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Abstract 

Cancer chemotherapy responses have been related to multiple pharmacogenetic 

biomarkers, often for the same drug. This study utilizes machine learning to derive 

multi-gene expression signatures that predict individual patient responses to specific 

tyrosine kinase inhibitors, including erlotinib, gefitinib, sorafenib, sunitinib, lapatinib and 

imatinib. Support Vector Machine learning was used to train mathematical models that 

distinguished sensitivity from resistance to these drugs using a novel systems biology-

based approach. This began with expression of genes previously implicated in specific 

drug responses, then expanded to evaluate genes whose products were related through 

biochemical pathways and interactions. Optimal pathway-extended support vector 

machines predicted responses in patients at accuracies of 70% (imatinib), 71% 

(lapatinib), 83% (sunitinib), 83% (erlotinib), 88% (sorafenib) and 91% (gefitinib). These 

best performing pathway-extended models demonstrated improved balance predicting 

both sensitive and resistant patient categories, with many of these genes having a 

known role in cancer etiology. Ensemble machine learning-based averaging of multiple 

pathway-extended models derived for an individual drug increased accuracy to >70% 

for erlotinib, gefitinib, lapatinib, and sorafenib. Through incorporation of novel cancer 

biomarkers, machine learning-based pathway-extended signatures display strong 

efficacy predicting both sensitive and resistant patient responses to chemotherapy.  

Keywords: tyrosine kinase inhibitors, biochemical pathways, systems biology, machine 

learning, gene signatures 
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1. Introduction 

Selection of a chemotherapy regimen is largely determined by efficacy of a drug in 

eligible subjects for a specific type and stage of cancer, and considers duration, location 

and magnitude of responses.1 Individuals progress to second-line chemotherapeutic 

agents after demonstrating or developing limited efficacy to or after relapse from first-

line chemotherapeutics.2,3 It is feasible to consider personal differences in genomic 

responses as a means of differentiating between acceptable chemotherapies with 

otherwise similar response rates across populations of eligible patients.4 

Previously, we developed gene signatures that predict patient responses to specific 

chemotherapies from gene expression (GE) and copy number (CN) levels in a set of 

distinct breast and/or bladder cancer cell lines,5 with each line characterized by the drug 

concentration that inhibited growth by half (GI50).
6,7 Support vector machine (SVM) and 

random forest machine learning (ML) models were built for each drug using expression 

and/or copy number values from ‘curated genes’ with evidence from published cancer 

literature of a contribution to the function or response to said drug in cell lines or 

patients. This paper develops signatures for tyrosine kinase inhibitors (TKIs),8 for which 

literature on genes associated with response is somewhat more limited.  

We developed a novel technique for generating biochemically inspired gene signature 

models by expanding the pool of genes for ML to include genes both possessing and 

lacking literature support. The premise for including novel genes or gene products in 

these models is that these candidates could be related to genes supported by 

documented evidence through biochemical pathways or interactions that also contribute 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2020. ; https://doi.org/10.1101/2020.11.13.381798doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.381798
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

4 
 

to drug response. We then compare conventional ML-based gene signatures to 

corresponding pathway-extended (PE) versions for these TKIs. 

Abnormal expression levels or mutations in tyrosine kinases are often causally related 

to tumour angiogenesis9 and metastasis10 in certain cancers.11,12 TKIs have emerged as 

effective anti-cancer therapies, owing to their activity by ATP-competitive inhibition of 

the catalytic binding site of these kinases.13 Despite a conserved mechanism of action, 

sorafenib, sunitinib, erlotinib, gefitinib, imatinib and lapatinib preferentially inhibit 

different tyrosine kinase targets and exhibit distinct pharmacokinetic profiles.13–15 

Sorafenib and sunitinib both inhibit VEGFRs, PDGFRs, FLT3R, RET and c-Kit.15,16 

However, structural differences produce different binding profiles. For example, in 

binding VEGFR, sorafenib stabilizes the DFG-out inactive conformation of the enzyme, 

which allows it to bind within an allosteric pocket,17 whereas sunitinib binds in and 

around the ATP-binding region, imparting lower kinase selectivity and faster off-rates.18 

Similarly, erlotinib and gefitinib are both preferential inhibitors of EGFR, and share 

analogous chemical structure;19,20 but post-absorption, gefitinib is localized to a greater 

extent in tumour tissue, while erlotinib preferentially accumulates in plasma.21 Imatinib is 

particularly selective for the ABL kinase8,22,23 while lapatinib binds to both EGFR and 

ERBB2.24 The specificities of TKIs for different tyrosine kinase targets and the relative 

activities of those targets in different tumour types largely determine which of these 

drugs are recommended to treat individual clinical indications. These include renal cell 

carcinoma (sunitinib, sorafenib), hepatocellular carcinoma (sorafenib), pancreatic 

cancer (erlotinib), lung cancer (erlotinib, gefitinib), breast cancer (lapatinib) and chronic 

myelogenous leukemia (imatinib).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2020. ; https://doi.org/10.1101/2020.11.13.381798doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.381798
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

5 
 

Tumor cells can exhibit intrinsic or acquired resistance to chemotherapy. Intrinsic 

responses refer to an inherent capability to suppress the effects of treatment or render 

treatment cytostatic to functional characteristics of these cells. In acquired resistance, 

the tumor mutates or undergoes epigenetic changes after an initial period of clinical 

success that renders it impervious to treatment.25,26 Cytostasis is often achieved by 

inhibition of glycolytic activity with signal transduction, with the largest group of drugs 

targeting tyrosine kinases.27 On average, tumors initially responsive to TKI treatments 

such as erlotinib and gefitinib will progress again within a year of treatment.28,29 Intrinsic 

resistance to these TKI drugs tends to be uncommon in EGFR-positive tumors.30 

Recent studies have revealed novel pathways of resistance and sensitivity to 

chemotherapeutic drugs.31,32 This study aimed to generate models that 

comprehensively represent global drug responses by inclusion of novel genes or gene 

products discoverable through their interactions with gene products known to influence 

these responses. We modify supervised ML-based models to systematically identify 

novel biomarkers whose expression is related to GI50. Gene expression changes in 

cancer cell lines that expand conventional gene signatures beyond an initial curated set 

of genes are utilized, including or replacing the initial set with other genes that interact 

with them. The resulting signatures aim to improve accuracy of prediction of individual 

patient responses to chemotherapies targeted towards tyrosine kinases. 

2. Methods 

2.1 Data and preprocessing of cell line and cancer patient datasets 
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Microarray GE, CN, and GI50 values of breast cancer cell lines treated with erlotinib, 

gefitinib, imatinib, lapatinib, sorafenib and sunitinib (obtained from Daemen et al. 

[2013])5) were used to derive ML-based gene signatures that predict drug responses. 

The median GI50 values for these cell lines were applied as the threshold distinguishing 

sensitivity from resistance during ML. The median and range of GI50 values for erlotinib 

was 4.71 [4.18 - 6.54]; gefitinib was 5.03 [4.48 – 6.45]; imatinib was 4.69 [3.82 – 5.81]; 

sorafenib was 4.27 [3.0 – 5.83]; and sunitinib was 5.23 [4.70 – 5.98]).5,6 For lapatinib, 

the threshold was set at the GI50 value with the maximum difference relative to adjacent 

cell lines (4.94 [ranges from 4.78 to 6.40]), since the GI50 of multiple cell lines were 

equal to the median value.  

Performance of these gene signatures was assessed using published studies of cancer 

patients treated with these drugs. NCBI Gene Expression Omnibus (GEO; 

https://www.ncbi.nlm.nih.gov/geo/) sourced datasets contained GE data and linked 

clinical outcomes of each patient with non-small cell lung carcinoma (NSCLC; 

GSE61676, N=43)33 treated with erlotinib [in combination with bevacizumab], 

hepatocellular carcinoma (GSE109211, N=67)34 treated with sorafenib, breast cancer 

(GSE66399, N=31)35 treated with lapatinib [‘Arm B’ patient set only, which received 

lapatinib in combination with paclitaxel, fluorouracil, epirubicin and cyclophosphamide], 

chronic myelogenous leukemia (GSE14671, N=23)36 treated with imatinib, breast 

cancer patients (GSE33658, N=11)37 treated with gefitinib [in combination with 

anastrozole and fulvestrant], and gliomas (GSE51305, N=18)38 treated with sunitinib. 

Each of these studies provided clinical information that included a treatment outcome 

measure that could then be utilized as a binary outcome measure for comparison with 
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predictions made by various models. These outcome measurements vary from study to 

study. For patients treated with sorafenib or imatinib, a chemotherapy response 

biomarker was used to distinguish sensitive from resistant patients. For patients treated 

with erlotinib or lapatinib, outcome (i.e. survival vs death) was used as a surrogate for 

response. Cancer cell migration data distinguished patients sensitive vs. resistant to 

sunitinib (where those with ‘moderate induction’ or ‘moderate inhibition’ were defined as 

resistant, and those with ‘strong inhibition’ were considered sensitive to the drug). 

Responses to gefitinib were classified based on Response Evaluation Criteria In Solid 

Tumors (RECIST) guidelines (where those with progressive disease are considered TKI 

resistant).39 

Patient selection criteria differed between studies. In the GSE61676 study (erlotinib), 

patient data was acquired from the SAKK 19/05 trial, where selection criteria consisted 

of patients with newly diagnosed or recurrent Stage IIIB or Stage IV NSCLC.33 In the 

sorafenib study (GSE109211), tumour tissue was collected from the STORM trial, which 

enrolled patients with hepatocellular carcinoma with complete radiological response 

after surgical resection or local ablation.34 The lapatinib study (GSE66399) utilized data 

from the CHER-LOB study, where female adults with HER2+ breast cancer were 

selected.35 In the GSE33658 patient cohort, CD34+ cells were isolated from peripheral 

blood collected from newly diagnosed chronic-phase chronic myelogenous leukemia 

patients treated with imatinib.36 In the gefitinib study (GSE33658), biopsies were taken 

from postmenopausal women with newly diagnosed ER+ breast cancer receiving 

anastrozole, fulvestrant and gefitinib.37 In the sunitinib study (GSE51305), native glioma 
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tissue samples were collected from patients with a diagnosis of high-grade glioma WHO 

(World Health Organization) grade III or IV who underwent surgical resection.38  

Different expression microarray platforms were used in these GEO datasets, for 

example, GSE66399, GSE61676 and GSE51305 each measure GE values with distinct 

vendor and gene sets. To minimize batch effects and apply the cell-line based 

signatures to these patient datasets, the data were first normalized on a common scale 

using quantile normalization, according to our previously published approach.40 If 

multiple microarray probes existed for the same gene, the mean of all probe 

measurements were determined. 

2.2 Multiple factor analysis and gene set expansion 

Genes associated with therapeutic response or function were curated from previous 

peer-reviewed publications for each TKI (refer to Additional References). Inclusion 

criteria were based on evidence of the gene or protein contributing to pharmacokinetic 

or pharmacodynamic response, or were established biomarkers of sensitivity or 

resistance. Multiple Factor Analysis (MFA) was performed using cell line expression and 

GI50 (concentration of drug inhibiting 50% growth) data5 for each curated gene using the 

MFAPreselection software we have developed (available in a Zenodo archive41). The 

archive describes the algorithm used by MFAPreselection to traverse pathway 

networks, dataflow within the program, and software code. MFA determines the 

relationship between GI50 and GE and/or CN data for all expressed genes as an angle 

that indicates the degree to which expression or copy number correlates either directly 

(~ zero degrees) or inversely (~180 degrees) with the GI50 of the set of cell lines.42,43 
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Circular plots, generated by MFAPreselection, indicate this correlation angle (Figure 

1).43 MFAPreselection searches for known gene pseudonyms and substitutes the 

correct alias (from www.genecards.org [downloaded July 2016]). In the Daemen et al. 

dataset5 used for training in SVM learning (see below), the microarray platform data 

was in some instances labeled with conflicting gene names. During pathway extension, 

associated genes were related to older gene aliases that have been deprecated and 

reassigned by HUGO (Human Genome Organization) Gene Nomenclature Committee 

to other unrelated genes. This led to some spurious associations between genes during 

pathway extension. Examples include: PPY which was mismatched due to its former 

alias ‘PNP’ as well as DDR2 due to incorrect association with its former alias ‘TKT’. For 

the sorafenib model PE-Sor, associations of GC to CNN1 and CA3 were eliminated due 

to its original designation as ‘DBP’, however its associations between HNF1A, 

CYP11B1, CYP27B1, and PIK3R3 remained valid (Figure S1). This issue was 

addressed using a program script that removed these unsupported associations from 

the output of MFAPreselection.41  

 A Perl script was written to eliminate these spurious matches by confirming relations 

reported by MFAPreselection with the PathwayCommons Interaction SIF (Simple 

Interaction Format) file ("Parentage-MFA-Path-Source-Program.Simple-Output-

Version.pl"; provided in a Zenodo archive41). If corrected labels were not found or a 

gene was absent from a microarray platform, then this cell line or gene is not included in 

the analysis.  

ML signatures were expanded by MFAPreselection to include genes associated with 

curated genes by extension using components of adjacent biochemical pathways 
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(pathway-extension, or PE; Figure S2). To identify these relationships, MFAPreselection 

relied on the PathwayCommons database (version 8 [downloaded April 2016]) to 

assess expanded gene lists by inclusion of genes addressable from the curated set 

(one node distant from a curated gene), followed by a second iteration (two nodes 

distant from a curated gene; illustrated in Figure 1). During this process, genes that did 

not meet minimally-defined levels of MFA correlation to drug GI50 (either positive or 

negative) were discarded and additional gene expansion steps also ignored these 

genes. These levels were determined using six different conditions set for the 

MFAPreselection software: maximum thresholds up to 10° and 20° from either full direct 

or inverse correlation for curated genes only (conditions #1 and 2, respectively); up to a 

10° and 20° threshold for both curated genes and directly related genes (one-node 

distant; conditions #3 and 4, respectively); and up to a 10° and 20° threshold for curated 

genes and genes up to two nodes distant from the curated gene set (conditions #5 and 

6, respectively). Genes in which GI50 was correlated with CN (Tables S1 [A-F]) were not 

considered for SVM analyses due to unavailability of CN data in patient datasets. 

2.3 SVM learning 

Genes with expression levels correlated with GI50 were qualified for SVM analysis. 

SVMs were used to train GE datasets against GI50 data using the MATLAB statistics 

toolbox (similar to the procedure described in Mucaki et al. [2016]44 using SVM software 

developed in Zhao et al. [2018]40; software available at: doi:10.5281/zenodo.1170572). 

Instead of using the “fitcsvm” function (as in Mucaki et al. [2016]44), a multiclass-

compatible “fitcecoc” function was used to generate SVM signatures, with both 

misclassification rate44 and log loss40 value used as performance metrics to derive 
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optimal signature models. A forward feature selection (FFS) algorithm was used to 

generate these gene signatures (program from Zhao et al. [2018]40: 

“FFS_strat_kfold_gridsearch.m”). FFS tests each gene at random from the qualified 

gene set by training a cross-validated Gaussian kernel SVM on the training data to 

determine the individual gene that produces the lowest misclassification rate or log loss 

value. Subsequent genes are then added to determine whether model performance is 

improved, until the performance criterion converges to a minimum value. Models were 

built using a range of C and sigma values (from 1 to 100,000, in multiples of 10 for each 

variable [where C ≥ sigma]; 21 total combinations). Since the goal of pathway extension 

was to expand and improve these models beyond curated signatures with ≥ 2 genes, 

PE-derived gene signatures with fewer than two genes were excluded from proceeding 

to the validation step.  

2.4 Validation of Cell-Line Derived Gene Signatures using Patient Data 

All derived multi-gene SVMs were validated against clinical patient data using traditional 

validation (MatLab program “regularValidation_multiclassSVM.m’ from Zhao et al. 

[2018]40). Performance was indicated by both overall predictive accuracy and by 

Matthews Correlation Coefficient (MCC, which assesses overall quality of a binary 

classifier by considering the balance of true and false positives and negatives). Overall, 

the best-performing gene signature for each drug was selected by MCC, as it is a metric 

not skewed by imbalanced data. Once the best performing SVM for each drug was 

established, leave-one-out cross-validation7 was used to determine the overall impact of 

each individual gene to the model itself (change in misclassification or log loss), as well 

as its impact on the accuracy of the model to predict chemotherapy response. Top-
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performing PE TKI models can be accessed to predict responses based on expression 

in individual patients with our web-based SVM calculator 

(http://chemotherapy.cytognomix.com).6 

Ensemble averaging of multiple SVM models involved weighting patient predictions 

from highest performing models derived for a particular TKI by the area under the curve 

(AUC) of each corresponding model (computed using the MATLAB function ‘perfcurve’). 

MCC itself was also evaluated as a potential source of weights for ensemble averaging; 

however, AUC-weighted predictions were superior in overall performance. The number 

of models included in the ensemble varied, as the number of highest performance 

models for each TKI differed (4 for sorafenib; 2 for erlotinib, sorafenib, imatinib, sunitinib 

and gefitinib). A patient was considered resistant to a drug if the sum of all AUC-

weighted predictions were > 0 and sensitive if this sum was < 0. 

3. Results 

3.1 Generating SVM signatures using breast cancer cell line-training data 

Genes associated with drug response or function were curated for gefitinib (N=113), 

sunitinib (N=90), erlotinib (N=71), imatinib (N=157), sorafenib (N=73), and lapatinib 

(N=91) (curated genes are provided in Table S1 and labeled as ‘0’ node distant genes). 

In general, MFA was performed using 48 breast cancer cell lines using GE, CN and GI50 

values for each gene.5 Biochemically inspired ML-based signatures for each TKI, 

derived from curated genes, were obtained according to our previously described 

approach.6 MFA analysis was also performed on genes encoding proteins related to 

these curated genes (through interaction or as neighbours in the same biochemical 
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pathway) to identify those that also correlated, either directly or inversely, with GI50 (all 

GI50-correlated PE genes are provided in Table S1 [labeled as 1-node and 2-node 

distant genes]). This expanded set of GI50-correlating genes were then used to derive 

SVMs containing combinations of curated and PE genes. The derived signatures for 

each TKI minimized either misclassification or log loss to generate the best performing 

models. The best performing curated and PE SVM signatures for erlotinib [C-Erl, PE-

Erl], sorafenib [C-Sor, PE-Sor], gefitinib [C-Gef, PE-Gef], lapatinib [C-Lap, PE-Lap], 

imatinib [C-Ima, PE-Ima], and sunitinib [C-Sun, PE-Sun] are summarized in Table 1, 

whereas the performance of all models is indicated in Table S2.  

3.2 Validation of cell line-based SVM signatures using cancer patient data 

Cell line-derived SVMs for TKIs were initially evaluated on patient data sets where 

patients were treated with the same agent.40 Erlotinib signatures were validated using 

patients with NSCLC (GSE61676; N=9 survived, 34 died), sorafenib signatures were 

validated using patients with hepatocellular carcinoma (GSE109211; N=21 sensitive, 46 

resistant), sunitinib signatures were validated using outcomes of patients with high-

grade gliomas (GSE51305; N=6 sensitive, 12 resistant), imatinib signatures were 

validated using outcomes of patients with chronic myelogenous leukemia (GSE14671; 

N=17 sensitive, 6 resistant), and lapatinib and gefitinib signatures were validated based 

on breast cancer outcomes (GSE66399 [N=8 survived, 23 died] and GSE33658 [N=10 

sensitive, 2 with resistant], respectively).  

MCC (range -1 to +1) was the primary determinant of model performance, as it 

measures overall accuracy (OA) while accounting for representation between binary 
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prediction categories.45 This was necessary, as patient datasets available exhibited 

imbalances in the ratios of responsive to non-responsive patients in terms of their 

respective observed clinical outcomes. Models based on features generated under 

relaxed constraints (condition #6) generated the best performing SVM on patient data 

for every TKI, except sorafenib. The best-performing PE model was PE-Sor, which 

accurately predicted patient responses with 0.72 MCC (and 88% OA). The best 

performing curated model was Cur-Lap, with 0.31 MCC (and 77% OA). In comparison 

to curated SVMs, PE SVMs predicted patient response with 0.26 higher MCC and 33% 

higher OA (13% increase in accuracy predicting sensitive patients; 13% increase in 

accurately predicting resistant patients). Except for imatinib, the best-performing PE 

model outperformed their curated counterpart. This difference in performance is evident 

in Figure 2, as predictive accuracy for PE models is consistently higher for both 

resistant and sensitive patient outcomes. 

The erlotinib (GSE61676) and gefitinib (GSE33658) studies utilized for model testing 

provide patient GE data both pre- and post-treatment. This provided an opportunity to 

determine whether to determine whether short term drug exposure altered GE and 

model accuracy. For erlotinib, blood samples were obtained prior to and 24 hours post-

treatment. For gefitinib, biopsies were taken prior to and 3 weeks post-treatment. Both 

PE-Erl and PE-Gef exhibited slightly lower performance for the pre-treatment samples 

(Table S3), with 5 additional patients misclassified with PE-Erl (73% OA with N=43 total 

patients) and 2 additional misclassified individuals with PE-Gef (73% OA; N=12 

patients). MCC for PE-Gef is significantly lower (-0.15), since the model misclassifies all 
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untreated individuals as resistant. Treatment with these drugs perturbs predictions, but 

to a limited extent. 

3.3 Composition of PE SVM signatures and contributions of individual features 

PE SVM signatures contain either genes from peer-reviewed literature about the drug 

response (“initial” or “curated” genes), those related to these genes through direct 

interactions or as neighbours within the same pathways (one-node distant genes), or 

genes associated with these one-node distant genes (two-node distant genes). To 

better comprehend the composition of and relationships between genes in the best-

performing PE SVM signatures, we analyzed the connection networks for each model 

(see Table S4 for connection network for all other top performing PE models). For 

example, while PE-Sor consists of one curated gene and eight two-node distant genes, 

there are an additional 6 curated and 10 one-node genes that connect the genes in PE-

Sor by pathway-extension (Figure 3A shows a two-dimensional visualized connection 

network for this drug; see Figures 3B-F for lapatinib, gefitinib, sunitinib, imatinib and 

erlotinib, respectively). Due to the complexity of the relationships between gene 

products for erlotinib, it was not feasible to create an unequivocal two-dimensional 

network diagram for this drug response, and is instead presented in tabular form (Figure 

3F). Nevertheless, it is apparent from the majority of these network diagrams that genes 

that were two-nodes distant from the curated gene set were most commonly selected in 

the best performing PE models. Furthermore, the two-node distant genes selected 

interacted with multiple curated or one-node distant genes. 
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To determine the degree to which each gene in a signature contributed to the accuracy 

of the overall model prediction, we performed leave-one-out cross-validation for each 

gene in the best-performing model for each drug. We then reassessed the predictions of 

the resultant signature for the observed responses in the cell lines used for model 

training (Table S5) and for the patient data used for testing (Figure 4). Based on patient 

data, the gene features eliminated from models that had the highest impact on 

performance were: CDK6, BAG2, SULT1E1, and IL1RN (PE-Erl); CNTN1, GCG and 

NTRK3 (PE-Gef); GRB7 and BCAT (PE-Lap); ELF5, TGFB1, PRKD2, RBP5, and GC 

(PE-Sor); EPHA2 and SIAE (PE-Sun); and CACNA2D1 and GRM3 (PE-Ima). Genes 

removed that improved predictive performance on patient data included FBP1 (PE-

Lap), PLAT (PE-Sor) and LHX8 (PE-Sor). 

PE-Gef consists of 4 pathway-extended genes (CNTN1, CXCL2, NTRK3 and GCG) and 

one curated gene, GCG. GCG encodes a hormone preprotein which is cleaved into four 

peptides, including glucagon-like peptide 2, which has been found to reduce gefitinib-

induced intestinal atrophy in mice.46 Removal of NTRK3 from PE-Gef had the largest 

impact on model performance, reducing MCC to 0. NTRK3 has a critical role in 

secretory breast cancer gene, with the EVT6-NTRK3 fusion oncogene being considered 

a primary initiating event.47,48  

PE-Sun, which consists of three pathway-extended genes, SIAE, NR4A1, and EPHA2, 

was evaluated in gliomas. NR4A1 is essential for colony formation of glioblastoma cells 

on soft agar.49 Of 14 glioblastoma specimens, 13 possessed elevated EPHA2 levels.50 

Removal of NR4A1 from PE-Sun did not alter overall accuracy or MCC of the model, 

while removal of EPHA2 decreased overall accuracy by 55% and MCC by 0.94. 
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Regarding SIAE, alterations in cell surface sialylation by glucocorticosteroids has been 

suggested to promote glioma formation.51    

PE-Sor (COL25A1, TGFB1, DACT1, RBP5, PRKD2, GC, ELF5, LHX8, and SCNN1A) 

was used to predict sorafenib response in hepatocellular carcinoma (HCC) patients. 

Removal of RBP5, PRKD2, GC and ELF5 significantly reduced overall accuracy (>50%) 

and MCC (>0.7) (Figure 4A). RBP5 is linked to aggressive tumour features in HCC,52 

PRKD2 is upregulated in HCC and correlated with metastasis,53 and decreased actin-

free GC levels have been found to relate with disease severity in HCC.54,55 Vitamin D3, 

which is bound by GC, lowers the effective dose of sorafenib required for its cytostatic 

effect in melanoma and differentiated thyroid carcinoma.56 ELF5 has not been direct 

connected to HCC, but has been associated with a wide range of cancers.57,58 Genes in 

PE-Sor that have not been as strongly linked to cancer (COL25A1 and LHX8) did not 

change model accuracy to the same extent (<10%) when removed (Figure 4A). 

Removal of the curated gene TGFB1, which enhances the apoptotic activity and 

sensitizes cells to sorafenib59 decreased overall accuracy by 60% in HCC patients. The 

respective contexts of the curated Sorafenib-related genes juxtaposed with the PE 

genes in PE-Sor are indicated in a cellular schematic of the roles and functions of these 

genes (Figure 5).  

PE-Ima (LIF, MRGPRF, GRM3, TNNI1, and CACNA2D1) predicted imatinib response in 

chronic myelogenous leukemia patients. LIF encodes a protein which prevents 

continued growth of myeloid leukemia cells by inducing terminal differentiation,60 

although independent removal of LIF did not notably affect model performance. 

Downregulation of CACNA2D1 from PE-Ima is associated with erythroid differentiation 
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of K562 and KCL-22 chronic myeloid leukemia cells.61 Removal of CACNA2D1 

decreased both classification accuracy and MCC (-44% and -0.18, respectively; Figure 

4E).  

A second PE model (indicated in green in Figure 4E) exhibited comparable performance 

to PE-Ima: TNNI1 and WASF3 [C=10000, σ=10000], with an OA of 57% (47% accurate 

with sensitive and 83% with resistant patients; MCC = 0.27). WASF3 has been 

implicated in breast cancer metastasis.62 TNNI1, a gene that is shared by both this 

model and PE-Ima, is one of the three inhibitory subunits of smooth muscle troponin, 

that are all overexpressed in breast cancer.63 Interestingly, the kinase, TNNI3K, that 

phosphorylates this protein is essential for proliferation of mononuclear diploid 

cardiomyocytes during heart muscle repair due to injury.64 Phosphorylation of troponin 

would appear to have a previously uncharacterized moonlighting function in tumor 

development.65 If imatinib inhibits TNNI3K through an off-target effect, this may 

modulate TNNI1 activation and possibly, an associated proliferative phenotype.  

PE-Lap (FBP1, ITGA11, TRIM68, BCAT1, ZNF780A, UTP20, and GRB7) predicted 

outcomes of breast cancer patients treated with lapatinib. Independent removal of 

BCAT1 reduced accuracy in predicting sensitive patients. Silencing or knockdown of 

BCAT1 has been associated with reduced growth of triple negative breast cancer.66 

Removal of ITGA11 or TRIM68 did not alter PE-Lap accuracy (Figure 4B).  

PE-Erl consisted of NEK7, SLCO3A1, RELB, FRMD4A, HSD17B2, CDK6, PALM, 

IL1RN, SMYD1, BAG2, GNG3, and SULT1E1, and was used to predict chemotherapy 

response in NSCLC patients. BAG2 and SULT1E1 are novel biomarkers of erlotinib 
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efficacy, as removal of either gene led to imbalanced predictions of sensitive patients by 

this signature. Overexpression of BAG2 has been associated with poor disease-specific 

survival in lung cancer,67 while the SULT1E1 polymorphism rs4149525 has been 

associated with shortened overall survival in NSCLC.68 This model originally contained 

PLAT, which when eliminated from the erlotinib dataset of 43 patients significantly 

increased in overall accuracy (+10%) and MCC (+0.21) of the model predictions (Figure 

4F). PLAT was therefore considered a false positive result from ML, and therefore 

eliminated from gene signature. Our post-hoc analysis demonstrated that the majority of 

genes (75%) in PE-Erl were associated with the NSCLC phenotype.  

3.4 Performance of PE SVM signatures on sex-stratified patients 

Previous studies have suggested that females may be more sensitive to TKI treatment 

than males.69,70 We therefore stratified TKI model performance by sex in the GSE61676 

data set, which provided patient sex information along with response (19 male [3 

sensitive] and 24 female [6 sensitive] patients). Considering all patients, PE-Erl 

predicted patient response with an MCC of 0.41 and 83% overall accuracy (42% and 

93% accurate in patients sensitive and resistant to this drug, respectively). In males 

alone, PE-Erl’s overall accuracy was lower (76%), with MCC notably decreased to 0.11, 

as PE-Erl did not predict individuals who were sensitive or resistant to the drug as 

accurately (27% and 85%, respectively). In females, PE-Erl performed better than for 

the full data set, with 85% OA (MCC = 0.56), of which resistance was predicted with 

99% accuracy and sensitivity was predicted with 42% accuracy (Table S6). This 

indicates that the PE-Erl signature more precisely captures factors that contribute to 

greater sensitivity in females.   
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The predictive performance of erlotinib PE model PE-Erl to the NSCLC dataset 

GSE61676 was higher in female patients than male patients (0.45 greater MCC; 9% 

greater OA). This was consistent with the possibility that PE-Erl contains gene(s) 

distinguishing sex-differentiated sensitivity to the drug. Of the 12 genes comprising PE-

Erl, independent removal of RELB and CDK6 features from the model notably reduced 

accuracy of the predicted response in female patients that were sensitive to the drug. 

RELB has previously been identified as a sex-discriminatory candidate gene in 

trichostatin A-treated chronic lymphocytic leukemia cells due to repressed expression in 

resistant male cells, but upregulation in resistant female cells.71 RELB also possesses 

pro-survival functions across multiple cancer types72–74 and has been identified as a 

prognostic biomarker for NSCLC patients.75 Overall, RELB is a top candidate gene to 

explain the improved accuracy of PE-Erl in female NSCLC patients.  

3.5 AUC-weighted ensemble model predictions  

Ensemble learning consolidates hypotheses of multiple models to potentially improve 

predictive performance.76 For ensemble learning, each model’s AUC was computed and 

used to weigh predictions made for each model within the ensemble.77 There were 4 

SVMs for sorafenib possessing strong predictive accuracy with patient derived 

expression data. Therefore, all were used for ensemble averaging. For the other TKIs, 

ensemble learning combined the top- and second-best performing SVMs (Table 2). 

Ensemble averaging improved both OA and MCC for erlotinib (OA: 84% [+1%]; MCC – 

0.45 [+0.04]), and sorafenib (OA: 91% [+3%]; MCC: 0.79 [+0.07]). For patients with the 

same predicted outcome in ≥75% of cases after ensemble learning, overall accuracy 

exceeded 80% for all TKIs except lapatinib. Discordant consensus predictions between 
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multiple signatures for the same drug (majority outcome occurred <75% for each 

patient) exhibited lower overall accuracy.  

4. Discussion  

Pathway-extended GE signatures generally improved accuracy of predicted patient 

responses to specific TKIs. Compared to signatures comprised solely of literature 

curated genes, PE signatures revealed previously unknown gene loci that contributed to 

drug response and, on average, had consistently better predictive performance. Aside 

from higher OA, the prediction accuracy for both sensitive and resistant patient groups 

(measured by MCC) was consistently more balanced. For example, Cur-Lap was the 

sole curated model with higher OA than its PE counterpart; however, its predictions 

were more skewed resulting in lower MCC. Furthermore, both MCC and overall 

accuracy were increased by AUC-weighted ensemble averaging of multiple PE models 

for sorafenib, erlotinib and imatinib. Except for lapatinib, the highest OAs were evident 

in patients receiving a ‘consensus’ prediction (where ≥75% of predictions made by the 

models in the ensemble predicted the same outcome for a patient). The improved 

predictive performance of PE SVMs, both individual and as ensembles of models, 

suggests that the genes within these signatures may refine the predominant 

mechanisms of both sensitivity and resistance to TKI therapy. PE gene models may be 

more useful in selecting chemosensitivity regimens for patients compared to models 

solely consisting of previously implicated genes known to respond to a specific 

chemotherapy.  
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Pathway-extension and the inclusion of pathway-related genes allowed for a larger pool 

of genes involved in ML. We avoided overfitting78 by pre-filtering these genes based on 

correlation with GI50. Furthermore, independent validation was determined by the 

identity and expression level of these features in patients treated with these drugs. 

Signatures containing pathway-related genes produced higher performing SVM 

signatures, consistent with the possibility that optimal molecular indicators of chemo-

response may identify genes upstream or downstream of, or are interactors with, 

previously known cancer biomarkers. Generating SVMs from curated genes assures 

that features selected do not arise from statistical association alone. Generating PE 

SVMs required systematic selection of genes with established relationships to curated 

genes. For the best-performing PE gene signatures, most signature genes validated in 

the present study had been independently associated with abnormalities of expression, 

copy number or mutation in these tumour types (Additional References). Expanded 

signatures could potentially assist in the identification of novel biomarkers of chemo-

response in these tissues. 

Primary and secondary genes in PE gene signatures can offer context for drug 

responses without predicate literature support. The relationships between curated 

genes and genes selected through pathway-extension for sorafenib are illustrated in 

Figure 5. The vitamin D transporter encoded by GC is a major determinant of the 

response to this drug, as overall prediction accuracy is decreased by 52% upon its 

removal from PE-Sor (Figure 4A). In fact, GC is two nodes distant from multiple curated 

genes (ABCB1, ABCC2 and HNF1A, among others [Figure 3A]). The ABCB1 

transporter has been implicated in sorafenib-related toxicities based on efflux 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2020. ; https://doi.org/10.1101/2020.11.13.381798doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.381798
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

23 
 

efficiency.79,80 ABCB1 also carries out efflux of Vitamin D3,
81 and the 1,25-dihydroxy-

vitamin D3 isoform (or 1.25D) activates ABCB1 expression.82 Vitamin D is converted to 

this 1.25D isoform by CYP27B1, which is one-node distant from ABCB1. Similarly, GC 

binds specifically to 1.25D, which puts GC one node distant from ABCB1. The growth 

inhibitory effect of sorafenib has been shown to be amplified by 1.25D.56 Together, 

these network connections provide context that integrates functions and roles of 

individual genes of the tumour response to sorafenib. The PE signatures will be useful 

for understanding drug toxicity, although it was not explicitly a goal of this study. The 

importance of GC in PE-Sor may explain why a lower sorafenib dose is effective for 

treatment. Supplemental vitamin D3 reduces toxicity to sorafenib at this lower dose in 

differentiated thyroid carcinoma that is non-responsive to iodine therapy.56  

The best performing SVMs for TKIs shared several common genetic pathways. Multiple 

PE models contained genes related to NOD-like receptor signaling (erlotinib: NEK7, 

RELB), PI3K-AKT signaling pathway (erlotinib: CDK6, GNG3; lapatinib: ITGA11; 

sunitinib: EPHA2, NR4A1) and Ras-Raf-MEK-ERK pathway (erlotinib: CDK6, RELB; 

sorafenib: TGFB1; sunitinib: EPHA2, NR4A1). Aberrant NOD-like receptor signaling 

drives carcinogenesis,83 while numerous cancer therapies target either or both of PI3K 

and AKT.84–86 The Ras-Raf-MEK-ERK pathway involves several protein kinases 

activated by tyrosine kinase receptors, with oncogenic mutations most prominently 

affecting Ras and B-Raf within the pathway.87 These pathways, which are disrupted 

broadly among different cancers, are implicated across numerous high performing ML 

models predicting TKI response. 
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Several pathway-extended (EPHA2, PRKD2, and PDGFRB) and curated (CDK6 and 

ABL2) gene products extrapolated from the highest performing signatures were bound 

to kinases based on a proteomic analysis of target selectivity for 243 kinase-inhibitors 

on 259 distinct tyrosine kinases.88 Few tyrosine kinase target genes from this proteomic 

analysis for TKIs in the current study exhibited correlations between GI50 and either 

gene expression or copy number (< 20° threshold; Table S7). RET was the only SVM 

gene implicated in the response to a TKI for both gene expression and protein 

(sorafenib; Concentration- and Target-Dependent Selectivity of 0.515; Klaeger et al. 

[2017]88). Therefore, expression of genes that are either positively or inversely 

correlated with drug response is generally unrelated to quantification of proteins that 

directly interact with the kinases themselves. If absence of signature genes from those 

corresponding to proteomic analysis is not attributable to either experimental or specific 

cell lines used, then signature gene expression is more likely indirectly regulated by 

gene products that are selective for most TKIs. Many genes in the PE SVMs were two 

nodes distant from curated biomarkers, which is consistent with the possibility that these 

represent common control points in the regulation of drug responses. In this regard, 

such control points exhibit behavior similar to state-cycle attractors of self-organizing 

systems.89 From a ML perspective, the dimensionality of the SVM model is reduced, 

avoiding overfitting, by substituting these control point genes for curated genes. 

Improvement in the prediction accuracy for both the sensitive and resistant patient 

categories might also be a consequence of these biomarkers being control points for 

multiple curated genes. Consider two curated genes that are "controlled" or regulated 

by the same two node biomarker, where inclusion of one of these improves accuracy for 
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detecting drug sensitivity, and the other improves detection of resistance. Substituting 

the controlling gene for both curated genes in the PE-signature might improve accuracy 

of detection of both outcomes.   

Transferability of these cell line-based models to other independent cell line datasets 

was also evaluated.90 PE TKI models were analyzed using data from the Sanger 

Genomics of Drug Sensitivity in Cancer Project (GDSC), including RNA-seq derived 

cancer cell line-derived gene expression data (E-MTAB-3983; ArrayExpress) based on 

IC50 values of cell lines in CancerRxGene.91 Using median IC50 to distinguish sensitivity 

from resistance, the top SVM that we derived for each TKI could not significantly 

separate cell lines sensitive and resistant to the same drug in GDSC (MCC from 0 to 

0.19; OA ranging from 50-58%). Altering the IC50 thresholds did not significantly change 

these results. Applying this analysis to cell lines from specific tissues used in the 

derivation of the specific TKI signatures, PE-Ima was more accurate for seven imatinib-

treated cell lines derived from intestinal tumours (OA of 69%; MCC – 0.41). The 

disparity in performance between the training and testing data sets may be related to 

differences in the expression patterns in different tissue types, or batch effects. IC50 

measurements for the same cell line and drug are known to vary significantly between 

studies, especially when the cell line is drug insensitive,92 which may contribute to the 

poor correlation between results of both datasets.  

Transferability of SVMs to different patient datasets may also be confounded by several 

other limitations of applying ML models derived from cell line expression to predict 

responses to the same drugs using patient GE data. By contrast with tumours, cancer 

cell lines tend to have a stable genetic profile when grown under controlled culturing 
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conditions. Consequently, they tend to lack the genetic heterogeneity present in many 

tumour types,93 particularly during progression, which often occurs concomitant with 

evolution of acquired chemotherapy resistance.94 Cancer cell lines also lack 

extracellular matrix, which contributes to tumour growth, migration and invasion in vivo. 

These differences may challenge prediction accuracy of cell line-based SVMs using 

patient GE and/or CN. Clinical outcome measures within patient data sets were not 

consistent between different studies of the same tumour type. Finally, the cell line GE 

data used for training originated in this study solely from breast cancer, whereas patient 

tumour GE data were also derived from other cancer types.  

5. Conclusions 

The enhanced performance of chemotherapy response models developed using 

pathway-extension (over curated-only models) suggests that an interaction between a 

drug and its target may not directly relate with drug response; sensitivity could also be 

caused by a cellular event downstream of the drug-target interaction. PE models 

derived in this study demonstrated strong efficacy in selecting relevant genes, 

identifying novel molecular biomarker candidates, and predicting patient responses to 

TKIs. Strong-performing PE models appear to predict chemotherapy response in a 

cancer-type specific fashion, as many pathway-related genes selected by SVM software 

as novel candidate biomarkers of TKI efficacy were already prognostic biomarkers for 

the cancer type patients within the testing set were afflicted with. Ensemble averaging of 

multiple PE SVMs improved predictive accuracy in most cases and were found to be 

most commonly correct when predictions were highly consistent across each model 

constituting the ensemble. PE-Erl was also shown to have greater accuracy when 
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considering solely female NSCLC patients. Interestingly, RELB, a feature in this 

signature, had previously demonstrated sexually dimorphic expression upon cancer 

treatment. The process of including pathway-related genes in biochemically inspired 

gene signatures can produce highly specific and accurate SVMs. PE models may have 

practical value, both in identifying novel biomarkers of chemosensitivity and in selecting 

effective chemotherapeutic agents.  
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Table 1. Performance of Curated SVMs and PE Models on Training and Patient Testing Data 

TKI 
(Patient Tumor Type; 

GEO Dataset) 
Model Gene Signature (SVM: C; σ) 

Validation  Training 

MCC Sensitive Resistant Overall  Log Loss Misclass-
ification 

Erlotinib 
(NSC Lung 
Carcinoma; 
GSE61676) 

Cur BAX, FOXO1 (100; 1) 0.08 100% 3% 23%  - 0.38 

PE 
NEK7, SLCO3A1, RELB, FRMD4A, HSD17B2, 
CDK6, PALM, IL1RN, SMYD1, BAG2, GNG3, 

SULT1E1 (1000; 100) 
0.41 42% 93% 83% 

 
0.01 - 

          

Sorafenib 
(Hepatocellular 

Carcinoma; 
GSE109211) 

Cur PDGFRB, TGFB1, SLCO1B1 (10000; 1) 0.28 96% 29% 50%  0.72 - 

PE 
ELF5, RBP5, GC, PRKD2, SCNN1A, 

COL25A1, TGFB1, DACT1, LHX8 (100000; 
1000) 

0.72 72% 95% 88% 
 

0.05 - 

          

Gefitinib 
(Breast Cancer; 

GSE33658) 

Cur GRP (10000; 10) 0.16 13% 100% 29%  0.53 - 

PE CNTN1, CXCL2, NTRK3, GCG (10000; 10) 0.67 100% 50% 91% 
 

0.58 - 

          

Lapatinib 
(Breast Cancer; 

GSE66399) 

Cur ERBB2 (10000; 1) 0.31 13% 100% 77%  0.72 - 

PE FBP1, ITGA11, TRIM68, BCAT1, ZNF780A, 
UTP20, GRB7 (10; 10) 0.33 63% 74% 71%  0.01 - 

          

Imatinib 
(Leukemia; 
GSE14671) 

Cur IL3, ABL2, CDKN1A (10000; 10) 0.23 41% 83% 52%  - 0.42 

PE LIF, MRGPRF, GRM3, TNNI1, CACNA2D1 
(100000; 100) 0.18 84% 33% 70%  - 0.06 

          

Sunitinib 
(Glioma; 

GSE51305) 

Cur HGF, VEGFC, TSC1, AXL, ENPP2, NFKB1 
(100000; 10000) 0.31 87% 45% 59%  - 0.14 

PE EPHA2, NR4A1, SIAE (100000; 100000) 0.61 67% 92% 83%  - 0.20 
Cur - Curated models derived from genes associated with drug in literature; PE - Pathway-extended models; MCC - Matthews Correlation 
Coefficient; Sensitive - Accuracy to Drug Responsive Patients; Resistant - Accuracy to Non-Responsive Patients; Overall - Combined accuracy 
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Table 1 - Performance of Curated SVMs and PE Models on Training and Patient Testing Data. 

Curated and PE SVMs were derived for each TKI based on ability sorting cancer cell lines. The C (box-

constraint), σ (kernel-scale) and features comprising the best-performing model are indicated. Models 

listed are those which exhibited optimal performance, defined as the model with the highest MCC against 

the patient data set. ‘Validation’ indicates the predicted drug response of patients made by each curated 

and PE model as compared to the observed response provided by these studies. ‘Training’ indicates 

either percent misclassification or overall log-loss of the cell line-based model by cross-validation, 

depending on which minimization metric was used in said model derivation. 
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Table 2. Models used in the Ensemble Averaging analysis of Patient Data 

TKI Gene Signatures (SVM: C; σ) AUC MCC Sensitive Resistant Overall  Consensus† Non-consensus†
 

Erlotinib 1. NEK7, SLCO3A1, RELB, FRMD4A, HSD17B2, CDK6, 
PALM, IL1RN, SMYD1, BAG2, GNG3, SULT1E1 (1000; 
100) 

0.61 
0.45 44% 94% 84% 89% 57% 

2. RET, HDGF, B3GNT5, BAG2, DSP, CAPN1, MAF, 
BCL2, MAP2K6, RPL13A, PTPRZ1, OLIG2 (10000; 100) 0.47 

         

Sorafenib 1. ELF5, RBP5, GC, PRKD2, SCNN1A, COL25A1, TGFB1, 
DACT1, LHX8 (100000; 1000) 0.88 

0.79 81% 96% 91% 94% 83% 

2. ELF5, RBP5, GC, PRKD2, SCNN1A, GRM7, COL25A1, 
TGFB1, DACT1, LHX8 (100000; 1000) 0.85 

3. CPT1C, DOPEY2, KRT26, DGUOK, DLC1, CYP11B1, 
CALCA, MAPK1, ANK3, KRAS, FURIN, OR2A14 (10000; 
10000) 

0.86 

4. FURIN, HTR3D, LAMA1, STMN2, SLITRK3, CACNA1S, 
SCN2A, CCL5, TRIM32 (100000; 100000) 0.93 

         

Lapatinib 1. FBP1, ITGA11, TRIM68, BCAT1, ZNF780A, UTP20, 
GRB7 (10; 10) 0.70 

0.33 63% 74% 71% 55% 80% 
2. S100A12, API5, GRHL1, TAS1R1, TUBB1, CORO1A 
(100000; 100) 0.56 

         

Sunitinib 1. EPHA2, NR4A1, SIAE (100000; 100000) 0.78 

0.40 83% 58% 67% 91% 29% 2. SCN3B, MED29, MPST, TSC1, AHR, CARD9, RPL3 
(100000; 100000) 0.79 

         

Imatinib 1. LIF, MRGPRF, GRM3, TNNI1, CACNA2D1 (100000; 
100) 0.55 

 0.27 47% 83% 57% 85% 20% 
2. WASF3, TNNI1 (10000; 10000) 0.65 

         

Gefitinib 1. CNTN1, CXCL2, NTRK3, GCG (10000; 10) 0.5 
0.39 89% 50% 82% 100% 33% 

2. BDNF, PRKCB (10000; 100)  0.69 
† 
Consensus and non-consensus predictions are when the Ensemble predicts the same outcome for a patient ≥ or <75% of the time, respectively 
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Table 2 - Models used in the Ensemble Averaging analysis of Patient Data. Ensemble averaging 

amalgamates predictions from numerous SVMs for an individual TKI, weighted by AUC (indicated). Each 

SVM signature included within ensemble averaging predicted the response of each patient treated with its 

associated TKI, and the majority prediction was used of that of the ensemble. Overall, the accuracy of the 

ensemble prediction was equivalent to or greater than any individual model within it. 
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Figure Legends 
 

Figure 1 – Procedure for Pathway Gene Selection. An initial set of genes with known 

associations to a particular TKI (here we show a subset of sorafenib-related genes) are selected 

and then evaluated by MFA, which was used to find a correlation between cell line drug 

sensitivity (GI50) and the GE or CN of these genes in those cell lines (left). MFA correlation 

circles visualize these relationships (bottom). The gene list is extended, using pathway and 

interaction databases (i.e. PathwayCommons) to find genes related to curated genes which 

showed MFA correlation to GI50 (one-node distant genes; middle-left). The list is extended again 

from the MFA-correlating one-node distant genes (two-node distant genes; middle-right). All 

curated and extended genes which showed an MFA correlation were then used as features to 

generate a final predictive SVM gene signature for the evaluated TKI (right). Genes within the 

best performing sorafenib signature are indicated in thick borders (black for curated genes, 

purple for pathway-extended genes). 

  

Figure 2 - Accuracy of Curated and Pathway-Extended SVMs on TKI Sensitive and 

Resistant Patients. The predictive accuracy of the best-performing curated (C-) and Pathway-

Extended (PE-) models for each TKI were arranged based on their accuracy in classification of 

drug sensitive and resistant tumour patients. This illustrates how curated models are often only 

accurate towards one patient class (sensitive or resistant) but not both (red), which is an issue 

as the patient data was often imbalanced (number of sensitive | resistant patients in each study: 

lapatinib [‘Lap’; n= 8 | 23], imatinib [‘Ima’; n= 17 | 6], sunitinib [‘Sun’; n= 6 | 12], erlotinib [‘Erl’; n= 

9 | 34], gefitinib [‘Gef’; n= 10 | 2], and sorafenib [‘Sor’; n= 21 | 46]). Conversely, predictions by 

PE SVMs were often more balanced (blue), possessing moderate to high accuracy for both 

sensitive and resistant patients, and consequently greater accuracy as a whole.  
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Figure 3 - Connection Network for Pathway-Extended TKI SVMs. Schematic relationships 

outlining the pathway connections for the best-performing PE model for each drug in panels A) 

sorafenib; B) lapatinib; C) gefitinib; D) sunitinib; E) imatinib and F) erlotinib. All symbols 

indicated are gene names. The erlotinib model was highly interconnected and is represented as 

a table. Genes in red are features selected for the final PE-Sor gene signature, while genes 

colored green were chosen in a separate PE gene signature with comparable performance. 

Genes in black were not part of the final signature themselves but correlated with efficacy to 

sorafenib by MFA and expanded the gene pool through biochemical connections they 

possessed to one-node or two-node distant genes. 

 

Figure 4 – Effect of Removal of Individual Genes from Signature on Overall Accuracy 

using Patient Tumour Data. The patient classification accuracy and MCC of the strongest 

performing PE models are altered upon the removal of each component gene listed. These PE 

TKI gene signatures are: A) sorafenib [PE-Sor]; B) lapatinib [PE-Lap]; C) gefitinib [PE-Gef]; D) 

sunitinib [PE-Sun]; E) imatinib [PE-Ima]; and F) erlotinib [PE-Erl]. Blue and red bars denote the 

overall accuracy and MCC of the model after gene removal, respectively.  

 

Figure 5 –Schematic of the Pathway-Extended Genes in the Sorafenib Model PE-Sor. The 

best performing sorafenib model PE-Sor is a 9-gene model consists of a single curated gene 

(TGFB1) and eight genes selected by pathway-extension (ELF5, RBP5, GC, PRKD2, SCNN1A, 

COL25A1, DACT1, and LHX8). This cell schematic provides context of the cellular mechanisms 

of action and/or known relationships between genes with a documented impact on sorafenib 

activity (‘curated’ genes; black borders) and those genes selected by pathway extension (purple 

borders). Genes with grey borders are not curated nor pathway-extended genes and are simply 

present to give context between genes and their known cellular functions. Thicker borders 
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specify those genes in the PE-Sor model, while gene colour-coding indicates how GE and/or 

copy number correlated to sorafenib GI50 by MFA. 
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