289 

proportion of the total variation explained by each model factor reducing the residual variance. 290 

Furthermore, the ANOVA test using RRS and K-fold to compare the performance of different models 291 

can produce mistake conclusions, since the estimative of variance components load bias. Therefore, 292 

CV-α allows determining how much variation each model factor has and compares different genomic 293 

selection models based on the ANOVA test and posthoc test. Furthermore, the use of CV-α does not 294 

imply any additional computer cost or complexity in the validation process of model selection. 295 

As proof of concepts, we applied the proposed methodology to exemplify model selection. 296 

For the simulated and maize dataset, both do not show considerable differences across approaches 297 
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(GBLUP and Bayesian) and kernel type (Additive genomic and Gaussian kernel) for predictive 298 

ability. Although, for the maize dataset, the use of K kernel showed higher predictive ability than Ga. 299 

This result is expected since the K kernel captures additive and non-additive effects (Heslot et al. 300 

2012). For bias, mixed models showed less biased results. Although, comparison among these models 301 

is not the focus of these studies since they have already been extensively studied (Chen et al. 2014; 302 

Gota e Gianola 2014; Cuevas et al. 2017). 303 

In the context of genomic prediction studies, there are other ways to design training and 304 

validation sets. The CV-α may be expanded for these cases to better designing training and test sets 305 

across replicates and environments, such as CV1 and CV2 schemes (Burgueño et al. 2012) and other 306 

multi-environment and multi-trait studies. Also, the CV-α may be applied in any other cross-307 

validation studies to select models and verify as the model factors behave according to the different 308 

sources of variation.  309 
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Conclusion 310 

This study showed that the CV-α method is a good alternative to design cross-validations folds 311 

and replicates, mainly when researchers want to compare genomic prediction models, increasing 312 

precision in the model estimative, and to unravel the model factors impact in the total variation. Even 313 

though there were no differences in the mean and standard deviation for predictive ability and bias, 314 

our proposal was more accurate in terms of the mean squared error and coefficient of variation. 315 

Another advantage of CV-α is that it does not require any additional cost regarding computing 316 

demand or complexity. Furthermore, CV-α allows using the non-subjective methods to compare 317 

models and factors, through ANOVA and other multiple comparison tests, such as Tukey and Scott-318 

Knott.  319 
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 436 
Figure 1. The proportion of treatments randomly distributed into folds to attend the alpha-design 437 

presupposition using CV-α with 5-folds with four replicates (a), and 10-folds with two replicates 438 
(b), based on simulated data. 439 
 440 
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 441 
Figure 2. Concurrence (number of times that a pair of treatments appear together in the same fold) 442 
mean and standard deviation between treatments pairs in the same fold across replicates using CV-α 443 
and K-fold with 5 and 10 folds with 4 and 2 replicates, respectively, based on simulated data.  444 
 445 
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 446 

Figure 3. Predictive ability (PA) and bias for TGV and phenotypic value for three validation schemes 447 

(CV-α, K-fold, and RRS) and four genomic prediction models (scenarios).  448 
 449 
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 450 

Figure 4. The proportion of total variance decomposed into effects of the kernel, statistical approach, 451 
the interaction between the kernel and statistical approach, and residual for bias and predictive ability 452 

(PA) applied in three cross-validation schemes (CV-α, K-fold, RRS). 453 
  454 
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 455 

Table 1. Averaged of 25 simulated datasets for mean, standard deviation (SD), mean squared error 456 
(MSE), and coefficient of variation (CV) for predictive ability (PA) and bias for three CV schemes 457 
(CV-α, K-fold, and RRS)  458 

Scheme Parameter Mean SD MSE CV (%) 

CV-α 

PA of phenotypic value 0.331 0.063 0.00017 3.78 

PA of TGV  0.748 0.053 0.00022 1.50 

Phenotypic Bias 1.024 0.064 0.00217 4.26 

TGV Bias 1.049 0.149 0.00040 1.68 
      

K-Fold 

PA of phenotypic value 0.331 0.062 0.00016 3.84 

PA of TGV  0.748 0.053 0.00023 1.52 

Phenotypic Bias 1.027 0.072 0.00251 4.36 

TGV Bias 1.050 0.151 0.00049 1.80 
      

RRS 

PA of phenotypic value 0.331 0.084 0.00414 19.41 

PA of TGV  0.748 0.062 0.00616 8.10 

Phenotypic Bias 1.024 0.274 0.07283 25.47 

TGV Bias 1.050 0.192 0.01366 10.26 

 459 

 460 

Table 2. Summary of ANOVA, mean, standard deviation (SD), and coefficient of variation (CV) for 461 
three validation schemes (CV-α, K-fold, and RRS) for predictive ability (PA) and bias 462 

Model 

CV-α K-fold RRS  

Df 
PA Bias 

Df 
PA  Bias  Df 

PA  Bias  
MS MS  MS  

St.Approaches 1 0.0002  0.0049 * 1 0.0002  0.0048 * 1 0.0035  0.1278 . 

Kernel 1 0.0016 ** 0.0025 . 1 0.0007 . 0.0005  1 0.1292 ** 0.4748 ** 

St.Approaches:Kernel 1 0.0001 
 

0.0001  1 0.0005  0.0002  1 0.0002  0.0123  

Residuals 12 0.0001  0.0007  12 0.0002  0.0009  396 0.0046  0.0340  
CV (%)  2.16  2.70   2.91  2.97   14.61  18.38  

Mean  0.433  0.99   0.440  1.02   0.433  1.00  

SD  0.014  0.033   0.016  0.033   0.070  0.188  
**, *, . ,ns: Significant at 1%, 5% , 10% and non-significant of error probability by F- test. 463 

Statistical approaches (St. Approaches), Degrees of freedom (Df), Predictive ability (PA), Mean Squared (MS) 464 

  465 
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Table 3. Means, marginal means, and Tukey's test for the type of kernels and statistical approaches 466 
for predictive ability (PA) and bias  467 

 

PA 

Ga  K  Marginal Means 

Bayesian 0.424  0.436  0.430  
Mixed models 0.426  0.445  0.436  
Marginal Means 0.425 b 0.441 a   

 Bias 

Bayesian 0.963  0.992  0.977 B 

Mixed models 1.002  1.023  1.012 A 

Marginal Means 0.982 b* 1.008 a 0.995  
*Means followed by the same lowercase letter in the row and uppercase letter in the column do not differ by 468 
the Tukey test at 5% and 10%* probability. 469 
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