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Summary 

 Extra-cellular accumulation of Amyloid-β (Aβ) plaques is causatively associated with 

Alzheimer’s disease (AD). However, mechanisms that mediate the pre-pathological state of 

amyloid plaque formation remain elusive. Here, using paired RNAi and kinase inhibitor 

screens, we discovered that AKT-mediated insulin/nutrient signaling suppresses lysosomal 

clearance of Aβ and promotes amyloid formation. This mechanism is cell-autonomous and 

functions in multiple systems, including iPSC-derived human neurons and in vivo. Nutrient 

signaling regulates amyloid formation via distinct lysosomal functional mechanisms, while 

enhanced amino acid signaling promotes amyloid formation by transcriptionally suppressing 

lysosome biogenesis, and high intracellular cholesterol levels suppress lysosomal clearance of 

amyloid by increasing the number of non-functional lysosomes. The nutrient signaling 

pathway, present in both neurons and microglia, regulates lysosomal clearance of amyloid and 

microglia mediated synapse loss, both in vitro and in vivo. Clinically, older hyperlipidemic 

patients showed less synapse loss through microglia and performed better in cognitive tests. 

Thus, our results reveal a bi-partite cellular quality control system regulated by the insulin-

nutrient signaling that in neurons regulates Aβ peptide clearance and in microglia regulates 

synaptic loss, both processes causally associated with AD. Our results also caution against 

reducing amyloid through such processes as this might also result in synapse loss. 

 

Introduction 

Experimental models and data from Alzheimer’s disease (AD) patients 

demonstrates that Aβ deposition is preceded by pre-pathological mechanisms and 

understanding these would aid in early detection and intervention for AD (Jack et al., 2010; 

Roberts et al., 2017). While early-onset AD is primarily caused by autosomal dominant 

genetic mutations that increase the relative production of the toxic Aβ peptide (Aβ42) 
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(Borchelt et al., 1996; Tanzi and Bertram, 2005; Thinakaran et al., 1996), the molecular 

and cellular basis of late-onset AD (LOAD), which comprises more than 98% AD patients, 

remains elusive. Defective Aβ clearance mechanisms perpetrated across aging are thought 

to contribute to amyloid accumulation (Roberts et al., 2017). 

Sequential processing of the amyloid precursor protein (APP) by β- and γ-

secretases produces Aβ peptides (De Strooper, 2010; Haass and Selkoe, 2007; Tanzi, 

2005). Neurons generate Aβ peptides in endosomes (Grbovic et al., 2003; Rajendran et al., 

2006; Udayar et al., 2013) and secrete them via exosomal and non-exosomal routes 

(Rajendran et al., 2006). Once released, Aβ peptides can be cleared via microglia, via the 

interstitial space to cerebrospinal fluid (CSF) bulk flow, efflux across the blood-brain 

barrier or degradation by enzymes such as insulin degrading enzyme (IDE) and Neprilysin 

(Howell et al., 1995; Iliff et al., 2012; Kress et al., 2014; Leissring et al., 2003; Selkoe, 

2011; Weller et al., 2008). The current model posits that neurons produce and release Aβ, 

whose clearance is largely cell non-autonomous (through microglia, efflux out of the brain 

etc). This raises the question as to why neurons, which possess lysosomal machinery, do 

not clear the-majority of Aβ that they generate. We hypothesized that metabolic conditions 

may activate specific neuronal signaling pathways and inhibit such clearance mechanisms 

and may contribute to the pre-pathological state before Aβ accumulation occurs. In 

addition, we also studied the existence of such clearance mechanisms in microglia and how 

they would affect both amyloid levels and synapse loss and thus increase the risk for 

developing AD.  
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Results 

We previously showed that many of the LOAD risk genes identified by Genome 

Wide Association Studies (GWAS) do not affect the production of Aβ 42/40 peptides (Bali 

et al., 2012; Siegel et al., 2017). Hence we hypothesized that the signaling pathways that 

regulate Aβ clearance could predict late-onset Alzheimer’s Disease (LOAD) susceptibility. 

Cells grown on normal medium produce a large amounts of Aβ, which is a result of both 

production and clearance (Udayar et al., 2013). Aβ is generated in early endosomes (Ben 

Halima et al., 2016; Kinoshita et al., 2003; Koo and Squazzo, 1994; Rajendran et al., 2006; 

Small and Gandy, 2006). While much of the generated Aβ is released from cells, sporadic 

evidence suggests that Aβ can be degraded in lysosomes (Ben Halima et al., 2016; Buggia-

Prevot et al., 2013; Glabe, 2001; Haass et al., 1992; Keilani et al., 2012; Nixon et al., 1992; 

Rajendran et al., 2006; Rajendran et al., 2008; Udayar et al., 2013; Xiao et al., 2015) but 

does not undergo this clearance under certain conditions, which could be one reason for 

the amyloid load seen in LOAD patients. 

 

Replication and validation of Aβ clearance by lysosomes 

To explore Aβ clearance by lysosomes, we took two different approaches; a) to 

reproduce the findings that Aβ can indeed be degraded by lysosomes and b) understanding  

the cellular basis of inefficient lysosomal clearance under basal conditions and that may 

lead to amyloid formation in LOAD. First, we showed that inhibiting lysosomal 

acidification by chloroquine enhanced Aβ levels, confirmed that lysosomal pH and 

function are critical for Aβ clearance (SFigure 1A). Chloroquine treatment increased Aβ 

despite decreasing sAPPβ levels, consistent with the acidic environment required by β-
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secretase to process APP in the amyloidogenic pathway (Ben Halima and Rajendran, 2011; 

Rajendran et al., 2006). Secondly, we blocked endosome-lysosome fusion to prevent Aβ 

clearance through RNAi-mediated silencing Vamp7 and Syntaxin7, two SNARE proteins 

involved in endosome-lysosome fusion. This increased Aβ levels, while sAPPβ remained 

unaltered (SFigure 1B), indicating that Aβ degradation can occur in lysosomes and that it 

requires endosome-lysosome fusion. 

We then tested if increasing lysosome biogenesis would clear Aβ (Parr et al., 2012). 

Transcription factor EB (TFEB) is a master regulator of lysosomal biogenesis (Settembre 

et al., 2011; Settembre et al., 2012), and it is predominantly found in the cytoplasmic 

compartment in its phosphorylated form. Once dephosphorylated, TFEB translocates to the 

nucleus and activates the expression of CLEAR (Coordinated Lysosomal Expression and 

Regulation) genes, which regulate autophagosome-lysosomal biogenesis. We 

overexpressed TFEB in HeLa SweAPP cells to increase lysosomal biogenesis and to 

investigate its effect on Aβ clearance. We found that overexpression of WT TFEB, and of 

a mutant form (TFEB-S211A/ S142A) that results in constitutive localization in the nucleus 

significantly decreased Aβ levels (SFigure 1C, D). However, another mutant form that is 

lacking the nuclear localization signal (TFEB-ΔNLS), failed to significantly alter Aβ levels 

(SFigure 1C) (Roczniak-Ferguson et al., 2012; Settembre et al., 2012). 

We next determined using a different TFEB family member, TFE3, also induces 

lysosome biogenesis via CLEAR gene transcription (Martina et al., 2014) and thus could 

modulate Aβ degradation. We found that TFE3 over expression in HeLa SweAPP cells 

reduced Aβ levels (SFigure 1E). Taken together, these replication data showed that the 
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TFEB/TFE3 transcription factors that mediate lysosome biogenesis also regulate Aβ levels 

in vitro.  

To validate the role of TFEB in vivo, we injected adeno-associated viruses (AAV) 

expressing TFEB or GFP into the cortex of WT mice expressing endogenous levels of APP. 

Brain samples were analysed 10 days later by immunostaining and Western blotting. TFEB 

or GFP expression was robustly induced in the injected regions (SFig.1F). Importantly, 

ectopic expression of TFEB significantly reduced both Aβ40 and Aβ42 levels 

(SFigure1G), consistent with our findings from cultured cells. The levels of LAMP1, a 

lysosomal membrane glycoprotein, and also of Cathepsin D, a lysosomal protease, 

increased in TFEB-injected regions, which suggests a role for TFEB in mediating 

lysosomal biogenesis through the expression of CLEAR genes (SFigure 1H) (Roczniak-

Ferguson et al., 2012; Xiao et al., 2015). We further validated these findings in vitro 

showing that Cathepsin D, but not its heat-inactivated form, degrades Aβ (SFigure 1I). 

Thus, inducing lysosome biogenesis promoted the intracellular clearance of Aβ, both in 

cultured cells and in vivo. Taken together, these results validate the previously published 

work that lysosomes and the lysosomal proteases can, in principle, degrade endosomally-

generated Aβ (Gouras et al., 2005; Xiao et al., 2015; Zhang and Zhao, 2015). However, 

under basal conditions, most of the endosomally generated Aβ seems to be secreted rather 

than degraded in the lysosomes. 

 

Insulin-AKT signaling pathway regulates intraneuronal clearance of Aβ  

To understand why the bulk of Aβ is not intracellularly degraded under basal 

conditions, we sought to identify the signaling mechanisms that could suppress 

intracellular Aβ degradation and modulate its secretion. To this aim, we utilized our paired 
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approach (RNAi and drug screen) to search for candidates that specifically affected Aβ 

levels without altering sAPPβ (Udayar et al., 2013). This approach focused only on the 

factors affecting Aβ levels via modulation of γ-secretase cleavage or via degradation. Since 

kinases play central functions to regulate the nuclear translocation of transcription factors 

involved in lysosomal biogenesis, we systematically silenced all of the 682 kinases in the 

human genome in HeLa-swAPP cells (Rajendran et al., 2008) and assayed the levels of 

secreted sAPPβ and Aβ from the conditioned media (Figure 1A). Silencing core 

components of the amyloidogenic machinery served as positive controls (APP, BACE1, 

PSEN1, PEN2) (Figure 1A). The primary RNAi screen identified key kinases involved in 

the insulin/IGF1/nutrient (IIN) signaling pathway, including AKT1, AKT2, PI3K, FRAP1 

(mTOR), AURKAIP1 and EIF2AK1, that reduced Aβ (Figure 1A; SFigure 2) (Andersen 

et al., 2005; Rogaeva et al., 2007). Knockdown of AKT1 and AKT2 decreased both Aβ40 

and Aβ42 (SFig.3A, B), without affecting sAPPβ levels (Figure 1A). A bioinformatics 

analysis of our screen also identified both the neurotrophin and insulin/IGF-1/nutrient 

signaling (IIN) pathways as top modulators (Figure 1C; SFigure 4A, B). Since the primary 

RNA screen was performed in a non-neuronal but in HeLa swAPP cell, we focused on the 

IIN-AKT signaling pathway with knocking down AKT2, the AKT isoform specifically 

involved in insulin signaling, yielding a greater reduction in Aβ40 (SFigure 3A, SFigure 

5).  

To ensure these results weren’t false positive hits, due to off-target effects, we used 

a complimentary approach: an unbiased screen for kinase chemical inhibitors to determine 

their effect on extracellular Aβ levels using 244 small molecule kinase inhibitors in the 

ECL-multiplexing platform. Consistent with the RNAi screen, this approach identified 

several inhibitors in the IIN-AKT signaling pathway that significantly decreased Aβ levels 
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to a similar extent as the γ-secretase inhibitor DAPT (Figure 1B). The two-independent 

loss of function screens identified IIN-AKT signaling as a regulator of Aβ levels.  

Since late-onset AD is an aging disease and there is evidence that aging modulates 

Aβ levels through alterations in either clearance or production, we investigated possible 

pathways that are enriched during aging (Mawuenyega et al., 2010). We thus analyzed 

human transcriptomics (RNA-seq) from the Genotype-Tissue Expression (GTEx) project 

and determined 2108 genes that showed differential expression (hereafter referred to as 

aging genes). To contextualize the aging genes to human phenotypes, we used gene 

ontology semantic similarity (GOSS) analysis (see supplementary material for details). 

Accordingly, we curated a compendium of human trait-gene associations, comprising 3358 

traits and 7257 genes, from the Genome-Wide Association Study Central, Online 

Mendelian Inheritance in Man (OMIM) and Phenotype-Genotype Integrator (PheGenI) 

databases. The GOSS analysis returned a set of 51 human traits and 152 (unique) genes 

that are significantly similar to the ageing genes based on GO (Gene Ontology) biological 

processes (p < 0.05; see supplementary method). As illustrated in SFigure 4C, the 

Reactome pathway enrichment analysis of the aging-similar genes showed a prominent 

contribution from the IIN-AKT pathways among the 25 most enriched pathways (STable 

1), the same pathway previously identified with using two-independent loss-of-function 

screens for Aβ regulation.  

These independent methods ranging from loss of function screens in human cells 

to human tissue-specific transcriptome during aging implicated the dysregulation of IIN-

AKT axis in the human aging process and possible involvement in Aβ homeostasis. 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 15, 2020. ; https://doi.org/10.1101/2020.11.13.381186doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.381186


 9 

Therefore, we focused on a) validating the role, b) the mechanism of IIN-AKT signaling 

in regulating Aβ levels and c) the relevance for AD. 

As a part of the validation process, we modulated AKT levels to study how it 

affected Aβ. While knockdown or inhibition of AKT decreased Aβ levels, AKT2 

overexpression led to a significant increase in Aβ levels (Figure 1D), ruling out any off-

target effects from the loss-of-function studies. Furthermore, we also found that AKT 

knockdown significantly reduced not only secreted, but also intracellular Aβ levels 

(SFigure 6; SFigure 3A, B), indicating that AKT pathways could be involved in lysosomal 

clearance of Aβ prior to its release into the extracellular space. In addition, we found that 

the levels of APP or BACE1 (SFigure 7), amyloidogenic processing of APP (SFigure 8A, 

B for RNAi) and β-C-terminal fragment (CTF) (SFigure 8A-C) were unaltered by AKT 

knockdown. Since AKT inhibitors could thus be of therapeutic importance to reduce 

amyloid burden, we tested several AKT inhibitors currently in clinical trials for cancer 

therapeutics along with inhibitors of AKT pathway components identified in our screen. 

Remarkably, we found that all these inhibitors reduced Aβ levels (SFigure 9A, B). 

Importantly, AKT inhibition showed a concentration-dependent decrease in Aβ without 

affecting sAPPβ levels (SFigure 9C).  

 

IIN-AKT pathway regulates Aβ levels in neuronal cells, iPSC-derived human neurons 

and in mice  

Next, we examined whether AKT modulation of Aβ levels is conserved across 

different cell types including human neurons. AKT inhibitors reduced levels of Aβ40 and 

Aβ42 in a human neuroblastoma cell line (SH-SY5Y) (SFigure 9D, E) and in primary 
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neurons isolated either from wild-type or from Arc/SweAPP transgenic mice (Figure 1E, 

F). To determine if AKT inhibitors reduce Aβ levels in human neurons, we generated 

neuronal cultures from human induced pluripotent stem cells (iPSC) derived from two AD 

patients and control subjects (SFigure 10A, B; Figure 1G). AKT pathway inhibitors 

significantly decreased Aβ levels without influencing APP processing in human iPSC-

derived neurons from AD and control patients (Figure 1H-J). These data demonstrate that 

Insulin-AKT signaling positively regulates Aβ levels in human neurons.  

Finally, to study the in vivo significance, we crossed Arc/SweAPP transgenic mice, 

which have increased Aβ levels, with AKT2 knockout mice. Aβ levels in both primary 

neurons and brain extracts showed a significant reduction (Figure 1K; SFigure 11) 

consistent with in vitro findings, results which suggest that AKT signaling regulates Aβ 

levels both in vitro and in vivo. 

 

IIN-AKT pathway alters Aβ clearance without affecting Aβ production  

 After demonstrating that the AKT signaling pathway modulates Aβ levels, we 

investigated the mechanism through which this occurs. Given that APP and sAPPβ levels 

were not affected by AKT pathway inhibition (Fig.1A, B) we could rule out an effect on 

APP processing and β-secretase-mediated Aβ production. It was predicted that there are 

two ways through which AKT inhibition could alter Aβ levels - modulating γ-secretase 

cleavage or regulating Aβ clearance. We also excluded that AKT activity affects APP or 

BACE1 levels (SFigure 7), amyloidogenic processing of APP (SFigure 8A, B for RNAi), 

β-C-terminal fragment (CTF) (SFigure 8A, B) or influences γ-secretase activity (SFigure 

8C). These results suggest that AKT inhibition acts independent of Aβ production.  
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Then we focused our attention on how AKT signaling regulated Aβ clearance. While 

extracellular Aβ clearance could occur via Aβ-degrading enzymes, we found no evidence 

that AKT inhibition influenced enzymatic degradation of Aβ (SFigure 12A) nor enhanced 

paracrine uptake and degradation (SFigure 12B). To rule out that the observed decrease in 

Aβ was due to enhanced protein secretion, we quantified the secretion of an unrelated 

protein, secreted alkaline phosphatase (SEAP), upon depletion of AKT1 or AKT2, and 

found no effects (SFigure 12C).  

We found that treatment of cells with insulin, in the presence of nutrients, increased 

intracellular and secreted Aβ levels with no changes in APP, which was mediated by AKT 

(Figure 1L; SFigure 13B, C). Similarly, insulin treatment increased Aβ levels in primary 

mouse neurons (Figure 1M) and iPSC-derived human neurons (Figure 1N) without altering 

APP levels (SFigure 13A). Silencing the major signaling genes in insulin-AKT signaling 

pathway by RNAi (IRS1, IRS2, PI3K, mTOR and RHEB) reduced Aβ levels (Figure 1O, 

P). We also validated the role of insulin-AKT signaling on Aβ levels in vivo by 

stereotactically injecting an AKT inhibitor into the hippocampi of Arc/SweAPP Tg mice. 

We found significantly decreased Aβ levels compared to DMSO-treated controls (Figure 

1Q). It has been shown that insulin delivery in the hippocampal led to increase in ISF Aβ 

levels (Stanley et al., 2016). These results indicate that insulin-AKT signaling positively 

stimulates Aβ accumulation but does not affect γ-secretase-mediated Aβ production, 

extracellular Aβ degradation or overall protein secretion. Thus, we hypothesized that the 

observed Aβ reduction following AKT inhibition could be elicited through enhanced 

intracellular Aβ clearance prior to release, possibly via lysosomes as the peptide is 

generated in endosomes (Edgar et al., 2015; Gouras et al., 2005; Morel et al., 2013; Nixon 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 15, 2020. ; https://doi.org/10.1101/2020.11.13.381186doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.381186


 12 

and Cataldo, 2006; Nixon et al., 2001; Rajendran et al., 2006; Takahashi et al., 2004; 

Tampellini et al., 2007; Udayar et al., 2013). Therefore, we speculated that the insulin-

AKT signaling pathway alters intracellular lysosomal Aβ clearance, which has been 

previously linked but it was never experimentally demonstrated as to why it is not 

functional during basal conditions.   

Since insulin and AKT affect lysosomal clearance of Aβ, we investigated the 

mechanism that links insulin-AKT and lysosomes. Given the role of TFEB to mediate Aβ 

clearance via lysosomes (SFigure 1D-G), we hypothesized that mTOR activation by 

insulin-AKT signaling regulates Aβ levels via TFEB phosphorylation and cytosolic 

retention to prevent lysosome biogenesis. TFEB phosphorylation is dependent on mTOR 

complex 1 (mTORC1), which is primarily localized to the lysosomal/late endosomal 

membrane (Puertollano et al., 2018; Roczniak-Ferguson et al., 2012). However, in the 

absence of insulin/nutrient signaling, mTOR is inhibited by TSC2 (Demetriades et al., 

2014; Menon et al., 2014), an AKT substrate, that prevents its localization at the lysosomal 

membrane. Insulin-AKT signaling triggered TSC2 phosphorylation (Figure 2A), which 

displaces it from the lysosomal surface (Figure 2B). This displacement increases mTOR 

localization on the lysosomal membrane (SFigure 14A), and its activation, as confirmed 

by phosphorylation of known mTOR substrates S6K and 4EBP (Figure 2C).  

 Inhibition of insulin-AKT signaling significantly reduced TFEB phosphorylation 

(SFigure 14B), promoted nuclear localization of TFEB-GFP (SFigure 14C) and induced 

lysosome biogenesis, as confirmed by electron microscopy, confocal imaging and bright 

field imaging analysis (Figure 2D-F), with such increases possibly explaining previously 

described reduction in Aβ levels (SFigure 3A, B; SFigure 9A, B). Importantly, AKT 

inhibition induced lysosomal biogenesis and increased CLEAR gene expression in primary 
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neurons (SFigure 15). Based on our data, we propose that insulin-AKT signaling positively 

regulates mTOR activation in a TSC2-dependent manner, which suppresses TFEB-

mediated transcription of lysosomal biogenesis genes. This suppression of lysosome 

biogenesis results in decreased clearance of Aβ.  

 

Mathematical modelling the roles of insulin and nutrients on amyloid formation 

Under active insulin/nutrient (amino acids) signaling conditions, cells induce 

protein synthesis and suppress degradative mechanisms, such as lysosomal and autophagic 

clearance with previous studies demonstrating that IIN signaling inhibits autophagy 

(Blommaart et al., 1995a; Blommaart et al., 1995b; Kim et al., 2011).  Our results now 

show that this signaling also inhibits lysosomal biogenesis without significantly 

modulating proteasomal degradation, the other major cellular degradative pathway (Zhang 

et al., 2014) (SFigure 16A). We hypothesized then, that insulin-AKT signaling would 

inhibit both lysosomal and autophagosomal function and stimulate protein translation to 

increase protein load. The net intracellular protein concentration, where amyloid-prone 

proteins like Aβ likely aggregate, should reflect this increase (SFigure 16B). This implies 

that limiting insulin or nutrient intake should enhance lysosomal clearance of amyloid and 

that while early-onset AD mutations would increase the production of aggregation-prone 

amyloidogenic Aβ species, amyloid accumulation in late-onset AD could occur by 

modulating IIN-AKT signalling (hereafter termed IIN for Insulin-IGF1-Nutrient) or 

nutrient signalling. 

While we understand how mutations in APP and Presenilins could enhance amyloid 

load in Alzheimer’s patients, we examined how IIN signaling affects amyloid formation as 

a putative mechanism active in late-onset AD. We developed a mathematical model to 
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predict the effect of IIN signaling and nutrient overload or nutrient limitation (fasting) on 

amyloid levels. In this model, we incorporate protein turnover, amino acid transport across 

the cell membrane and Aβ monomer aggregation based on the mass balance of amino acids, 

proteins and protein aggregates (Figure 2G) (see Supplementary Material for more details). 

We estimated protein turnover kinetics by model fitting and adapted protein aggregation 

kinetics from a previous model of Aβ aggregation (Meisl et al., 2014) (Figure 2H). We 

assumed that Aβ monomer synthesis constitutes a fraction (10−6) of total protein synthesis, 

and degradation of protein aggregate is less efficient than proteins by a factor of 10. IIN 

signaling regulates the balance between protein production and degradation, with higher 

IIN signaling favouring protein synthesis.  

Using this model, we investigated the effects of higher insulin and nutrient levels 

and caloric restriction (starvation) on the concentrations of protein (P), Aβ monomers (m), 

the number (nPa) and mass (Pa) concentration of protein aggregates. As shown in SFigure 

16C, increased nutrition and insulin significantly increased protein concentration, 

including protein monomers, and increased protein aggregate number and size (average 

size ~ Pa/nPa). Caloric restriction caused the opposite, albeit weaker effects, with lowered 

protein concentration and aggregate formation being determined. We also studied 

mutations that increase the rates of aggregate formation and growth (Chiti et al., 2003). As 

shown in Figure 2H, mutant Aβ aggregated rapidly, reaching a plateau when monomer 

concentration limited new aggregate formation. This mutation did not affect the 

degradation kinetics of Aβ aggregates, so the effects of caloric restriction closely followed 

those of wild-type proteins. This model demonstrates that caloric restriction benefits both 

autosomal dominant and late-onset AD. Our mathematical model predicts that positive 
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insulin/nutrient signaling could promote amyloid formation and that limiting this signaling 

could reduce amyloid load.  

 

Experimental evidence for the roles of insulin and nutrients (amino acids) on amyloid 

formation 

Next, we experimentally tested the prediction that insulin/nutrient signaling induces 

amyloid formation by inhibiting lysosome biogenesis. We treated cells with or without an 

AKT inhibitor in the presence of insulin and amino acids and probed the aggregates using 

Thioflavin S (ThioS), a dye routinely used to detect amyloid through binding to its β-sheets, 

not just Aβ but all aggregates that are amyloid in nature. After optimizing our ThioS 

parameters, we demonstrated that ThioS detects intracellular amyloids (Figure 2I). Similar 

to our earlier results, cells treated with insulin contained lower levels of lysosomes but also 

showed higher amyloid levels (ThioS puncta). However, cells treated with an AKT 

pathway inhibitor had higher lysosome levels and lower amyloid levels (Figure 2I, J). We 

further evaluated the major constituents in IIN signaling mechanisms by RNAi (IRS1, 

IRS2, PI3K, mTOR and RHEB). Silencing of these genes also induced lysosome 

biogenesis and reduced Aβ levels and ThioS-positive amyloid puncta (Figure 1O, P; 2K). 

These results clearly demonstrate that positive IIN signaling decreases lysosome levels and 

promotes amyloid formation.  

We then tested whether inhibition of insulin signaling and amino acid starvation 

increased lysosome levels, and whether this resulted in decreased amyloid load. We 

restricted cells of either all amino acids or methionine, an essential amino acid linked to 

longevity (Orentreich et al., 1993; Richie et al., 1994). We found that amino acid restriction 

increased lysosome levels and reduced amyloid load (Figure 2L). Restriction of even a 
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single amino acid constituent, such as methionine, significantly increased lysosome levels 

and decreased Aβ and global amyloid content levels (Figure 2L, M). In addition, our results 

suggest methionine restriction has a distinct, beneficial effect in the clearance of Aβ and 

amyloid by enhancing lysosome levels. Caloric restriction, including amino acid restriction 

has been shown to regulate aging and increase lifespan in model organisms. Our results 

here imply an additional, important role for amino acids in amyloid formation in LOAD. 

 

Cholesterol regulates lysosomal clearance of amyloid 

Lipids represent another major component in nutrition. Cholesterol, a major lipid 

in the diet, is a risk factor for late-onset AD (Burns and Duff, 2002; Kivipelto and Solomon, 

2006). Cholesterol influences production of Aβ by increasing APP and BACE interaction 

in lipid rafts and removal of cholesterol decreased Aβ production (Ehehalt et al., 2003; 

Fassbender et al., 2001). Another study also showed that the enzyme Acyl-coenzyme A-

cholesterol acyltransferase, which catalyzes the production of cholesteryl-ester levels 

regulates Aβ production (Di Paolo and Kim, 2011; Puglielli et al., 2001). Recent studies 

demonstrate that lysosomal cholesterol can increase protein synthesis via activating 

mTORC1, a master regulator of cell growth (Castellano et al., 2017). Because of our 

findings that Aβ peptides can also be cleared in the lysosomal compartment, we 

hypothesized that altered cholesterol levels would also modulate lysosomal clearance of 

amyloid, in addition to regulating Aβ production.  

After loading cells with exogenous cholesterol, surprisingly, an increase, rather 

than a decrease, in LysoTracker levels was observed (Figure 3A). While higher amino acid 

levels suppressed lysosomes, higher levels of cholesterol increased the number of 

LysoTracker positive vesicles. Comparatively, decreasing cholesterol levels by methyl-β-
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cyclodextrin (MBC) reduced LysoTracker levels. Given this unexpected result, we used 

another cellular model to validate these findings. Using cells devoid of NPC1 or cells with 

silenced NPC1 genes, we observed increased intracellular cholesterol levels and again, a 

higher number of LysoTracker-positive structures following NPC1 protein depletion 

(Figure 3B). Based on our previous findings, we predicted that the increase in LysoTracker-

positive lysosomes would result in more efficient clearance, thus leading to reduced Aβ 

levels. However, we found higher lysosomal structures accompanied with higher ThioS 

and intracellular Aβ levels in cholesterol treated cells (Figure 3C, D, I) suggesting that 

these are most likely defective in clearing amyloid.  These results, as such, demonstrate 

that high cholesterol levels induce more non-functional lysosomes to elicit higher amyloid 

levels.  

Previously, we showed that inhibition of the IIN signaling pathway decreases ThioS 

positive amyloid by increasing lysosome abundance. Upon inhibition of IIN signaling in 

wild-type cells, we found an increase in LysoTracker positive structures and reduced ThioS 

positive puncta (SFigure 17A, B). However, in NPC1 null cells, IIN inhibition not only 

increased LysoTracker levels but also increased ThioS puncta indicating that these cells 

failed to clear the protein aggregates despite increased lysosome biogenesis. Expression of 

human NPC1 in the NPC1 null cells rescued this effect. As positive controls, we examined 

cholesterol levels and observed increased accumulation of cholesterol in NPC1 null cells 

that positively correlated with higher amyloid levels (SFigure 17C). This suggests that 

increased LysoTracker staining in the NPC1 null cells state reflected an increase in the 

abundance of non-functional lysosomes.  

To determine the cause for increased non-functional lysosomes in the presence of 

higher intracellular cholesterol; we speculated that high intracellular cholesterol could 
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impair lysosome function. Recent studies demonstrated that higher cholesterol levels can 

affect the fusion of autophagosome/late endosome with lysosome (Fader et al., 2009; Fraldi 

et al., 2010; Furuta et al., 2010). Since this fusion is crucial for trafficking of proteolytic 

enzymes, such as Cathepsins to lysosomes and are required for lysosomal proteolytic 

activity (Maruzs et al., 2015), we hypothesized that high cholesterol compromised 

lysosomal function by decreasing the sorting of lysosomal active enzymes. We thus tested 

whether high cholesterol would affect autophagosome-lysosome degradation (SFigure 

18A) in NPC1 null cells, as demonstrated by accumulation of LC3-II. Indeed, we observed 

accumulation of LC3-II as well as defective degradation of p62, the cargo of 

autophagosomal-lysosomal degradation (SFigure 18A). These findings were then validated 

in vivo using mice have spontaneous mutation, which prevents NPC1 production (these 

mice hereafter termed as NPC1 KO mice). For more details, see at the supplementary 

method. Similar to cellular findings, we observed a significant age dependent accumulation 

of LC3-II and p62 in the NPC1 KO mice brain, whereas wild-type brains did not show any 

gross differences in p62 and LC3-II levels (Figure 3E). Results which indicate impaired 

autophagosome fusion with lysosomes in NPC1 KO mice. Consistent with these results, 

we observed significantly higher LAMP2 levels in NPC KO mice compared to wild-type 

mice, indicating higher lysosomal levels in NPC1 KO mice (Figure 3E). These findings 

were further validated by immunohistochemistry analysis of LAMP2 and p62 levels. We 

found significantly increased in LAMP2 and P62 in the cortex of NPC1 KO mice compared 

to WT control (Figure 3F, G).  

As we observed impaired autophagy in NPC1 KO mice consistent with our in vitro 

findings, along with increased lysosomal markers, we decided to analyze amyloid level in 

NPC1 KO mice. We saw increased ThioS positive signal in the cortex and hippocampus 
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of NPC1 KO mice compared to WT mice (Figure 3H), findings consistent with our in vitro 

studies (Figure 3A-D) thus suggesting defective autophagosomal and lysosomal clearance 

in NPC1 KO mice. Since we observed significant impaired autophagosome fusion with 

lysosomes, we examined whether high intracellular cholesterol in NPC1 knockdown cells 

resulted in defective cathepsin maturation and sorting to lysosomes. We found inadequate 

sorting of Cathepsin D to lysosome, as confirmed by higher pro-Cathepsin D levels 

(SFigure 18B) and lower Cathepsin B and Cathepsin D activity in NPC1 null cells (Figure 

3J-L). In agreement with defective lysosomal proteolytic function, these cells exhibited 

increased total amyloid load and decreased degradation of the endosomal cargo, EGF 

despite of more uptake (Figure 3M). These results demonstrate that high intracellular 

cholesterol levels impair lysosomal proteolysis, which promotes amyloid formation. 

 

Nutrient limitation reduces Aβ and amyloid levels in a cellular model 

Since over-nutrition and high insulin levels are linked to neurodegenerative 

diseases (Crane et al., 2013; Fewlass et al., 2004) and caloric restriction may be protective 

(Longo and Mattson, 2014; Mattson, 2003; Tajes et al., 2010), we examined how caloric 

restriction affects lysosome biogenesis and amyloid formation. We simulated fasting 

caloric restriction regimens in cell culture through adjusting serum and nutrient 

concentrations and compared against standard nutrition conditions, parameters which 

contrast cell culture protocols which provide constant insulin and nutrients. We found that 

cells cultured under periodic or chronic fasting conditions displayed increased lysosome 

biogenesis and reduced amyloid formation relative to those cultured using over-nutrition 

conditions (Figure 4A). Consistent with these data in cellular conditions, WT mice 

subjected to a 7 days periodic fasting regimen displayed reduced Aβ levels in cortex 
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(Figure 4B).  These results highlight the importance of nutrient limitation to reduce amyloid 

levels. 

 

In aged AD animal models, time restricted fasting leads to reduced Aβ and amyloid 

levels, but also to synapse loss 

 Through a series of experiments, we showed that insulin/amino acid signaling 

promotes amyloid formation by transcriptionally suppressing lysosome biogenesis and that 

high intracellular cholesterol levels suppress lysosomal clearance of amyloid by increasing 

the number of non-functional lysosomes. In addition, nutrient limitation enhanced amyloid 

clearance in our cellular model. Therefore, we then tested the effect of fasting in vivo using 

APP transgenic mouse model. Time restricted feeding in 12 months old APP transgenic 

mice led to increased lysosomal markers, indicating enhanced lysosomal levels (Figure 

4F). Similarly, to our in vitro results, we observed that fasting led to reductions in amyloid 

levels (Figure 4C-E). However, we found a surprising effect upon fasting regimens as time 

restricted feeding also led to the reduction of synaptic markers in cortex and dendritic spine 

in motor/somatosensory cortex (Figure 4G-I). 

 

Nutrient limitation enhances phagocytic activity of microglia 

Heretofore, we demonstrated that nutrient limitation reduces amyloid load, but may 

exacerbate synaptic loss, which would be an undesired outcome for AD management. 

Moreover, it challenges the amyloid-centric model of AD. We previously showed that 

increased lysosomal levels after depletion of TDP-43 protein in microglia enhanced 

amyloid clearance and increased synaptic pruning in an AD mouse (Paolicelli et al., 2017). 

Microglia, being the main phagocytic cells in the brain, play a crucial role in Aβ  clearance. 
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To investigate how IIN-signaling could affect amyloid clearance and synapse loss through 

microglia and to complement our in vivo observations, we used the BV2 mouse microglia 

cell line and treated the cells with the AKT-pathway inhibitor or Torin-1, a general mTOR 

inhibitor, whilst also serum starving the cells. After treatment BV2 cells were incubated 

with conditioned medium from HeLa swAPP cells containing human Aβ for 12h and an 

Aβ uptake assay was performed as described in SFigure 19 by measuring the residual Aβ 

in the supernatant. Upon inhibition of IIN and under starvation conditions, we observed a 

marked increase in Aβ uptake (Figure 4J) measured through both the ECL and fluorescent 

Aβ uptake imaging assays (Figure 4K).      

We then tested whether inhibition of IIN signaling pathway would alter 

synaptosome uptake in the cells. To this end, BV2 microglia cells were treated with the 

Torin-1 or were serum starved, followed by incubation with medium containing 

synaptosomes isolated from CamKIIcre Tg/+;Rosa26-floxedStopTdTomato mice. 

Interestingly, we observed increased synaptosome uptake upon inhibition of insulin 

signaling pathway and under starvation conditions (Figure 4L), demonstrating that 

inhibition of the IIN signaling pathway not only increases Aβ uptake but also increases 

synaptosomes uptake in microglia. These in vitro data complement the data from our in 

vivo experiments with nutrient deprivation in older animals. 

 

Age dependent effect of insulin and nutrient signaling on AD patients 

Here we describe a positive role for IIN signaling in the regulation of amyloid 

formation, thereby increasing the risk for developing AD. Although a paradoxical role for 

insulin is observed in late-stage AD patients (Cohen and Dillin, 2008; Steculorum et al., 

2014), our results suggest that insulin-induced impaired clearance of amyloid can 
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contribute to synaptic dysfunction in the early stages of late-onset AD. In the late-stages in 

aging, insulin resistance could contribute to higher catabolic activity in both neurons and 

microglia that produce synaptic/neuronal atrophy, which further contributes to cognitive 

impairment (Craft and Watson, 2004; Steculorum et al., 2014). Diabetes, hyperinsulinemia 

and obesity are linked to a higher incidence of AD (Candeias et al., 2012; Duarte et al., 

2012; Moreira, 2012), but it is unresolved whether mid-life or late-life symptoms most 

contribute to AD development. The first symptoms of late-onset AD manifest after almost 

30 years. Excessive insulin signaling during these early stages could promote increased 

amyloid levels by impairing intracellular clearance to induce synaptic dysfunction (Jack et 

al., 2010; Villemagne et al., 2013). In the later stages, higher levels of insulin/nutrients 

could actually slow synaptic deterioration and promote a protective role in synapse 

strength.  

To test whether the hypothesis, that nutrient levels could affect microglia mediated 

synapse loss in human with AD clinical pathology, we examined cohorts with 

hyperlipidemia for this study as cohorts with dysregulated amino acid levels were 

unavailable. Type 2 diabetes (T2D), which was previously linked to increased AD onset 

risk, was used as a control. Hyperlipidemia is a condition with higher than normal levels 

of blood cholesterol and triglycerides, and thus is a surrogate marker for higher levels of 

lipids in the body. Firstly, we observed higher synaptic particles ingested inside microglia 

from AD patients compared to age-matched control in post-mortem superior temporal lobe, 

as confirmed by higher co-localization of CD68 and Synapsin1 (Figure 5A, B). We further 

sub-categorized the cohort based on patients with hyperlipidemia and T2D. We observed 

reduced internal synaptic particles in microglia in hyperlipidemia conditions compared to 

those with hypolipidemia, which indicates hyperlipidemia has a protective effect against 
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microglia mediated synapse loss (Figure 5A-C, SFigure 20A, B).  To test whether T2D and 

hyperlipidemia have age dependent effect on AD progression, we compared disease 

progression in AD patients with T2D, hyperlipidemia and a BMI >25 to AD patients 

without T2D, hyperlipidemia or a BMI <25, respectively. To account for developing these 

conditions in mid- versus late-life, we divided the AD cohort into three age groups based 

on the onset of cognitive symptoms: before 65 years, between 65 to 75 years and after 75 

years. The presence of either T2D or hyperlipidemia significantly increased disease 

progression measured by yearly decline in mini mental state exam (MMSE) scores in the 

patients whose cognitive symptoms began before 65 years of age. Similarly, patients who 

had an onset of cognitive symptoms before 65 years and had a BMI >25 showed a trend 

(p<0.1) towards faster cognitive deterioration. These results are consistent with previous 

reports on how mid-life diabetes, obesity and hyperlipidemia contribute to higher risk for 

AD and dementia (Kivipelto et al., 2005; Meyer et al., 2000; Profenno et al., 2010; Xu et 

al., 2010). These effects were reversed, however, in hyperlipidemic conditions in the older 

AD patients. Indeed, hyperlipidemia was significantly associated with a slower decline of 

MMSE in AD patients with an onset of cognitive symptoms after 75 years of age. In T2D 

patients, or with a BMI>25, older than aged 65, we observed non-significant associations 

with progression of cognitive impairment (Figure 5D).  Together, these results indicate that 

although higher insulin and nutrient signaling increases the risk of AD in humans by 

increasing amyloid load, it could be protective for the age group >75 by mitigating 

microglia mediated synapse loss. 
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Discussion 

In this study, we reveal a bi-partite cellular quality control system regulated by the 

insulin-nutrient signaling that regulates Aβ peptide clearance through the lysosomal 

pathway in neurons while also regulating microglia-dependent synapse loss. These findings 

are important as both processes are causally associated with AD. We also demonstrate that 

neuronal lysosomes can clear Aβ peptides, which is regulated by IIN signaling. This 

previously uncharacterized clearance mechanism provides additional neuronal Aβ 

clearance through non-cell autonomous mechanisms via microglia (Chung et al., 1999), 

interstitial fluid to CSF bulk flow, efflux through blood brain barrier (Bell et al., 2009; 

Shibata et al., 2000) and enzymatic degradation (Iwata et al., 2000; Qiu et al., 1998). 

Exploiting this new intracellular clearance mechanism will provide an additional 

therapeutic target in AD, particularly for late-onset AD patients who do not express 

mutations linked to APP processing and Aβ production.  

Unlike familial AD, hyperinsulinemia and diabetes are additional risk factors for 

late onset AD (Candeias et al., 2012; Duarte et al., 2012; Moreira, 2012), which may 

develop due to associated impairments with Aβ clearance (Candeias et al., 2012; Duarte et 

al., 2012; Moreira, 2012). We also demonstrate that high insulin/nutrient levels, in 

particular amino acid levels, activate AKT signaling, which inhibits lysosome biogenesis 

and lysosomal clearance of Aβ and amyloid proteins (summary in SFigure 21). This 

reduced intracellular clearance of Aβ facilitates an increase in amyloid load and risk for 

developing AD.  

In addition to insulin and amino acids, we also demonstrate a possible mechanism 

through which higher cellular cholesterol alters lysosomal clearance of amyloid. While 

amino acids influence lysosomal clearance through lysosome biogenesis involving 
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transcription, high cholesterol levels impair the proteolytic activity of lysosomes. 

Excessive cholesterol accumulation in late-endosomes and lysosomes can impair SNARE 

function (Fraldi et al., 2010). SNARE function is critical to fuse autophagosomes to 

lysosomes (Fader et al., 2009; Furuta et al., 2010). This impairment demonstrates why 

higher cholesterol levels are a risk factor for impaired autophagy. Autophagosomes clear 

cytosolic protein aggregates for lysosome degradation (Barbero-Camps et al., 2018). 

Impaired autophagosome-lysosome fusion will promote the accumulation of cytosolic 

protein aggregates, similar to previous studies that established a link between impaired 

autophagy and Parkinson’s disease (PD) (Cuervo et al., 2004). Our study, then, provides a 

possible explanation for why high dietary cholesterol intake increases the risk for PD (de 

Lau et al., 2006; Hu et al., 2008; Powers et al., 2009). 

Several epidemiological studies suggest high cholesterol levels are a risk factor for 

AD (Burns and Duff, 2002; Kivipelto and Solomon, 2006). A high cholesterol environment 

alters APP processing (Burns et al., 2003; Runz et al., 2002; Simons et al., 1998; Wahrle 

et al., 2002), leading to increased production of the Aβ peptide (Simons et al., 1998).  While  

cholesterol increases the production of the Aβ peptide, we also show that cholesterol 

compromises Aβ clearance through lysosomal dysfunction, a result supported by evidence 

that cholesterol-reducing agents (statins) can protect against AD (Fassbender et al., 2001). 

A recent report lends further validation to our study showing that high brain cholesterol 

enhanced autophagosome formation but disrupted its fusion with endosomal-lysosomal 

vesicles(Barbero-Camps et al., 2018). Furthermore, our results have important implications 

for nutrient and brain cholesterol levels and the risk of elevated production of amyloid and 

developing Alzheimer’s disease. Our results, then, indicate that lifestyle changes are 

essential for healthy aging and reducing disease risk factors. 
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Our results also further suggest that excessive insulin signaling from over-nutrition 

could contribute to the development of late-onset AD. Overlaying global maps for per 

capita food intake with AD incidence is strikingly correlated. AD correlates with obesity, 

diabetes and elevated blood sugar (Crane et al., 2013; Ott et al., 1999). If excessive IIN 

signaling does contribute to late-onset AD initiation, then lifestyle changes with reduced 

food intake, caloric restriction or periodic fasting could be preventative (Brandhorst et al., 

2015; Longo and Mattson, 2014; Mattson, 2003, 2004; Mattson et al., 2014). For example, 

intermittent fasting and energy consumption through exercise could reduce INS signaling 

and protect against AD. Although a paradoxical role for insulin signaling exists in late-

stage AD patients (Cohen and Dillin, 2008; Steculorum et al., 2014), we postulate that 

insulin-induced impairments in amyloid clearance contribute to amyloid accumulation in 

early, preclinical stages of late-onset AD.  Once amyloid oligomers form, our results imply 

they could bind to insulin receptors to confer insulin resistance at later stages (De Felice, 

2013). An alternative explanation would be that our bodies enter a catabolism-dominant 

phase during the later stages of aging, due to anorexia and frailty, wherein a positive IIN 

signaling could contribute to less atrophy due to inhibition of autophagy and lysosomal 

proteolysis.  

An interesting, unanticipated result from our study is the finding that insulin and 

nutrient signaling regulates Aβ levels by negatively modulating lysosomal clearance in 

neurons, but in microglia, the same pathway controls Aβ phagocytosis and synapse loss. 

Time restricted feeding in older AD mice resulted in synapse loss despite an increased in 

Aβ clearance. This is similar to our previously published observations in microglial TDP-

43 depleted mice, which demonstrated enhanced synapse loss despite effective amyloid 

clearance (Paolicelli et al., 2017). Because of these results, a key question arises: Is fasting 
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or caloric restriction protective against AD even if it were to enhance synapse loss in the 

older patients? If so, is there a time window when fasting might be beneficial and a phase 

where it might not. Our clinical data indicate that T2D and hyperlipidemia increase the risk 

of dementia in the age group below 70 (Figure 5B-D). However, hyperlipidemia could be 

protective above 75 years of age against cognitive loss as higher nutrient levels could 

suppress microglial phagocytosis of synapses (Jawaid et al., 2018). 

 It is tempting to postulate a biphasic role for insulin and nutrient signaling during 

the development of AD pathology- the first controlling amyloid clearance and the later 

controlling synaptic loss, which contribute to dementia.  In mid-life, where anabolic and 

catabolic processes needed to be kept in equilibrium, excess insulin and nutrient signaling 

on the one-hand could promote Aβ load in neurons by suppressing neuronal lysosomal 

clearance, and also microglial Aβ uptake and clearance. Together it leads to amyloid 

accumulation and this increases the risk of dementia. However, at the age above 75, due to 

anorexia of aging, catabolic activity increases, with enhanced lysosomal enzymes levels 

and activity (Verdugo and Ray, 1997). Increased lysosomal activity due to suppression of 

IIN signaling in microglia leads to higher synaptic pruning which could contribute to a 

progressive deterioration in cognitive function. This indicates that high insulin and 

increased nutrient signaling above age 75 could suppress microglia mediated synapse loss. 

From these results, we would hypothesize that two things. First, that amyloid reducing 

therapies should target the mid-life, amyloid phase prior to when synapse loss occurs and 

synapse stabilizing therapies should be developed to target the synaptic phase. Second, that 

depending on the metabolic state of the individual, fasting or caloric restriction in the mid-

life phase and nutrient-rich intake in the old age phase to offset the catabolic dominance in 

this phase would be protective against AD.  
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Figure Legends 
 
Figure 1: A paired RNAi and small molecule inhibitor screen of kinases using a 
multiplexing assay platform identify AKT as a positive regulator of Aβ levels  
A. Graphical Z-scores (Y-axis) of the effects on sAPPβ and Aβ levels from the siRNA kinases 
screen. X-axis represents total number of kinases targeted by siRNA. Assay controls are 
indicated in green. B. Graphs showing Z-scores (Y-axis) of the effects on sAPPβ and Aβ levels 
from the kinase inhibitor/ drug screen. X-axis represents total number of inhibitors targeting 
various kinases. Z-Score for the screens is calculated using the formula: Z = (x - µ) / σ. Z= Z-
score, x=Average value of individual sample point, µ= mean of the population, σ= Standard 
deviation of the population. C. Bioinformatics analysis of siRNA screen hits identifies various 
signalling networks. Insulin/nutrient signalling pathway is shown as one of the top clusters. D. 
HeLa-sweAPP cells transfected with a plasmid resulting in overexpression of AKT2 and 
assayed for Aβ levels. pcDNA was used as a negative control ***p<.0005. Transfection was 
confirmed by probing cells with AKT2 specific antibody with GAPDH being used as a loading 
control. E. Primary cortical neurons isolated from wild type mice treated with AKT inhibitor 
and assayed for Aβ levels. DMSO was used as a negative control, ***p<.005 (Error bars 
indicate SEM). F. Primary cortical neurons isolated from Arc/sweAPP Tg mice treated with 
AKT inhibitor and assayed for Aβ (black) and sAPPβ (grey) levels. DMSO was used as a 
negative control, DAPT and C3 treatment were used as positive controls ***p<.0005. G, H. 
Human iPSC-derived neurons treated with various AKT pathway inhibitors and analyzed for 
Aβ levels. DMSO was used as a negative control, DAPT treatment was used as positive control. 
**p<.005, ***<.0005. The accompanying immunofluorescence images demonstrate that iPSC-
derived differentiated neuronal cultures mainly consist of neurons expressing MAP2ab and 
beta-III-tubulin (SFig.10). Expression of AD relevant proteins such as Tau, APP and 
Presenilin-1 were probed using indicated antibodies. I, J. Human iPSC-derived neurons from 
AD patients treated with AKT pathway inhibitors and analyzed for Aβ40 and Aβ42 levels (I) 
or probed with anti APP antibody (J). DMSO was used as a negative control. GAPDH was 
used as a loading control. *p<.05, **<.005. K. Primary neurons isolated from AKT2-/- x 
Arc/sweAPP Tg mice and AKT2+/+ x Arc/sweAPP Tg mice assayed for Aβ levels (black 
bars). *p<.05. L. HeLa-sweAPP cells serum deprived treated with insulin in the presence or 
absence of AKT inhibitor and assayed for Aβ levels*p<.05,** <.005,***<.0005. M. Primary 
cortical neurons isolated from wt mice treated with insulin and assayed for Aβ (black) 
levels,**p <.005. No insulin treatment was used as a negative control. N. Human iPSC-derived 
neurons from AD patients treated with insulin and analyzed for Aβ40 and Aβ42 levels. 
*p<.05,** <.005,***<.0005. O, P. Cells were assayed for Aβ levels upon knock down of 
various components of insulin signaling pathway (O). Error bars indicate S.D. Western blot 
analysis of insulin signaling components performed in Hela-sweAPP cells. GAPDH was used 
as loading control (P) **p<.005, ***p<.0005. Q. 3-4 month old transgenic Arc/swe APP Tg 
mice were stereotaxically injected with 2μl of DMSO (control), AKT inhibitor, or Rapamycin 
into each hippocampus and assayed for Aβ levels. 
 
 
Figure 2: AKT inhibition decreases Aβ levels through mTOR-TFEB mediated induction 
of lysosomal/autophagosomal biogenesis. Increase of Lysosomal levels due to fasting, 
starvation or blocking IIN pathway leads to decrease of protein aggregates.  
 A, B, C. HEK293 cells were serum starved for 10 h followed by amino acid starvation for 1h. 
Cells were then treated with AKT pathway inhibitor (10 µM) for 2.5 h. For insulin treatment, 
cells were pretreated (2h) with an AKT pathway inhibitor and then stimulated with insulin (1 
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µM) along with/without AKT pathway inhibitor for 30 min. DMSO treatment was used as 
negative control. p-TSC2 and total TSC2 amounts were determined by western blot with β-
actin being used as a loading control. Bars indicate amount of p-TSC2 and total TSC2 
normalised to β-actin (A). Cells were co-labeled for Lamp2 (green) and TSC2(red)(B). Scale 
bar is 10 µm. C. p-S6K, total S6K, p-4E-BP1 and 4E-BP1 amounts were determined by using 
specific antibodies. β-actin was used as a loading control. D. Electron microscopy images of 
cells treated with AKT inhibitor and DMSO (negative control). Quantification of vacuolar 
structures (lysosomal structures) after treatment with AKT pathway inhibitor. DMSO treatment 
was used as control. E. Primary neurons isolated from WT mice, treated with AKT pathway 
inhibitor and probed for lysotracker (red) and DAPI for nuclei. DMSO treatment was used as 
a negative control. Scale bar is 40 µm. F. The graph shows the percentage of cell area covered 
by Lysotracker positive puncta in cells treated with AKT pathway inhibitor (n = 38) vs DMSO 
control (n = 25). ***, P<0.0001 . G. Mathematical model for protein aggregation. H. Simulated 
effects of increased nutrition and insulin (left column) and of starvation (right column) on the 
aggregation of WT Aβ. The treatment simulations started at the beginning of day 2. Increased 
nutrition (starvation) corresponds to three times higher (lower) extracellular amino acids. 
Insulin increases protein synthesis (by 5 times) and lowers the autophagosomal-lysosomal 
degradation pathway (by 80%) while upregulating ubiquitin-proteasomal degradation pathway 
(by 30%). The simulations were performed using protein aggregation kinetics of Aβ42 (Meisl 
et al., 2014). I. Cells treated with AKT pathway inhibitor over night showed increase of 
lysotracker (red) positive structure and correlated with reduction of ThioS (green) positive 
structure. Scale bar is 40µm. J. Quantification of Lysotracker (red) and ThioS (green) signal 
of fig I. Error bars indicate S.D. ***p<.0005.  K. Cell were stained with ThioS (green) or 
Lysotracker (red) upon knock down of various components of insulin signaling pathway. Scale 
bar is 40µm.  L, M. Cells were subjected to amino acid and methionine starvation for 3 hr. 
After treatment cells were stained with lysotracker (red), ThioS (green) and DAPI (blue) ; Scale 
bar is 40µm. (L) or assayed for Aβ levels (M) Error bars indicate S.D. ***p<.0005.  
 
 
Figure 3: Higher cholesterol increases acidic organelles in cell. However, newly formed 
lysosomes are non-functional. 
 
A, C. CHO WT were subjected to overnight serum starvation and loading of extracellular 
cholesterol by treatment with MBC cholesterol and U18666A. After treatment cells were 
stained with filipin in (upper panel, blue) (A), lysotracker (lower planel, red) (A), and ThioS 
(green) (C). DAPI (blue) was used to stain the nucleus in figure A low planel. B, D. NPC1 ko 
cells were subjected to overnight serum starvation and removing of intracellular cholesterol by 
treatment with MBC and medium containing lipoprotein deficient serum (LPDS). After 
treatment cells were stained with filipin in (upper panel, blue) (B), lysotracker (lower panel, 
red) (B), and ThioS (green) (D). DAPI (blue) was used to stain the nucleus in figure B low 
planel. Scale bar is 40 µm. E. Western blot analysis of P62, LC3-I/LC3-II, Lamp2 in WT and 
NPC1 KO mice of different ages. GAPDH is used as control. Graph shows quantification of 
LC3-I, LC3-II P62 and P62 signals normalized to GAPDH. F, G, H. Lamp2 (green) staining 
of WT and NPC1 KO mice cortex (F), P62 staining (green) of WT and NPC1 KO mice cortex 
and hippocampus (G) and ThioS staining of WT and NPC1 KO mice cortex and hippocampus 
(H). I. Intracellular Aβ level was measured after loading or removal of cholesterol on HeLa 
swAPP cells using electrochemiluminescence assay. J. Cathepsin B activity was measured 
using cathepsin B magic red kit. Scale bar is 50 µm. K. Quantification of Fig J. L. Cathepsin 
D enzymatic assay was performed with cell lysates from WT cells, NPC1 knockout cells and 
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NPC1 knockout cells stably expressed human NPC1 protein. M. Assessment of EGF uptake 
and degradation was performed for WT, NPC1 knockout cells and NPC1 knockout cells stably 
expressed human NPC1 protein. Scale bar is 40 µm.   
 

Figure 4. Inhibition of Insulin/amino acid signalling pathway or starvation decrease 
amyloid level and increases synaptosomes uptake in BV2 microglia cells  
 
A. Cells subjected to different starvation paradigms. For overnutrition diet medium was 
replaced with fresh full medium every 24 h. For periodic fasting medium was replaced with 
fresh medium, alternating between full medium and serum free medium every 24 h. For chronic 
fasting medium was replaced with fresh medium, alternating between between full medium 
and serum free medium every 48 h for four days. After treatment cells were stained with 
lysotracker (red) and ThioS (green); Scale bar is 50 µm. B. Wild type mice were subjected to 
periodic fasting for 7 days, and their brain homogenates were assayed for Aβ levels. Error bars 
indicate S.D. *p<0.05. C. 12 months old APP Arc, Sw mice were subjected to periodic 
starvation for a period of 40 days. Following starvation, Aβ was measured from both TBS and 
SDS fraction of cortex-homogenates. Error bar is SD. D. Imaging of brain sections for APP 
transgenic mice either fed or starved, amyloid plaques (red) stained using Congo Red. E. 
Quantification of (D), F. Westernblot analysis showing the effects feeding and starved 
conditions have on APP transgenic mice lysosomal markers. Blot was stained using lysosomal 
makers cathepsin D and LAMP2, whilst synaptic markers PSD95 and synaptophysin were also 
used. GAPDH was used as a loading control. G. Quantification of the effects fed/starved 
conditions have on lysosomal and synaptic markers in APP transgenic mice. H. Confocal 
imaging of cortical dendritic spines from APP transgenic mice from either fed or starved 
conditions. Green = Thy1 GFP neurons. I. Quantification of (H), effects fed/starved conditions 
have on spine density. Error bar is SD. J. Residual Aβ levels upon treatment with AKT-
pathway inhibitor, Torin-1 and serum starvation, Error bars indicate S.D. **p<0.005, 
***p<0.0005. K. Alexa-647 Aβ uptake in BV2 microglia upon treatment with AKT-pathway 
inhibitor, Torin-1 and serum starvation. Polt is quantification of Fig.4K. Error bars indicate 
S.E.M *p<0.05, **p<0.005, ***p<0.0005. L. Synaptosomes (red) uptake in BV2 microglia 
upon treatment with AKT-pathway inhibitor, Torin-1 and serum starvation. DAPI (blue). Plot 
is quantification of the Fig.6L.  
 

Figure 5. Effects hyperlipidemia, T2D, BMI and age in combinations have on AD 
pathological status. 
A. Post-mortem tissue from superior temporal lobe of AD and age matched control    are stained 
for microglial markers Iba1 (magenta) and CD68 (yellow), and pre-synaptic marker Synapsin-
1 (cyan) and DAPI for nuclei (grey). Representative images are shown. Scale bar 10 microns. 
B. Post-mortem comparison of Synapsin-1 inside CD68-positive cells from age-matched 
control cases (n=28) and Alzheimer’s disease (AD) (n=24) cases showed increased levels of 
Synapsin-1 inside CD68 in AD (Mann-Whitney U test, p=0.0274). C. Control and AD cases 
are stratified by lack or presence of metabolic disorders, namely hyperlipidemia (HL) and type 
2 diabetes (T2D). AD cases with no metabolic disorder (AD) showed significantly greater 
Synapsin-1/CD68 colocalisation compared to control with no metabolic disorder (Control) 
(p=0.022) and AD with hyperlipidaemia (AD HL) (p=0.0196) (Kruskal-Wallis test). AD cases 
with T2D showed no difference to controls with T2D. D. Disease progression analysis of AD 
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patients with T2D, hyperlipidemia and a BMI>25 against AD patients without T2DM, 
hyperlipidemia or a BMI<25. Measured using yearly progression scores taken from MMSE.  
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