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Abstract 

To understand the evolutionary dynamics of cancer, clonal deconvolution of mutational 

landscapes across multiple biopsies from the same patient is crucial. However, the 

frequencies of mutated alleles are often distorted by variation in copy number of mutated loci 

as well as the purity across samples. We present a semi-supervised algorithm that normalizes 

for purity and incorporates allelic composition with bulk sequencing to reliably segregate 

clonal/subclonal variants even at low sequencing depth (~50x). In presence of at least one 

tumor sample with >70% purity, it deconvolves samples down to ~40% purity, allowing 

robust tracking of mutated cell populations through cancer evolution. 
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Genetic diversification during tumorigenesis and disease progression is governed by 

Darwinian principles. Next generation sequencing across cancer types has confirmed that 

intratumor heterogeneity through phylogenetic branching is a common scenario1, although 

the relative contributions from clonal selection versus neutral evolution in this process remain 

a matter of debate2,3. We recently demonstrated that intratumor heterogeneity can result as a 

product of different evolutionary trajectories specific to the spatiotemporal localization of 

resident tumor cells4. As a cancer’s clonal landscape thus often varies with tumor geography, 

comprehensive reconstruction of tumor phylogeny requires multi-regional analysis and 

subclonal deconvolution5,6. Established bioinformatic tools for deconvolution are typically 

based on unsupervised clustering of the relative abundance of mutations across samples, 

represented by variant allele frequencies (VAFs)7, determining subclonal populations with a 

distributional assumption on the variant read counts8. However, VAF is influenced by the 

purity of the specific sample and if variants reside in chromosomal regions affected by copy 

number changes. As copy number alterations can appear both clonally and subclonally, and 

may vary in kind for the same chromosome within a tumor, they can significantly complicate 

clonal deconvolution9. To mitigate this, we developed CRUST (Clonal Reconstruction of 

tUmors with Spatio-Temporal sampling), an analysis suite that parameterizes stochastic 

assumptions on the distribution of variants across samples, suggesting the most statistically 

probable clustering of mutations into clones and subclones, while integrating observed 

biological inference, on a case by case basis. 

 

From a set of samples from the same tumor obtained at different locations and/or time points, 

CRUST deconvolves each sample separately by assigning each variant to a predicted clonal 

or sub-clonal status, calibrating clonality assignment against given parameters on allele-

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 12, 2020. ; https://doi.org/10.1101/2020.11.11.376467doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.11.376467


specific copy number status and sample purity (see Supplementary Methods Quick user 

guide). It realigns the frequency distribution across samples with probabilistic quotient  

normalization. Hereafter the distribution is queried to fit into an optimum number of clusters  

based on statistics comparing loss of information (Supplementary Figure 1).  

 
Figure 1. Clonal deconvolution of a simulated tumor genome. There are eight samples representing different biopsies 
(A). All samples here adhere to an allelic composition of 1+3. CRUST first displays a dot plot of the VAFs pertaining to 
all samples. Given provision for a purely estimation driven approach, it predicts clonality from the optimum number of 
clusters determined without supervision. This results in a deconvolution independent of the user suggested input (B). A 
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In absence of available copy number data, CRUST can also assess allelic composition based 

on sequencing summaries from the constitutional genome (Supplementary Figure 2). After 

copy number analysis, sequence variants from a single tumor are then analyzed separately for 

each allelic configuration (1+1, 1+2, 2+0 etc.), where CRUST visualizes the predicted 

clonal/subclonal assignments for all spatiotemporal samples (Figure 1A, B). The subclonal 

estimation process is based on a semi-supervised cluster determination. It verifies the optimal 

solution first without user input; next the user is given opportunity to override the 

unsupervised solution after visual inspection of the expected subclonality (Figure 1C) to 

retain provision for a biologically derived deconvolution assessment, if needed. In addition, 

subclonality assignment can be altered for specific samples post-prediction, a feature useful 

in presence of compromising purity or inter-sample heterogeneity with respect to the 

complexity of chromosomal alterations (e.g. chromothripsis and whole genome doubling).  

 

user can decide to opt for a semi-supervised approach instead if the optimum number of clusters predicted is dissimilar to 
a biologically expected deconvolution, for example prior knowledge from single cell karyotyping or sequencing. In this 
example the default optimization is given with 4 clusters as seen above (two clonal and two subclonal). In (C I) however, 
the user chooses to fit a 2-cluster deconvolution resulting in a prediction of one clonal and one subclonal cluster. The 
predictions can also be modulated post-hoc for individual samples (C II). Over the default optimum prediction, for 
Sample_6 a user has here chosen to fit a 3-cluster deconvolution that picks up two clones (at allelic compositions 1+3 and 
3+1) and one sub-clone. In (D) simulations of scaling with varying sample composition are shown. Each iteration 
generates two samples, say X and Y with tumor cell fractions (TCF) Tx and Ty, respectively. Assuming Tx > Ty, CRUST 
rescales the variants in Y based on those in X. Simulations are performed to see how well the scaling works when Tx and 
Ty are varied. Three parametric beta-log normal models are in effect to generate simulated samples. The top panel shows 
changes in TCF that only affects the mean of the VAF distribution. The middle shows changes in TCF affecting the 
variance (ergo spread) of the VAF distribution and the lower most panel shows when it dynamically affects both mean 
and variance (referred as Meanvar). The measured statistic is polychoric correlation among predictions and its scale for 
all three simulations is the same, as is indicated at the bottom. In (E I), average marginal concordance is estimated with 
geometric mean for all three methods and tests are performed between pairs. Only significant deviations are marked with 
corresponding P values. In (E II) the trend of change in average concordance with varying levels of TCF between the 
three algorithms is depicted. A comparison across deconvolution methods was done with simulation of varying 
sequencing coverage (F). Samples are drawn with varying TCF for four sets of coverage at 300x, 100x, 50x and 30x. 
Ordinal cluster similarities were assessed for CRUST (CS), MAGOS (MG) and sciClone (sC) with Jaccard coefficient 
(τ). The four combined heatmap and violin plots correspond to four coverage settings denoted in the x axis. Each 
combination represents summary statistics obtained as median τ for paired TCFs. Each cell in the heatmap reflects that 
obtained from a paired simulated sample denoted in the joint y axis TCF. The leftmost y axis annotation denotes TCF for 
sample 1 (Tx) and the inner annotation denotes that of the second sample (Ty). The highest Tx was 0.95 and the lowest 
was set at 0.5. For Ty, the highest by default was chosen to be 0.2 lower than that of the highest Tx, hence 0.75 and the 
lowest was set at 0.25. The violin plots are drawn correspondingly under the heatmaps on the lower panel denoting the 
dispersion and central tendency of the estimates with significant p values of the paired association tests marked by grey 
points. 
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To assess the accuracy of CRUST-based deconvolution across varied purity and sequencing 

coverage, we simulated tumor samples (Figure 1D, E; Supplementary Figure 3, 

Supplementary Methods). Here, the frequency distribution of variants queried from low 

depth calls were left-tail heavy although the pure distribution is expected to follow a beta-

binomial distribution. Extending from a one-parametric power law function10, we modelled 

the reduction in variability biased towards the left tail with a log-exponent function, a 

lognormal prior. Samples were drawn from the closed form cumulative function upon which 

accurate predictions were observed for those with purity down to 40%, scaled against a 

complementary sample with purity of at least 70%. Additionally, CRUST predicted the 

simulated clonality status more accurately (statistically significant with two-tailed P value <  

0.05, Mann-Whitney test) compared to contemporary algorithms for sequences with coverage  

of at least 50x (Figure 1F)11,12. 

 
 
Figure 2 Multiple samples with varied purity from each of two neuroblastomas (NB) were used as examples (A). NB12 is 
represented with three samples, two primary tumor biopsies (P1, P2) and one relapse (R). The primary sample was ~90% 
pure whereas the relapse sample contains only 55% tumor cells as estimated by previous studies4. Hence, a deconvolution 
without rescaling the variant allele frequencies (VAFs) results in all shared variants (linked by grey lines between R and P1) 
being classified as subclonal in R (B, original sample specific VAFs are on the left, clonality predictions are on the right). 
Post-scaling (C), the relapsed variants re-adjust (C I), and the predictions reflect a reasonable nature of the clonality (C II). 
It is worth noting that in both analyses, the optimum cluster number is unchanged. This indicates that a traditional 
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As an example of the importance of scaling for correct deconvolution, we extracted from a 

published dataset on childhood cancer4, three neuroblastoma tumor tissue samples from a 

patient with varied purity (55%-90% tumor cells), two from the primary tumor (NB12, P1 

and P2) and one from metastatic relapse (R) (Figure 2A). Available copy number data and 

whole exome sequencing summaries were filtered for variants at a 1+1 allelic composition 

and sequenced at a depth of at least 100x, resulting in 32 variants (Supplementary Table 1). 

Rescaling the VAFs of two samples (P2, R) against that with the highest purity (P1), had a 

major impact on the subclonality prediction of the relapsed sample R (Figure 2B, C I-II). If 

unscaled, almost all variants shared among the three samples were predicted to be subclonal 

in sample R, contradicting their status as clonal (present in all tumor cells) in the other two 

samples (Supplementary Table 1). For example, the unscaled data predicted that a SIAH1 

mutation, was clonal in the primary but subclonal in the relapse which was rectified post 

scaling resulting in a prediction of clonal mutation across all samples. Only one mutation, in 

ST8SIA2, exhibited changed clonality status between two samples, i.e. the two regions of the 

primary tumor (Figure 2C III-V). This was indicative of a regional clonal sweep at 

geographic transition between these regions, an event corroborated by copy number profiling, 

which showed a subclonal copy-number neutral imbalance of chromosome 4 in P1, which 

transited to clonality in P2 (Supplementary Figure 4). 

subclonality reconstruction algorithm would fail to account for the noise in the relapsed sample if analyzed in conjunction 
with the primary samples. The next three panels demonstrate how scaling impacts the predictions. In panel (C III), an 
ST8SIA2 mutation changes clonality status between P1 and P2, in concordance with a clonal sweep between these regions 
(see Supplementary Figure 4)4. Panels C-IV and V show a SIAH1 exonic variant that is present in all three samples. In R, it 
is classified as subclonal while unscaled, but the prediction is overturned to be clonal post scaling. Deconvolution of the 
copy number aberrant neuroblastoma NB22 (D), based on samples from the primary tumor (P1, P2) and a metastatic lesion 
(M1, M2). This tumor contained several copy number changes that required consideration for accurate deconvolution. 
CRUST was used to detect the segmental copy number alterations of all variants which were classified in two allelic 
composition make-ups, balanced 1+1 segments, and unbalanced 1+2 segments. These were deconvolved separately. 
Predicting clonality status without consideration of the copy number aberrations results in two predicted clusters (D I), 
whereas considering allelic composition results in five clone/subclone clusters across all four samples (D II). This 
deconvolution would not have been possible without copy number data considered. Estimated clone sizes are depicted below 
with tumor cell fractions of each cluster (D III). Inferring tumor evolution from deconvolution (E-F) shows how starting 
from an unknown MRCA (most recent common ancestor) one of the primary clones (in grey) shrinks whilst another 
subclone (in light purple) expanded at metastatic sites. Clone sizes estimated from set of variants with two different allelic 
compositions indicated a major clone size (1+1 in dark green and 1+2 in light green) of about 92% (mean) indicating the 
aberrations carried forward from a most recent common ancestor. The bottom panel in (E) devoid of copy number data lacks 
resolution to detect any such change. 
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As an example of how CRUST improves deconvolution by accounting for copy number 

variations, we then analyzed four different patient samples (NB22; Figure 2A)4. The 

CRUST-based copy number estimation resulted in a small number of discrepancies (2.7%) in 

the estimated allelic compositions compared to the available array-based estimates.4 These 

were removed prior to analysis (Supplementary Table 2). VAFs were scaled against a 

diploid background and tumor cell fractions were calculated with allelic copy numbers 

considered. This revealed a varied tumor architecture across samples with evidence of 

polyclonal seeding of the metastatic sites, well in accordance with previous analysis of this 

case based on copy number alone (Figure 2D)4. Disregarding the copy number information, 

we reanalyzed the data assuming a balanced copy number state (1+1) for all chromosomes. 

The resulting deconvolution failed to pick up between-sample variations in clonality with 

considerable loss of resolution at backtracking of clones into geographic domains (Figure 

2E). CRUST thus enabled consideration of corresponding copy number data revealing the 

true evolutionary progression (Figure 2E-F). 

 

To observe the effectiveness of normalization and inclusion of allelic composition in a large 

scale mutational landscape interrogated by multiple platforms, we turned to a publicly 

available case of acute myeloid leukemia, with samples available from presentation and 

relapse13. Post scaling, CRUST was able to identify a single clonal population existing in 

both the primary and the relapse samples while analyzing whole genome, whole exome, and a 

custom-made mutation panel (Supplementary Figure 5A-C). The predictions concurred 

with that obtained from sciClone. However, a custom ion torrent assay resulted in a 

clonal/subclonal separation in disagreement with others (Supplementary Figure 5D, E). 

While investigating the respective total coverage provided by all four technologies, we noted 
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for the whole ‘platinum list’ of SNVs declared by the original authors, that the ion torrent 

assay had a median coverage of < 50x for both samples (Supplementary Figure 5F). To 

increase robustness, we therefore extracted only SNVs called at a minimum depth of 15x in 

ion torrent for both samples resulting in 33 SNVs (Supplementary Table 5), with increased 

median coverage of 79x and 88x respectively for the primary and the relapsed sample. After 

scaling, these SNVs were predicted to belong to a single clonal population, consistent with 

the other methods (Supplementary Figure 5G).  

 

In comparison to most available tools for clonal deconvolution, CRUST thus has several 

major features including a robust normalization for purity, an inbuilt assessment and 

integration of copy number alterations, and a possibility for user supervision to take à priori 

biological knowledge into account. While it determines clonality with stochastic algorithms, 

depending on sequence quality variation between samples or technical artifacts, sometimes 

no mathematical model can adequately harmonize spurious signals. As the variance of each 

clonal subcluster inflates with compromised quality of sampling/sequencing, CRUST 

expands on the prediction with a non-parametric test indicating the probability of a variant 

belonging to a certain cluster that compensates for hard thresholding. Because copy number 

profiles are not always available by a dedicated method such as SNP array for sequenced 

tumors, CRUST can estimate copy numbers from sequencing datasets. However, there 

remain risks of detecting spurious signals if copy numbers are solely estimated by this 

approach. Hence, a dedicated estimation should always take priority and we would 

recommend strict monitoring of sample quality, purity, sequencing technology variation, 

variable coverage across chromosomes, unstable GC content scaling and other factors. 

Another quality issue arises from low sequencing depth, leading to allele frequencies 

unsuitable for scaling resulting in false positive signals. Nevertheless, even at 50x coverage 
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with at least one sample with 70% purity, the clonality determination was accurate in 

simulations free of artifacts. CRUST thus not only delivers an accurate spatio-temporal clonal 

deconvolution of multi-sampled tumors, but also provides users a much-needed means for 

manual curation. 

 

Software availability 

CRUST depends on R (>3.5.0) and is available for download from GitHub repository 

https://github.com/Subhayan18/CRUST 
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