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 1 

ABSTRACT 39 

An enduring neuroscientific debate concerns the extent to which neural representation is 40 

restricted to networks of patches specialized for particular domains of perceptual input 41 

(Kaniwsher et al., 1997; Livingstone et al., 2019), or distributed outside of these patches to broad 42 

areas of cortex as well (Haxby et al., 2001; Op de Beeck, 2008). A critical level for this debate is 43 

the localization of the neural representation of the identity of individual images, (Spiridon & 44 

Kanwisher, 2002) such as individual-level face or written word recognition. To address this 45 

debate, intracranial recordings from 489 electrodes throughout ventral temporal cortex across 17 46 

human subjects were used to assess the spatiotemporal dynamics of individual word and face 47 

processing within and outside cortical patches strongly selective for these categories of visual 48 

information. Individual faces and words were first represented primarily only in strongly 49 

selective patches and then represented in both strongly and weakly selective areas approximately 50 

170 milliseconds later. Strongly and weakly selective areas contributed non-redundant 51 

information to the representation of individual images. These results can reconcile previous 52 

results endorsing disparate poles of the domain specificity debate by highlighting the temporally 53 

segregated contributions of different functionally defined cortical areas to individual level 54 

representations. Taken together, this work supports a dynamic model of neural representation 55 

characterized by successive domain-specific and distributed processing stages. 56 

 57 

SIGNIFICANCE STATEMENT 58 

The visual processing system performs dynamic computations to differentiate visually similar 59 

forms, such as identifying individual words and faces. Previous models have localized these 60 

computations to 1) circumscribed, specialized portions of the brain, or 2) more distributed 61 
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aspects of the brain. The current work combines machine learning analyses with human 62 

intracranial recordings to determine the neurodynamics of individual face and word processing in 63 

and outside of brain regions selective for these visual categories. The results suggest that 64 

individuation involves computations that occur first in primarily highly selective parts of the 65 

visual processing system, then later recruits highly and non-highly selective regions. These 66 

results mediate between extant models of neural specialization by suggesting a dynamic domain 67 

specificity model of visual processing. 68 

 69 

INTRODUCTION 70 

A key debate regarding the architecture of the cortex concerns the extent to which diagnostic 71 

aspects of stimuli are processed within circumscribed, domain-specific and potentially modular 72 

cortical networks (Kaniwsher et al., 1997; Martin, 2007; Livingstone et al., 2019), or distributed 73 

across large, overlapping sections of cortex as a feature map (Haxby et al., 2001; Op de Beeck, 74 

2008). On one hand, an extensive body of primate single unit recordings (Perrett et al., 1984; 75 

Tsao et al., 2006), human neuroimaging (Kanwisher et al., 1997; Puce et al., 1996), stimulation 76 

(Puce et al., 1999; Hirshorn et al., 2016; Parvizi et al., 2012; Afraz et al., 2006; Pitcher et al., 77 

2007), and lesion studies suggests that perception is causally related to the activity within 78 

patches of cortex that respond selectively to preferred stimulus categories (Farah et al., 1995; 79 

Schalk et al., 2017). Conversely, the distributed feature map hypothesis is supported by evidence 80 

from both neuroimaging and single unit recordings that shows reliable face differentiation 81 

outside of strongly face-selective patches (Haxby et al, 2001; Bell et al., 2011) and 82 

differentiation of non-face categories within face patches (Kiani et al., 2007; Cukur et al., 2013; 83 

Hanson & Schmidt, 2011). This hypothesis posits that category selective patches are clusters that 84 
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process visual information that is particularly diagnostic for those categories within a larger, 85 

continuous feature map that spans ventral temporal cortex (VTC) (Op de Beeck et al., 2008; Mur 86 

et al., 2012). 87 

Across these hypotheses, a central point of debate concerns the role of activity evoked by 88 

stimuli outside of highly selective patches (e.g. face-related activity outside of face patches) and 89 

activity evoked by “other” stimuli inside patches selective for particular categories of stimuli 90 

(e.g. non-face activity inside face patches). Specifically, a critical tension between the 91 

aforementioned hypotheses is whether individual-level discrimination (e.g. recognizing which 92 

face or word a person is viewing) can be found outside of putative category-selective patches 93 

(Spiridon & Kanwisher, 2002; Nestor et al., 2011). Examining individual level discrimination is 94 

crucial because it probes the potential computational role and representational level of activity 95 

inside and outside of patches that are highly selective for stimuli at the category level. Indeed, 96 

the sparing of category-level discrimination in various agnosias (Damasio et al., 1982) 97 

emphasizes that individual representations are a key level in the debate between domain specific 98 

and distributed models of processing.  99 

To test for the presence of individual-level representations across time in and out of 100 

selective patches, the dynamics of face individuation was examined with intracranial 101 

electroencephalography (IEEG) in 14 patients with pharmacologically intractable epilepsy. To 102 

ensure that face individuation was based on face identity level and not the visual image level, 15 103 

different images of each of 14 different identities were used across 5 expressions (anger, sadness, 104 

fear, happy, neutral) and 3 gaze directions (left, straight, right). The dynamics of word 105 

individuation was examined in 5 additional patients (2 overlapping, 17 total patients in the 106 

study). Electrode contacts of interest were restricted anatomically to VTC, inferior to the middle 107 
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temporal sulcus. Using category localizer data, these contacts were first functionally partitioned 108 

into ones that demonstrated high face selectivity (HFS) or high word selectivity (HWS) and 109 

those with low face selective (LFS) and low word selective (LWS) responses (Figure 1). Every 110 

patient had recordings from both high and low category-selective areas. Once the contacts had 111 

been partitioned according to their category selectivity, machine learning analyses (regularized 112 

logistic regression) were used to compare the dynamics of individuation within and outside of 113 

highly category-selective areas. Above chance classification of individual faces and words was 114 

seen in both high and low face and word selective regions, but significant decoding emerged 115 

approximately 170 ms earlier in high selectivity regions compared to low selectivity regions. 116 

These results suggest a dynamic model of domain specificity in VTC in which processing is first 117 

restricted to highly selective regions and then is processed by both high and low selectivity 118 

regions. 119 

 120 

MATERIALS AND METHODS 121 

Subjects 122 

Experimental protocols were approved by the Institutional Review Board of the University of 123 

Pittsburgh and written informed consent was obtained from all subjects. 17 patients (8 female) 124 

undergoing surgical treatment for medicine-resistant epilepsy volunteered to participate in this 125 

experiment. Patients had previously undergone surgical placement of subdural 126 

electrocorticographic contacts or stereoelectroencephalography (collectively referred to as iEEG 127 

here) as standard care for clinical monitoring during seizure onset zone localization. The ages of 128 

subjects ranged from 20 to 64 years (mean = 39.1, SD = 14.6). None of the subjects showed any 129 

ictal events during experimental recording nor epileptic activity on the electrodes used in this 130 
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study. All patients completed a localizer session, 14 patients completed experiment 1, and 5 131 

patients (2 overlap) completed experiment 2.  132 

 133 

Experimental Design: Stimuli 134 

In the localizer session, images of bodies (50% male), faces (50% male), words, hammers, 135 

houses and phase scrambled faces were used. Examples of these stimuli are outlined in Figure 2 136 

of Ghuman et al. (2014). Phase scrambled images were created in Matlab by taking the two-137 

dimensional spatial Fourier spectrum of the image, extracting the phase, adding random phases, 138 

recombining the phase and amplitude, and taking the inverse two-dimensional spatial Fourier 139 

spectrum. Each image category was presented 80 times, yielding a total of 480 image 140 

presentations. Each image was presented in pseudorandom order and repeated once in each 141 

session.  142 

For experiment 1, frontal views of 14 different face identities were drawn from the 143 

Radboud Faces Database. 15 images of each identity were presented, with 5 expressions (anger, 144 

sadness, fear, happy, neutral) and 3 gaze directions (left, right, forward). Each unique image was 145 

presented four times, yielding a total of 60 presentations per identity and 840 face image 146 

presentations. For experiment 2, 36 different three and four-letter real, pseudo-, false font words 147 

were presented 30 times each, yielding a total of 1080 word presentations. Only data from trials 148 

corresponding to four-letter real and pseudo-words were considered further for data analysis, 149 

corresponding to 16 unique words. Word stimuli were selected to have similar log frequency, 150 

mean bigram frequency and bigram frequency by position across similar and dissimilar word 151 

pairs (measured using the English Lexicon Project). All stimuli for the three experimental 152 

sessions were presented on an LCD computer screen placed ~1 meter from subjects’ heads.  153 
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 154 

Experimental Design: Paradigms 155 

In all experimental sessions, each image was presented for 900 ms with 900 ms inter-trial 156 

interval during which a fixation cross was presented at the center of the screen (~10° × 10° of 157 

visual angle for the localizer session and experiment 1, ~6° × 6° visual angle for experiment 2). 158 

For the localizer session, images were repeated 20% of the time at random. Subjects were 159 

instructed to press a button on a button box when an image was repeated (1-back). Only the first 160 

presentations of repeated images were used in the analysis.  161 

 In experiment 1, subjects completed a gender discrimination task, reporting whether the 162 

presented face was male or female via button press on a button box. Each subject completed one 163 

or two sessions of the task. All three paradigms were coded in MATLAB (version 2007, 164 

Mathworks, Natick, MA) using Psychtoolbox (Brainard, 1997) and custom written code. 165 

In experiment 2, subjects completed a lexical decision task, reporting whether the 166 

presented word was real or not (pseudoword and false font comparisons) via button press on a 167 

button box. Each subject completed one or two sessions of the task. All three paradigms were 168 

coded in MATLAB using Psychtoolbox and custom written code. 169 

 170 

Data preprocessing 171 

Electrophysiological activity was recorded at 1000 Hz using iEEG electrodes. Single-trial 172 

potential was extracted by band-pass filtering the raw data between 0.2-115 Hz using a fourth-173 

order Butterworth filter to remove slow drift, high-frequency noise, and 60 Hz line noise 174 

(additionally using a 55-65 Hz stop-band). For each trial, the power spectrum density (PSD) at 2-175 

100 Hz with a bin size of 2 Hz and time-step size of 10 ms was estimated using a Hann multi-176 
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 7 

taper power spectrum analysis in the FieldTrip toolbox (Oostenveld et al., 2011). For each 177 

channel, the neural activity between 50-300 ms prior to stimulus onset was used as baseline, and 178 

the PSD at each frequency z-scored based on the mean and variance of baseline activity. 179 

Broadband gamma signal was extracted as mean z-scored PSD across 40-100 Hz. Both the single 180 

trial potentials (stP) and single trial broadband high-frequency activity (stBHA) were used in all 181 

analyses.  182 

 Trials with a maximum amplitude five standard deviations above the mean across trials 183 

were eliminated, as well as trials with a deflection greater than 25 μV between sampling points. 184 

These criteria allow the rejection of sampling error or ictal events, and resulted in elimination of 185 

less than 1% of trials when applied in this and previous work (Li et al., 2019).  186 

 187 

Electrode localization 188 

To accurately identify electrode contact location, the co-registration of grid electrodes and 189 

electrode strips with cortex was adapted from Hermes et al. (2017). Electrode contacts were 190 

segmented from high-resolution post-operative computerized tomography (CT) scans of patients 191 

and co-registered with anatomical MRI scans that were conducted before neurosurgery and 192 

electrode implantation. This method accounted for shifts in specific electrode location caused by 193 

potential deformation of the cortex that arise when utilizing FreeSurfer 194 

(https://surfer.nmr.mgh.harvard.edu/, 1999) software reconstructions to co-register with the CT 195 

scans. SEEG electrodes were localized with Brainstorm software (Tadel et al., 2011) that co-196 

registers post-operative MRI with pre-operative MRI images. Complete localization 197 

(incorporating the following electrode selection step) is depicted in Figure 1. The presence of 198 

numerically greater HFS contacts in the left hemisphere than right hemisphere is most likely 199 
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explained by the larger absolute numbers of left than right hemisphere electrode contacts, a result 200 

of electrode placement being guided solely by clinical needs of each patient.    201 

 202 

Electrode selection 203 

Electrodes were selected according to anatomical and two functional criteria. Anatomically, 204 

electrodes of interest were selected from within ventral temporal cortex below the middle 205 

temporal gyrus. Specifically, the midline of the middle temporal gyrus was defined as the upper 206 

limit for anatomical consideration: the beginning of the middle temporal gyrus was used to 207 

define a posterior threshold, and the midline of the middle temporal gyrus terminating at the 208 

temporal pole was used as the anterior threshold for electrode selection. We conducted 209 

multivariate classification over data from the localizer session to identify face and word sensitive 210 

electrodes (described in next section). Functionally, highly category selective electrodes of 211 

interest demonstrated a peak six-way face classification d’ score greater than 0.8, corresponding 212 

to p < .01 and a large effect size (Cohen, 1988) for the preferred category (face or word) using a 213 

Naïve Bayes classifier. Electrodes were not considered if a d’ score greater than 0.8 resulted 214 

from systematically lower face or word sTP values relative to other conditions (whereby above 215 

chance classification could occur simply by systematically lower response magnitude). Selective 216 

electrodes were also required to show a maximal sTP or stBHA response to either faces or words 217 

for at least 50 ms during the stimulus presentation period. Within each patient’s montage, all 218 

VTC electrodes of interest that did not meet the criteria for high selectivity for faces or words 219 

were labeled as low selectivity (note that face selective electrodes could be considered low 220 

selectivity for words and vice versa). Finally, to control for any systematic differences in 221 

anatomic location between high selectivity and low selectivity contacts, the most anterior low 222 
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selectivity contacts from each montage (which were more numerous and more anteriorly located, 223 

in general, than the selective contacts) were removed until the high selectivity and low selectivity 224 

contacts from each montage were matched anatomically along the anterior-posterior axis. 225 

Functionally, this trimming procedure yielded high selectivity and low selectivity contact 226 

populations in each patient’s montage with equivalent mean coordinate values along the anterior-227 

posterior axis and ensured that any latency differences between populations could not 228 

immediately be attributed to any expected conduction delays. Indeed, recent work has 229 

demonstrated a relationship between response onset latency and situation along the anterior-230 

posterior axis, such that more anterior contacts emerged later in time (Schrouff et al., 2020). 231 

Note that this anatomical balancing procedure did not meaningfully alter the time course of 232 

classification over low selectivity contacts compared to retaining all anterior low selectivity 233 

contacts and all results remained similar if non-balanced electrodes were used in the analyses.  234 

 235 

Multivariate classification: Naïve Bayes classifier 236 

We first used a Naïve Bayes classifier with 3-fold cross validation to examine category 237 

selectivity over time at individual electrode contacts throughout ventral temporal cortex. Both 238 

sTP and stBHA signal values were used as input features in the classifier with a sliding 100 ms 239 

time window (10 ms width) as previous studies have shown increased sensitivity and specificity 240 

when using both sTP and stBHA (Miller et al., 2016). Indeed, sTP and stBHA metrics have been 241 

shown to capture separate and complementary aspects of the physiology that contribute to visual 242 

processing as measured with iEEG (Lescynski et al., 2019). sTP signal was sampled at 1000 Hz 243 

and stBHA at 100 Hz, which yielded 110 features (100 mean sTP voltage potentials and 10 244 

normalized mean stBHA PSD values). Thus at each time point at each electrode, the classifier 245 
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was trained on the first 2-folds and performance evaluated on the left out fold for 6-way 246 

classification of the six object categories presented in the localizer session. We used the 247 

sensitivity index d’ for face or word category against all other categories to determine face and 248 

word selective contacts. d’ was calculated as Z(true positive rate) – Z(false positive rate), where 249 

Z is the inverse of the Gaussian cumulative distribution function.  250 

 251 

Elastic net regularized logistic regression 252 

To examine the temporal dynamics of face and word individuation, we used elastic net 253 

regularized logistic regression with three-fold cross validation implemented with the GLMNET 254 

package in Matlab. Elastic net was chosen as a means to identify diagnostic electrode contacts by 255 

removing non-informative and/or highly correlated classifier features. These series of 256 

classification problems were conducted iteratively in four different electrode populations: 257 

individual face classification from experiment 1 data in VTC high face selective contacts and 258 

VTC low face selective contacts, and individual word classification from experiment 2 data in 259 

VTC high word selective contacts and VTC low word selective contacts. Face identity 260 

classification was conducted across expression and gaze direction, effectively varying the low-261 

level visual features of each face identity such that this classification problem was not simply 262 

face image classification. 263 

sTP signal was first downsampled to 100 Hz to yield an equal amount of sTP and stBHA 264 

features. sTP signal was then normalized with a Box-Cox transformation to enhance 265 

interpretability of classifier weights. Thus at each time point, sTP and stBHA values from each 266 

trial were arranged as a P-dimensional vector corresponding to 2 * number of contacts in each of 267 

the four predefined electrode contact populations. The time course of face and word 268 
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individuation was identified by examining the pairwise decoding accuracy of a classifier using 3-269 

fold cross-validation. The regularization parameter (𝜆) was set a priori to 0.9 to favor more 270 

sparse classification solutions.  The results of this analysis are depicted in Figure 2. For display 271 

purposes, group mean time courses were smoothed with a moving average of 30 millisecond 272 

fixed window length.  273 

For comparison purposes, L1 regularized logistic regression was also repeated in the 274 

same manner as the above elastic net analyses (classification conducted separately for high and 275 

low category selectivity populations) to demonstrate minimal difference in the time course of d’ 276 

values from the different regularization procedures. For this analysis, the regularization 277 

parameter (𝜆) was by default set to 1.  278 

To demonstrate the robustness of general trends of individuation across high and low 279 

selectivity contact populations, the elastic net classification procedure was repeated with 280 

additional thresholds determined by dividing face and word contact populations into partitions of 281 

equal numbers. To do so, all contacts across all subjects in face and word tasks, respectively, 282 

were sorted according to peak d’ selectivity value from the category localizer. Then, these 283 

contacts were divided into six equal partitions. For example, contacts in the face task were 284 

divided into 6 partitions consisting of 71 contacts each. Then, elastic net regularized 285 

classification was conducted again according to the following groupings: 1) bottom two 286 

partitions labeled as LFS, top four partitions labeled as HFS (corresponding d’ value of 0.61 287 

dividing the two groups); 2) bottom three partitions labeled as LFS, top three partitions labeled 288 

as HFS (corresponding d’ value of 0.7 dividing the two groups); 3) bottom four partitions labeled 289 

as LFS, top two partitions labeled as HFS (corresponding d’ value of 0.82 dividing the two 290 

groups). This procedure was repeated for word selective contacts at the following d’ thresholds: 291 
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0.58, 0.67, 0.86. The results of this analysis are depicted in Figure 3. For display purposes, group 292 

mean time courses were smoothed with a moving average of 30 millisecond fixed window 293 

length. The partitions corresponding to the bottom 1/6 and top 5/6 (and vice versa) are not 294 

demonstrated because not all subjects had contacts in the lowest and highest partitions.  295 

 296 

L1 regularized logistic regression 297 

To examine the diagnosticity of brain activity from high and low category selectivity electrode 298 

populations in concert with one another, we repeated the above classification analyses with L1 as 299 

opposed to elastic net regularization and examined the proportion of electrode contacts that were 300 

entirely penalized and removed from the classifier model. Additionally, all VTC electrode 301 

contacts (high and low category selectivity) were used to train each classifier, as opposed to 302 

splitting the electrode populations as in the previous analyses. After conducting pairwise face 303 

classification and pairwise word classification, the classifier weights from each pairwise 304 

classification for each electrode contact were extracted and the number of non-zero (positive or 305 

negative) weights for each contact tabulated. The percent of electrode contacts with non-zero 306 

weights was determined at every time point after baseline normalization. Baseline normalization 307 

consisted of determining the threshold of non-zero weight counts that would yield <1% contacts 308 

with non-zero weights during the baseline period. The total percentage of electrode contacts 309 

assigned non-zero weights for at least 50 ms across the entire time course was determined, and 310 

results from this analysis are depicted in Figure 5A.  This change in classifier does not alter the 311 

time course of individuation compared to the original elastic net procedure. 312 

 313 

Electrode Diagnosticity in low category selectivity areas 314 
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Having examined the contributions of high and low face and word selectivity contacts to 315 

exemplar representation, we were then interested in examining whether low face and word 316 

selective sites that demonstrated selectivity for a different category differed in their contributions 317 

to exemplar representation from low face and word selective sites that did not demonstrate any 318 

other category selectivity. The main question here is the extent to which contacts that 319 

demonstrate category selectivity will contribute to exemplar representation for a different 320 

category. Thus in addition to examining high and low category selective contacts, we further 321 

decomposed the low face and word category selective populations into two sub groups: other 322 

category selective (OCS) and not category selective (NCS). Category selectivity was established 323 

with the same method as outlined above, and weights extracted in the same method as above. 324 

The results of this analysis are depicted in Figure 5B and demonstrate that higher (but 325 

comparable) proportions of NCS than OCS electrode contacts survive penalization and 326 

contribute diagnostic information to exemplar classification using L1 regularization. 327 

 328 

Electrode diagnosticity as a continuous function of category selectivity 329 

To provide a non-binary depiction of the activity profiles of electrode contacts during face and 330 

word individuation, we examined the relationships between the time course of electrode weight 331 

magnitude and category selectivity. As a first comparison, peak d’ value from the category 332 

localizer was compared to the latency of peak weight value for each contact. This comparison 333 

was conducted separately for face and word individuation. For clarity, only contacts with peak 334 

weight values greater than 1 standard deviation above mean baseline (pre-stimulus) value were 335 

included. Weight value in this instance, similar to the previous two paragraphs, refers to the 336 

mean weight assigned to each contact for each of the pairwise exemplar comparisons at every 337 
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time point. High and low selectivity contacts (for faces and words, separately) were plotted 338 

together to demonstrate the general transition from early onset of non-zero weights of highly 339 

selective contacts to later onset of low selectivity contacts. The results of this analysis are 340 

depicted in Figure 4. 341 

 342 

Statistical Analyses 343 

For the category localizer with Naïve Bayes classification, row permutation tests on a subject 344 

level were used to establish a d’ threshold for category selective contacts. For each subject within 345 

each permutation, the condition labels for each trial were randomly shuffled and the same 346 

classification procedure as above was used 1000 times for a randomly selected channel in each 347 

electrode montage. The peak d’ value from each permutation was aggregated into a group-level 348 

distribution comprising the null distribution from each permutation for each subject. The d’ value 349 

corresponding to p < .01 was estimated from this histogram and used as a selectivity threshold to 350 

determine high and low selectivity contact populations for each subject. 351 

For face and word individuation as measured with elastic net regularized logistic 352 

regression, row permutation tests were used to establish a significance threshold for 353 

classification accuracy for each subject. For each permutation, a classifier model was optimized 354 

and test condition labels shuffled to test model predictions on randomized data. This procedure 355 

was repeated 1000 times to generate a null distribution. The true classification values and null 356 

distributions for each subject were combined into group-level distributions, and the mean true 357 

classification value and mean null distribution compared to one another. Classification accuracy 358 

was deemed significant at a level of p < .05 with FDR correction (Benjamini-Hochberg 359 

procedure for dependent tests), with a minimum temporal threshold of 3 contiguous significant 360 
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time points. Thus, although different subjects contributed different numbers of contacts to each 361 

classification analysis, all subjects are weighted equally in the group mean depicted in Figure 2.  362 

Onset sensitivity was determined by with 3 metrics examining the individual subject-363 

level statistics. For the first method, the same true classification values and null distributions 364 

from above were compared on an individual level, and the first time point significant at a level of 365 

p < .05 with FDR correction (Benjamini-Hochberg procedure for dependent tests) with a 366 

minimum temporal threshold of 3 contiguous significant time points was used as the onset 367 

marker for each subject. Vectors of onset markers compiled from all subjects were compared 368 

between HFS / LFS, and HWS / LWS electrode populations with paired-sample t-tests. Because 369 

this method is somewhat sensitive to the magnitude of the response (e.g. higher magnitude will 370 

cross the statistical threshold sooner) two other methods for calculating onset that are more 371 

robust to magnitude differences were used as well. 372 

The second onset determination method was adapted from Schrouff et al. (2020): for each 373 

subject, the time course of mean classification values for each classification problem (HFS, LFS, 374 

HWS, and LWS) were normalized to peak classification value, and a sliding window with 50 ms 375 

bins and 10 ms overlap was implemented. Classification average and standard deviation in the 376 

baseline period of -100 to 0 ms was estimated, and the first period with 3 contiguous bins 377 

surpassing the baseline threshold was marked as the signal onset for a given subject’s 378 

classification time course. Vectors of onset markers compiled from all subjects were compared 379 

between HFS / LFS, and HWS / LWS electrode populations with paired-sample t-tests. Schrouff 380 

et al (2020) show that this method for finding onset times is robust to differences in peak 381 

magnitude across comparisons. 382 
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For the third onset determination method, onset sensitivity was measured as the first 3 383 

contiguous time points where classification values for each subject were greater than 25% of the 384 

peak value. Vectors of onset markers compiled from all subjects were compared between HFS / 385 

LFS, and HWS / LWS electrode populations with paired-sample t-tests. While 25% of the peak 386 

value is not necessarily a strict measure of “onset,” it is independent of peak magnitude and 387 

provides a metric of whether any differences in peak time are due to differences in slope or 388 

whether there is differences in onset (e.g. earlier peak times could be due to sharper rising slope 389 

or earlier onset).  390 

 391 

RESULTS 392 

Spatiotemporal dynamics of individuation 393 

Significant face and word individuation was present in and out of HFS and HWS patches (Figure 394 

2), as measured with elastic net regularized logistic regression. Using the first method of onset 395 

calculation, the onset of face individuation occurred 190 ms earlier in HFS patches relative to 396 

LFS patches (t(13)= 3.05, p = 0.009) and peaked 200 ms earlier (t(13) = 2.73, p = 0.017), with a 397 

higher peak in HFS than LFS patches (t(13) = 2.68, p = 0.019). Notably, the difference in the 398 

magnitude of the HFS and LFS response is independent of the difference in peak times, though 399 

onset times can be affected by magnitude differences. Using two other methods of onset 400 

calculation that are more robust to differences in magnitude (Schrouff et al., 2020), above chance 401 

face individuation occurred significantly earlier inside (160 ms, 210 ms) than outside (250 ms, 402 

325 ms) HFS patches (t(13) = 3.6, p = 0.003; t(13) = 3.03, p = 0.0096). 403 

Word individuation began 145 ms earlier in HWS patches relative to LWS patches (t(4) = 404 

3.1, p = 0.036) and peaked 250 ms earlier (t(4) = 3.61, p = 0.022), with a higher peak in HWS 405 
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than LWS patches (t(4) = 2.802, p = 0.048). Using the two other methods of onset calculation 406 

that are more robust to differences in magnitude (Schrouff et al., 2020), above chance face 407 

individuation occurred earlier inside (150 ms, 190 ms) than outside (285 ms, 405 ms) HFS 408 

patches (t(4) = 1.77, p = 0.15; t(4) = 4.31, p = 0.01).  409 

HFS and HWS patches maintained significant sensitivity to individual face and word 410 

representations respectively throughout visual processing (from 130-840 ms and 160-535 ms 411 

respectively, p<0.05 corrected for multiple comparisons), suggesting that these regions 412 

contribute to both early and late visual processing. LFS and LWS reached significance only later 413 

(from 320-800 ms and 285 - 605 ms respectively, p < 0.05 corrected for multiple comparisons), 414 

suggesting that these regions contribute to late visual processing. For both faces and words, the 415 

finding of earlier individuation in high selectivity regions relative to low selectivity regions was 416 

robust across a range of criteria for defining “high” and “low” selectivity (Figure 3). The 417 

robustness of the result demonstrates that illustrating that the differences in timing were not due 418 

to choosing an arbitrary threshold between high and low selectivity. Furthermore, see Figure 4 419 

for a more continuous rather than binary examination of the relationship between selectivity and 420 

timing.  421 

Electrodes were placed based on the clinical needs of the patients and not necessarily 422 

optimally placed for sensitivity to visual information, thus relative effect sizes are likely more 423 

relevant than absolute effect sizes. Peak effect sizes in LFS and LWS patches were relatively 424 

small, but nonetheless more than 1/3 that of the peak effect sizes in HFS and HWS patches. This 425 

suggests that activity in LFS and LWS patches contributed meaningfully to the overall 426 

representation of individual faces and words, albeit less than HFS and HWS patches.  427 

 428 
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Relative contribution of high and low selectivity patches to individuation 429 

The previous results demonstrate that individuation emerges earlier in high selectivity than low 430 

selectivity patches, but leaves the relative contribution of activity in high and low selectivity 431 

patches to the overall individual-level representation unclear. Specifically, two important 432 

questions are outstanding: 1) Is information in category low selectivity patches unique from 433 

information in high selectivity patches? 2) If low selectivity patches contain unique information 434 

that contributes to individuation, is this information present in patches selective to other 435 

categories or patches that show no measured category selectivity, e.g. do word-selective contacts 436 

contribute diagnostic information to face individuation?  437 

Regarding the first question, it is possible that the later, above-chance individuation 438 

accuracy in low selectivity patches is solely due to activity that is highly correlated with activity 439 

from high category-selective patches. If so, this would suggest the information in the low 440 

selectivity patches does not contribute additional information to face or word individuation at the 441 

whole-brain level. To test this hypothesis, sparse classification using L1-regularization and 442 

identical parameters to earlier elastic net procedure except regularization parameter (𝜆) was 443 

performed over all ventral temporal contacts to identify the electrode contacts that provided 444 

information for face or word individuation. If activity between any set of contacts is highly 445 

correlated, L1-regularization should force all contacts in that set to have zero weight, except the 446 

one with the largest amount of discriminating information. Thus, if low selectivity contacts 447 

convey redundant information to that in high selectivity contacts, low selectivity contacts should 448 

be penalized and removed from the model, given that individuation was weaker for low 449 

selectivity compared to high selectivity contacts (Figure 2). However, if low selectivity contacts 450 

do contain unique diagnostic information that contributes to individuation, a certain proportion 451 
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of low selectivity contacts should be assigned non-zero weights. Note that choice of 452 

regularization method (elastic net vs. L1) does not alter the pattern of reported results above. To 453 

address the second question, the above analysis was extended by decomposing the low 454 

selectivity contacts into “other category-selective” and “not category-selective” populations. This 455 

was done by identifying the LFS and LWS contacts that showed high selectivity for any of the 456 

other 5 categories in the localizer and those that did not.  457 

For both face and word individuation tasks, the analysis showed that proportions of both 458 

high selectivity and low selectivity electrode populations contribute diagnostic information 459 

(Figure 5A), though high selectivity patches may contribute more than low selectivity ones. 460 

Second, decomposing the low selectivity contacts showed that in the face individuation task, 461 

regions highly selective for other categories contribute diagnostic information to overall 462 

individuation as well as those that demonstrate low selectivity for all categories (Figure 5B). 463 

These findings demonstrate that in the later time period of significant individuation in low 464 

selectivity contacts, meaningful information that contributed to above chance individuation is 465 

present outside of category-selective areas, distributed even to areas that demonstrate selectivity 466 

for a different visual object category. 467 

 468 

Discussion 469 

The presence of individual-level information in and out of highly category-selective areas at 470 

different latencies suggests a “dynamic domain specificity” model of visual processing. 471 

Specifically, information from a given visual category is first processed primarily in strongly 472 

category-selective patches followed by widespread processing that includes both patches that are 473 

strongly and weakly selective for that stimulus category (Shehzad & McCarthy, 2018) The 474 
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cascade of neural activity during visual perception is characterized by an early, potentially 475 

obligatory, stage of processing in strongly category-selective patches that may guide and gate 476 

information for further processing. Previous studies suggest that this early stage represents a 477 

coarse pass of processing only allowing for differentiation of relatively distinct images (Hirshorn 478 

et al., 2016; Ghuman et al., 2014; Hegdé, 2008). Approximately 150-200 ms later, information 479 

then flows to visual processing patches outside of strongly category-selective patches as well, 480 

including into patches that are selective for other visual categories, either through lateral and 481 

recurrent connectivity or through top-down feedback. Low selectivity patches contribute unique 482 

information to the overall individual-level representation (Figure 5) in the later time period 483 

(Figure 2), albeit somewhat less information than highly selective patches. Thus, low selectivity 484 

patches may help support later visual processing (Hirshorn et al, 2016; Ghuman et al., 2014; Li 485 

et al., 2019) that could contribute to determining subtle distinctions between individual category 486 

members or assist with later processes such as viewpoint or position generalization (Freiwald et 487 

al., 2010). The contribution of low selectivity patches may be particularly important for 488 

perception under challenging conditions, such as occlusion or otherwise degraded conditions. A 489 

recent iEEG showed that there was little difference in the dynamics of high and low selectivity 490 

regions at the category level and that the category-level information in low selectivity regions 491 

was redundant with the information in high selectivity regions (Schrouff et al., 2020). The 492 

current results focusing on individual-level representation suggest that highly category-selective 493 

patches contribute to the neural representation in both early and later processing stages, and low 494 

selectivity patches provide non-redundant information that support later processing stages. 495 

Regarding the spread of high selectivity contacts throughout VTC, our findings are comparable 496 

to the results of other iEEG studies mapping category selectivity which reveal selective contacts 497 
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located on, lateral, and medial to the fusiform gyrus (Kadipasaoglu et al., 2016; Allison et al., 498 

1999) and are not spatially identical to group-averaged categorical topographies as measured 499 

with fMRI.  500 

The proposed dynamic domain specificity hypothesis may reconcile apparent 501 

contradictions between findings that have been used to support domain-specific and distributed 502 

feature map models of visual perception. The profound and frank disturbances to the perception 503 

of stimuli from particular categories seen in the presence of lesions or disruptions to highly 504 

category-selective patches (Puce et al., 1999; Parvizi et al., 2012; Afraz et al., 2006; Farah et al., 505 

1995; Schalk et al., 2017) may emerge due to the perturbation of early and potentially obligatory 506 

activity of these areas during visual processing. The perceptual relevance of later activity in low 507 

selectivity patches is supported by the current evidence that these patches contribute unique 508 

information to face and word individuation (Figure 5). The time of peak individuation in low 509 

selectivity patches occurs when significant individuation is still present in high selectivity 510 

patches and is near the time when key higher-level visual processes such as viewpoint 511 

generalization (Freiwald et al., 2010) and semantic processing (Clarke et al., 2015) occur. 512 

Additionally, single units in the medial temporal lobes show selectivity for individual faces in a 513 

similar later time period and it has been suggested that this time period is critical for linking 514 

perception and memory (Quian Quiroga, 2012; Mormann et al., 2008). Furthermore, this time 515 

window is substantially earlier than behavioral reaction times for comparable individual-level 516 

face and word recognition tasks (Haxby et al., 1999; Seidenberg & McClelland, 1989). The later 517 

information processing in low selectivity patches would also help explain why category 518 

discriminant information is sometimes seen outside of category-selective patches in low 519 

temporal resolution measures such as fMRI (Haxby et al., 2001; Ghuman & Martin, 2019). As 520 
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such, low selectivity patches may play a role in some aspects of individuation, even if that role is 521 

later and more supportive than the central role of strongly selective patches. Causal evidence is 522 

required to test whether activity outside of strongly selective patches contributes to perception; 523 

for example, an alternative explanation of later discrimination in these regions is that it could 524 

reflect a backpropagating learning signal (Rumelhart et al., 1986) rather than perceptual 525 

processing. 526 

While the results here are consistent with the primarily low temporal resolution data that 527 

have been used to support both domain specific and distributed feature map models of VTC 528 

organization, they also help address theoretical aspects of the debate between the models. 529 

Specifically, in distributed feature map models the difference between strongly and weakly 530 

selective parts of VTC is a difference in the degree to which each contributes to perception of 531 

stimuli from a particular category, but these contributions should happen at the same processing 532 

stage. These models would predict that strongly and weakly selective regions should each have 533 

similar timecourses of processing, varying mostly in how much each contributes to the 534 

representation for a particular stimulus class. The result that individual-level representations in 535 

highly selective regions onset and peak 145 - 250 ms earlier than in weakly selective regions 536 

presents a challenge to current instantiations of distributed feature map models. These 537 

differences survive across a range of criteria for selectivity (Figure 3), suggesting there is a 538 

qualitative, not graded, difference in the role that highly selective regions play for processing 539 

stimuli that those regions are selective for relative to the rest of VTC. Thus, continuous feature 540 

map models would need to be modified to accommodate relationships between selectivity and 541 

latency of information processing.  542 
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In the strongest versions of domain specificity models, there is no role for regions of 543 

VTC weakly selective for a particular category of image in perceptual processing for that 544 

stimulus type. However, the results here suggest that these weakly selective regions do 545 

contribute to later visual processing. The dynamic domain specificity hypothesis outlined above 546 

is an attempt to modify traditional models of domain specificity by positing a supportive role for 547 

weakly selective regions that may support later processes and perhaps aid in perception under 548 

challenging perceptual conditions.  549 

The dynamic pattern of results was seen for both faces, with circuitry that putatively 550 

arises from evolutionary and genetic origins, and words, where reading skill must be acquired 551 

fully through experience, suggesting dynamic domain specificity may be a general principle of 552 

cortical organization. Taken together, these results may reconcile the tension between domain-553 

specific versus distributed feature map models of visual object processing by providing evidence 554 

that domain-specific and distributed processing emerge dynamically at different times during the 555 

course of visual perception. 556 

  557 
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690 

Figure 1. Ventral temporal electrode contacts (489 total). Electrode contacts depicted here 691 

include both subdural electrode strips on the surface of the cortex and stereotaxically implanted 692 

depth strips, projected to the nearest surface vertex. A) 426 total contacts from 14 subjects were 693 

divided into 171 high face selectivity and 255 low face selectivity contacts. B) 174 total contacts 694 

from 5 subjects were divided into 113 high word selectivity and 61 low word selectivity contacts. 695 

  696 
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low face selectivity low word selectivity
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Figure 2. Time course of the sensitivity index (d’) for individuation of faces and words. A) HFS 697 

contacts (dark red) demonstrated significant face individuation from 130 ms to 840 ms after 698 

stimulus onset, with peak d’ = 0.37 at 320 ms (p < .05, FDR corrected for multiple dependent 699 

temporal comparisons). LFS contacts (light red) demonstrated significant face individuation 700 

from 320 ms to 800 ms after stimulus onset, with peak d’ = 0.17 at 520 ms (p < .05, FDR 701 

corrected). HFS individuation onset emerged significantly earlier than LFS individuation (190 702 

ms average difference between HFS and LFS onset, p = .009, t(13) = 3.05). Individually, 11 of 703 

the 14 patients demonstrated an earlier onset of significant individuation in HFS than LFS 704 

contacts. B) HWS contacts (dark blue) demonstrated significant word individuation from 160 ms 705 

to 535 ms after stimulus onset, with peak d’ = 0.48 at 235 ms (p < .05, FDR corrected for 706 

dependent tests). LWS contacts (light blue) demonstrated significant word individuation from 707 

285 ms to 605 ms after stimulus onset, with peak d’ = 0.18 at 470 ms (p < .05, FDR corrected).  708 

Word individuation emerged significantly earlier in HWS compared to LWS patches (145 ms 709 

average difference between HWS and LWS onset, p = .036, t(4) = 3.1). Individually, all 5 710 

patients demonstrated an earlier onset of word individuation in HWS compared to LWS contacts. 711 

Shaded bars illustrate standard error of the mean across subjects at each time point 712 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2020. ; https://doi.org/10.1101/2020.11.11.378877doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.11.378877
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32 

Figure 3. Time course of the sensitivity index (d’) for individuation of faces and words at graded 713 

thresholds. Individual face and word classification (as in Figure 3) was repeated with multiple 714 

“high” and low” selectivity thresholds. These thresholds were defined by separating all contacts 715 

into partitions corresponding to the one third, one half, and two-thirds levels of d’ values as 716 

measured with the category localizer. A) Time course of face individuation at thresholds of d’ = 717 

0.61 (LFS  = bottom 1/3 of contacts, HFS = top 2/3 of contacts), d’ = 0.7 (LFS = bottom ½ of 718 

contacts, HFS  = top ½ of contacts), and d’ = 0.82 (LFS = bottom 2/3 of contacts, HFS = top 1/3 719 

of contacts). B) Time course of word individuation at thresholds of d’ = 0.58 (LWS  = bottom 720 

1/3 of contacts, HWS = top 2/3 of contacts), d’ = 0.67 (LWS = bottom ½ of contacts, HWS  = 721 

top ½ of contacts), and d’ = 0.86 (LWS = bottom 2/3 of contacts, HWS = top 1/3 of contacts). 722 
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Figure 4. Relationship between selectivity (d’) and latency of exemplar information. The 723 

selectivity metric was extracted from the category localizer used to define HFS/HWS and 724 

LFS/LWS populations. Exemplar information as measured with peak weight value refers to the 725 

mean weight assigned to each contact for each of the pairwise exemplar comparisons at every 726 

time point for the L1-regularized classifier used for Figure 2. A) Scatter plot depicting latency of 727 

peak weight value for HFS and LFS contacts by peak category selectivity value. For this 728 

depiction, only contacts with peak values  > 1 standard deviation above mean group baseline 729 

weight value were included because in electrodes with little diagnostic signals peak times are 730 

unreliable and mostly random. 20 out of 62 HFS electrodes have peaks and 6 out of 46 LFS 731 

electrodes peak prior to 300 ms. R2 between d’ and peak weight latency = 0.11 (p = 0.006). B) 732 

Scatter plot depicting latency of peak weight value for HWS and LWS contacts by peak category 733 

selectivity value (same thresholding as A). 26 out of 50 HWS electrodes have peaks and 2 out of 734 

15 LWS electrodes peak prior to 300 ms. R2 between d’ and peak weight latency = 0.04 (p = 735 

0.11). This set of results shows that both for word and face processing, more selective electrode 736 

contacts have earlier peak weight latencies than less selective electrode contacts. These data 737 

speak to a relationship between category selectivity and latency of face or word individuation.  738 
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However, the existence of inter-subject variability and weak correlation means we cannot rule 739 

out a graded or binary relationship among electrode contacts based on degree of category 740 

selectivity as some correlation would be expected in either case. 741 
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Figure 5. A) Percent diagnostic electrode contacts in high category-selectivity and low 756 

selectivity populations measured with L1-regularized logistic regression. 58.6% of HFS contacts 757 

from 14 patients (average of 6.2 contacts per subject, SEM = 9%) were assigned non-zero 758 

weights. 42.4% of LFS contacts (average of 4 contacts, SEM = 8.9%) were assigned non-zero 759 

weights on average. 35.2% of HWS contacts from 5 patients (average of 3.2 contacts, SEM = 760 

18%) on average were assigned non-zero weights. 11.4% of LWS contacts (average of 0.9 761 

contacts, SEM = 6.2%) were assigned non-zero weights. B) Within low face selectivity electrode 762 

contacts that demonstrated selectivity for a different object category (F-OCS, other category-763 

selective), 42.5% of the contacts (average of 3 contacts per montage, SEM = 8.7% of contacts) 764 

were assigned non-zero weights. Within low face selectivity contacts that demonstrated no 765 

selectivity for any object categories (F-NCS, not category-selective), 33% of the contacts 766 

(average of 1 contact, SEM = 9.6%) on average were assigned non-zero weights. Within low 767 

word selectivity electrode contacts that demonstrated selectivity for a different object category 768 

(W-OCS), 9.4% of the contacts (average of 0.7 contacts, SEM = 8.1%) were assigned non-zero 769 

weights. Within low word selectivity contacts that demonstrated low selectivity for any other 770 
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object categories (W-NCS), 5% of the contacts (average of 0.2 contacts, SEM 5%) on average 771 

were assigned non-zero weights. 772 
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