Stepwise Bayesian Phylogenetic Inference
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S1 Toy example

In this section we provide the details for the Markov chain Monte Carlo (MCMC) analyses on the
toy example (see Figure 1 in the main text).

S1.1 Joint inference

The parameters and prior distribution for the joint inference of toy example corresponding to
Figure la are given in Table S1. A corresponding RevBayes script outlining all necessary details for
replicating this analysis are given in Listing 1. We ran the MCMC analyses for 1,000,000 iterations,
after a pre-burnin phase of 100,000 iterations, which is well beyond the normal chain length but the
obtain very smooth posterior distributions. The specific moves on the parameters can be retrieved
from the listing.

Table S1: Model parameter names and prior distributions for the toy example joint inference.

Parameter X f(X)

Prior mean I Uniform(—10, 10)
Prior standard deviation o Uniform(0, 10%)
Focal parameter Ai Lognormal(y, o)
Observations x4 5 Poisson(\;)
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mu ~ dnUniform(—10,10)
sigma ~ dnUniform (0,1E4)

idx <— 1
for (i in 1:10) {
lambdas[i] ~ dnLognormal(mu, sigma)
for (j in 1:M ) {
x[idx] ~ dnPoisson (lambdas[i])
x[idx].clamp (data[idx])
idx++
}
}

moves. append ( mvSlide (mu, delta=0.01) )
moves.append ( mvScale(sigma, lambda=0.01) )

for (i in 1:NUMLAMBDAS) {
moves.append ( mvScale(lambdas[i], lambda=0.01) )

}

monitors.append( mnModel (filename="output/joint_rep.log”, printgen=10) )
monitors.append( mnScreen(mu, sigma, printgen=1000) )

mymeme = meme(mymodel, monitors, moves)
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mymemce. burnin (1E5,100)
mymeme. run (1E6)

Listing 1: Excerpt from the RevBayes script for the joint inference on the toy example.

S1.2 Stepwise Bayesian inference

In this next subsection, we provide more details about the stepwise Bayesian inference for the toy
example.

S1.2.1 Step 1

Step 1 of the stepwise Bayesian inference estimates the importance distribution of the focal param-
eter. Thus, the hierarchical layer of the model is broken up and only the data layers are included
(see Table S2 and Figure 1b). Overall, step 1 is very similar to the joint inference with the exception
that the hierarchical prior distribution is replaced by a uniform prior distribution. The remaining
MCMC settings stayed the same. Listing 2 shows the RevBayes script to perform step 1 of the
stepwise Bayesian inference.

Table S2: Model parameter names and prior distributions for step 1 of the stepwise Bayesian inference
for the toy example.

Parameter X f(X)
Focal parameter A Uniform(0, 10%)
Observations T; 4 Poisson(A;)
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for (i in 1:10) {
lambdas[i] ~ dnUniform (0,1E4)
for (j in 1:M) {
x[idx] ~ dnPoisson(lambdas[i])
x[idx].clamp(data[idx])
idx—++
}
}

for (i in 1:10) {
moves. append ( mvScale(lambdas[i], lambda=0.01) )
}

monitors.append( mnFile(lambdas, filename="output/stepl.log”, printgen=1
monitors.append ( mnScreen(printgen=1000) )

mymeme = meme(mymodel, monitors, moves)
mymeme. burnin (1E5,100)
mymeme. run (1E6)

Listing 2: Excerpt from the RevBayes script for Step 1 of the stepwise Bayesian inference on the toy example.
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S1.2.2 Step 2

Table S3: Model parameter names and prior distributions for step 2 of the stepwise Bayesian inference
for the toy example.

Parameter X F(X)

Prior mean I Uniform(—10, 10)
Prior standard deviation o Uniform(0, 10%)
Focal parameter Ai Lognormal(y, o)

Step 2 of the Bayesian stepwise inference takes the samples from the importance distribution
generated in step 1 as data. We achieve this using the function readTrace. How many samples
are actually taken is controlled by the thinning argument, that is, when we performed our tests
using a different number of samples N from step I we simply applied a different thinning of the
samples. The parameters and distributions for step 2 are shown in Table S3 (see also Figure 1c).
Compared to the joint inference, we do not have the layer including the data. Note that we use
dnEmpiricalSample to represent the probability distribution for the importance sample. This
dnEmpiricalSample is completely generic and can be used for any probability distribution.
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samples = readTrace(file="output/stepl.log”, burnin=0.001, thin=1000)

mu ~ dnUniform(—10,10)
sigma ~ dnUniform (0,1E4)

for (i in 1:10) {
lambda_prior [i] = dnLognormal (mu, sigma)
lambdas[i] ~ dnEmpiricalSample(lambda_prior[i])
lambdas[i].clamp( samples[4+i]. getValues() )

}

moves. append ( mvScale(sigma, lambda=0.01) )
moves. append ( mvSlide (mu, delta=0.01) )

monitors.append( mnFile(mu, sigma, filename="output/step2.log”, printgen
mymeme. burnin (1E5,100)
mymeme. run (1E6)

Listing 3: Excerpt from the RevBayes script for Step 2 of the stepwise Bayesian inference on the toy example.
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S2 Relaxed Clock Analyses

In this section we describe the details of the relaxed clock analyses of the main text. The RevBayes
code snippets describe the main features of the analyses and only need to be adapted for the specific
data (e.g., simulation replicate).

S2.1 Joint inference

First, we present the model for the joint Bayesian inference using the uncorrelated lognormal relaxed
clock model. All parameters are presented in Table S4. We used a Jukes-Cantor substitution model
[1] for simplicity and to speed up the simulation study. We used a uniform prior on node ages
conditional on the root age. We used a lognormal prior distribution on branch-specific clock rates
(uncorrelated lognormal relaxed clock [2]) with mean m. (in real space, i.e., not log-transformed)

and standard deviation sd.. Both hyperparameter had a uniform prior distribution between 0 and
10,000.

Table S4: Model parameter names and prior distributions for the Bayesian relaxed clock example
joint inference, see main text Figure 3.

Parameter X f(X)

Substitution rate matrix Q fixed to Jukes-Cantor model [1]
Mean clock rate me Uniform(0, 10%)

Standard deviation of clock rates sde Uniform(0, 10%)

Phylogeny \\ UniformTimeTree(root)

The corresponding RevBayes code snippet is given in Listing 4. Note that we use our newly
developed distribution dnBranchRateTree here as the prior distribution on the phylogeny with
branch lengths in units of substitutions. In principle, the root_branch _fraction should not be a
parameter but an observation and thus should not have a prior distribution. Here we used a uniform
prior distribution that does not affect the outcome because all values are equally probable. Ideally,
our implementation would integrate analytically or numerically over the root_branch fraction.
This might be implemented in a future version.

The MCMC simulation was run again for 1,000,000 iterations after a pre-burnin phase of 100,000
iterations. Note that multiple moves were applied per iteration where the average number of moves
corresponds to the specified weights. That is, for 8 taxa we used 31 moves per iterations.
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Q <— fnJC(4)

clock_rate_mean ~ dnUniform(0,1E4)
clock_rate_sd ~ dnUniform (0,1E4)

clock_rate_In_mean := In(clock_rate_mean)
branch_rate_prior = dnLognormal(clock_rate_Iln_mean , clock_rate_sd)

time_tree ~ dnUniformTimeTree(rootAge=ROOTAGE, taxa=taxa)
time_tree.setValue( true_tree )
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root_branch_fraction ~ dnBeta(1,1)
psi ~ dnBranchRateTree( time_tree, branch_rate_prior , root_branch_fracti

seq ~ dnPhyloCTMC (tree=psi, Q=Q, type="DNA”)
seq.clamp (data)

moves . append ( mvScale( clock_rate_mean , weight=3 ) )

moves.append ( mvScale( clock_rate_sd , weight=3 ) )

moves. append ( mvNodeTimeSlideUniform (time_tree , weight=NUM.TAXA) )
moves.append ( mvBetaProbability (root_branch_fraction , weight=2.0) )
moves. append ( mvBranchLengthScale (psi, weight=n_branches) )

monitors.append( mnFile(time_tree, filename="output/joint.trees”, printg
monitors.append ( mnModel(filename="output/joint.log”, printgen=1) )

mymemce. burnin (1E5,100)
mymeme. run (1E6)
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Listing 4: Excerpt from the RevBayes script for the joint inference using the Bayesian relaxed clock example.

S2.2 Stepwise Bayesian inference

In this next subsection, we provide more details about the stepwise Bayesian inference for the
Bayesian relaxed clock example.

S2.2.1 Step 1

Step 1 of the stepwise Bayesian inference estimates the importance distribution of the phylogeny
with branch lengths in units of subsitutions. Thus, the hierarchical layer of the model is broken up
and only the data layers are included (see Table S2 and Figure 3b). Overall, step 1 is very similar
to the joint inference with the exception that the uniform node age prior distribution on the time
tree together with the branch rate prior distribution is replaced by a prior distribution directly
on unrooted trees (dnUniformTopologyBranchLength). The remaining MCMC settings stayed the
same. Listing 5 shows the RevBayes script to perform step I of the stepwise Bayesian inference.

Table S5: Model parameter names and prior distributions for step 1 of the stepwise Bayesian inference
for the Bayesian relaxed clock example.

Parameter X f(X)

Substitution rate matrix
Phylogeny

fixed to Jukes-Cantor model [1]

Sk

UniformBranchLengthTree(bl Prior = Uni form(0, 1000))

1
2
3

Q <— fnJC(4)

psi ~ dnUniformTopologyBranchLength( taxa, dnUniform(0,1E3) )
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psi.setValue( true_tree_unrooted )
moves. append ( mvBranchLengthScale(psi, weight=n_branches) )

monitors.append( mnFile(psi, filename="output/stepl.trees”, printgen=10)
monitors.append( mnScreen(printgen=1000) )

mymeme = meme(mymodel, monitors, moves)
mymemc. burnin (1E5,100)
mymeme. run (1E6)
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Listing 5: Excerpt from the RevBayes script for Step 1 of the stepwise Bayesian inference on the Bayesian relaxed
clock example.

S2.2.2 Step 2

Step 2 of the Bayesian stepwise inference takes the samples from the importance distribution
generated in step 1 as data. We achieve this using the function readTreeTrace. How many
samples are actually taken is controlled by the thinning argument, that is, when we performed our
tests using a different number of samples N from step 1 we simply applied a different thinning of
the samples. The parameters and distributions for step 2 are shown in Table S6 (see also Figure 3c).
Compared to the joint inference, we do not have the layer including the data. Note that we use
dnEmpiricalSample to represent the probability distribution for the importance sample. This
dnEmpiricalSample is completely generic and can be used for any probability distribution.

Table S6: Model parameter names and prior distributions for step 2 of the stepwise Bayesian inference
for the Bayesian relaxed clock example.

Parameter X J(X)

Mean clock rate me Uniform(0, 10%)
Standard deviation of clock rates Msq Uniform(0, 10%)
Phylogeny v UniformTimeTree(root)

© 00 3 O U i W N

= = = = =
B W N = O

treetrace = readTreeTrace(”output/stepl.trees”,
treetype="non—clock” ,
burnin=0.001,
thin=1000)

clock_rate_mean ~ dnUniform(0,1E4)
clock_rate_sd ~ dnUniform (0,1E4)

clock_rate_Iln_mean := In(clock_rate_mean)
branch_rate_prior = dnLognormal(clock_rate_ln_mean , clock_rate_sd)

time_tree ~ dnUniformTimeTree (rootAge=ROOTAGE, taxa=taxa)
time_tree.setValue( true_tree )
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root_branch_fraction ~ dnBeta(1,1)

phis ~ dnEmpiricalSample (
dnBranchRateTree( time_tree, branch_rate_prior, root_bran
phis.clamp(treetrace.getTrees())

moves.append ( mvScale( clock_rate_mean , weight=3 ) )

moves. append ( mvScale( clock_rate_sd, weight=3 ) )

moves. append ( mvNodeTimeSlideUniform (time_tree , weight=NUMTAXA) )
moves.append ( mvBetaProbability (root_branch_fraction , weight=2.0) )

monitors.append( mnFile(time_tree, filename="output/step2.trees”, printg

mymemc. burnin (1E5,100)
mymeme. run (1E6)

ch_fraction ) )

en=10) )
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Listing 6: Excerpt from the RevBayes script for Step 2 of the stepwise Bayesian inference on the Bayesian relaxed
clock example.

S2.3 Results

For completeness, we present here the results from the toy example showing (a) more observations,
and (b) posterior distributions for the mean parameter p.
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Figure S1: Estimated posterior distributions for the simple toy example as shown in Figure 1. In each row, we show
the posterior distributions for different numbers of observations (columns) and different number of samples used in
step 2 (colors). The top row shows the posterior distributions of o and the middle row the posterior distribution
of p. The bottom row shows the posterior and importance distribution of an arbitrarily picked A;. We observe
that with few samples the joint and stepwise inferences disagree (left column; top row) which is due to divergence
of the posterior distribution and importance distribution (left column; bottom row). Joint and stepwise inference
are identical for many observations (right column). More samples M of the importance distribution in step 2 are
beneficial but have a smaller impact than the number of observations.
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