
Supplementary Notes for “Genome-wide identification of the

genetic basis of amyotrophic lateral sclerosis”

1 Mathematical foundation of RefMap

Here, we provide a mathematical theory to justify Eq. 1 in the Method section of the main
text. To facilitate the development of the theory, we first describe a universal discrimina-
tive framework that models the relationship between the genotype and phenotype, and then
deduce a general distribution over summary statistics from this framework. Based on this
result, a flexible probabilistic model that characterizes summary statistics with various prior
structures can be developed, which generalizes multiple previous studies [1–4, 6–8]. In par-
ticular, Equation 1 of RefMap follows directly after assuming a linear relation between the
genotype and phenotype. In the following, we will develop the framework in both cases of
quantitative trait and case-control studies.

1.1 Quantitative trait studies

We start from considering a general genotype-phenotype model for continuous traits, i.e.,

yn = F (xn,w) + εn, n = 1, · · · , N, (1)

in which N is the sample size, xn and yn are the genotypes and phenotype for the nth sample,
respectively, F is an unknown (usually non-linear) function with parameters w determining
personal phenotype from his/her genotypes, and εn is the random noise following

εn ∼ N (0, σ2
ε ). (2)

Note that as a routine procedure, genotypes are first standardized by

xni =
gni − 2pi√
2pi(1− pi)

, i = 1, · · · ,M, (3)

where M is the number of alleles, gni is the genotype of the ith allele for the nth sample, and pi
is the frequency of the ith allele in the study cohort. After standardization, the sample mean
and sample variance of each allele are 0 and 1, respectively. Moreover, we adopt a general
setting and treat both genotypes and function parameters as random variables, yielding

yn | xn,w, σε ∼ N (F (xn,w), σ2
ε ). (4)
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Following the conventional annotation in the genome-wide association study (GWAS), the
estimated effect sizes β̂i for individual alleles are the most widely-used summary statistics,
which are closely related to χ2 and Z-score. Given the genotype standardization, we have

β̂i =
xᵀ
i y

N
, (5)

where xi is the genotype vector for the ith allele and y = y1:N . With matrix representation,
we have

β̂ =
1

N
Xᵀy =

1

N

N∑
n=1

xnyn, (6)

where X = (xni) ∈ RN×M . Indeed, we have the following theorem characterizing the asymp-
totic distribution of

√
N β̂.

Theorem 1. Given the definitions in Eqs. 1, 2 and 5, when the sample size N is large
enough, we have √

N β̂ |X,w, σε ∼ N
(√

Nµ(X, F,w), σ2
εΣLD

)
, (7)

where ΣLD is the in-sample linkage disequilibrium (LD) matrix quantifying SNP correlations,
and µ(X, F,w) is a quantity depending on the genotypes and the discriminative function F .

Proof. We first show that
√
N β̂ follows a normal distribution asymptotically. In fact, accord-

ing to Eq. 6, given the genotypes and the discriminative function,
√
N β̂ can be computed by

the sum of xnyn, which are independent with each other but with different expectations. On
the other hand, the variance of xnyn is given by

Var [xnyn | xn,w, σε] = Var [xn(F (xn,w) + εn) | xn,w, σε]
= Var [xnεn | xn,w, σε]
= E

[
ε2nxnx

ᵀ
n | xn,w, σε

]
= xnx

ᵀ
nσ

2
ε , (8)

yielding

lim
N→∞

1

N

N∑
n=1

xnx
ᵀ
nσ

2
ε = lim

N→∞

1

N
XᵀX · σ2

ε

= σ2
ε Σ̂LD

≈ σ2
εΣLD, (9)

in which the estimated LD matrix Σ̂LD = (r̂ij) is given by

r̂ij =
xᵀ
ixj√

xᵀ
ixi
√
xᵀ
jxj

=
1

N
xᵀ
ixj , (10)

and the last approximation is guaranteed by E[r̂ij ] = rij = E[xixj ]. Therefore, according

to the multivariate Lindeberg-Feller central limit theorem (CLT), we conclude that
√
N β̂ =
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1/
√
N
∑N

i=1 xnyn asymptotically follows a normal distribution with covariance σ2
εΣLD, whose

expectation is given by

1√
N

N∑
n=1

E [xnyn | xn,w, σε] =
1√
N

N∑
n=1

E [xn(F (xn,w) + εn) | xn,w, σε]

=
1√
N

N∑
n=1

xnF (xn,w)

=
√
Nµ(X, F,w), (11)

where µ(·) is defined as

µ(X, F,w) =
1

N

N∑
n=1

xnF (xn,w). (12)

This completes the proof.

Note that if we use Z-scores computed by GWAS as the approximation of
√
N β̂/σε, i.e.,

dividing β̂i by its estimated standard error, we have

ẑ |X,w ∼ N
(√

Nµ(X, F,w),ΣLD

)
, (13)

in which σε is absorbed into µ(·) for annotation brevity.

1.2 Case-control studies

We state the analysis for case-control studies using a Bernoulli distribution over case-control
status, i.e.,

yn | πn ∼ Bernoulli(πn), n = 1, · · · , N, (14)

whose logit is defined similarly as Eq. 1 but without random noise, i.e.,

log
πn

1− πn
= F (xn,w). (15)

After a few calculations we can easily get

πn = σ(F (xn,w)), (16)

where σ(·) is the sigmoid function defined by σ(x) = 1/(1 + exp(−x)).
To facilitate the following analysis, here we illustrate the standardization procedure in

more detail, i.e.,

xni =
gni − 2p̂i√
2p̂i(1− p̂i)

, (17)

where gni is the genotype coded by 0, 1 and 2, and p̂i is the in-sample allele frequency.
Therefore, suppose we have the same number (N/2) of cases and controls in the study cohort,
the widely-used Z-scores for case-control studies defined as

ẑi =

√
N(p̂+

i − p̂
−
i )√

2p̂i(1− p̂i)
(i = 1, · · · ,M) (18)
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can be written as

ẑ =
1√
N

N∑
n=1

(21{yn = 1)} − 1)xn. (19)

Again, utilizing the multivariate Lindeberg-Feller CLT, we can derive the asymptotic
conditional distribution of ẑ, which is approximately the same as that in the quantitative
trait studies (Eq. 13). In particular, we have the following result.

Theorem 2. Given the definitions in Eqs. 14, 15 and 19, when the sample size N is large
enough, we have

ẑ |X,w ∼ N
(√

Nµ(X, F,w),ΣLD

)
, (20)

where ΣLD is the in-sample LD matrix, and µ(X, F,w) is a quantity depending on the geno-
types and the discriminative function.

Proof. Conditioned on X and w, the variance of (21{yn = 1)} − 1)xn can be calculated as

Var [(21{yn = 1} − 1)xn] = xnx
ᵀ
n − E [21{yn = 1} − 1]2 xnx

ᵀ
n

= 4xnx
ᵀ
nP [yn = 1] (1− P [yn = 1])

= 4xnx
ᵀ
nVar [yn] , (21)

where the conditions are omitted for brevity. In fact, as Var [yn | xn,w] < 1, we conclude that
the average of variance 1/N

∑N
n=1 Var [(21{yn = 1} − 1)xn | xn,w] converges as N → ∞,

whose limit is denoted as Σ∞. According to the multivariate Lindeberg-Feller CLT, the
asymptotic conditional distribution of ẑ is a normal distribution with covariance matrix Σ∞.

To get a clearer structure of Σ∞, we now apply a few approximations for Eq. 21. In
particular, we have

Σ∞ = lim
N→∞

1

N

N∑
n=1

Var [(21{yn = 1} − 1)xn | xn,w]

= lim
N→∞

1

N

N∑
n=1

4xnx
ᵀ
nVar [yn | xn,w]

= E [4xnx
ᵀ
nVar [yn | xn,w]]

≈ 4ΣLDE [Var [yn | xn,w]]

= 4ΣLD (Var [yn | w]−Var [E [yn | xn,w]])

< 4ΣLDVar [yn | w]

≈ 4ΣLDE [Var [yn | w]]

= 4ΣLD (Var [yn]−Var [E [yn | w]])

< 4ΣLDVar [yn]

= ΣLD, (22)

in which the third and the fourth “=” come from the law of total variance, the first and
the second “<” are implied by the positivity of variance, and ΣLD is the in-sample LD
matrix. For the last “=”, we argue that the expectation and variance in Eq. 22 are taken
over the sampling space in case-control studies, rather than the general population. Under
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the assumption of equal number of cases and controls, the sampling disease prevalence is 0.5,
yielding Var [yn] = 0.25.

Furthermore, the expectation of the asymptotic conditional distribution can be calculated
as

1√
N

N∑
n=1

E [(21{yn = 1} − 1)xn | xn,w] =
1√
N

N∑
n=1

xn (2σ(F (xn,w))− 1)

=
√
Nµ(X, F,w), (23)

where we define

µ(X, F,w) =
1

N

N∑
n=1

xn (2σ(F (xn,w))− 1) . (24)

This completes the proof.

1.3 A linear model for RefMap

We consider a linear model that underlies the design of RefMap. Specifically, in the quanti-
tative trait studies, we define

F (xn,w) = w0 +
M∑
i=1

wixni. (25)

Note that this linear model has been widely used in traditional GWAS studies [1–3], and wi
is called the effect size of the ith allele. The linear model for case-control studies can be
developed similarly by considering the approximation of sigmoid function using its Taylor
expansion. Therefore, the expectation of the asymptotic distribution of Z-scores can be
calculated as

√
Nµ(X, F,w) =

1√
N

N∑
n=1

xn (xᵀ
nw + w0)

=
√
NΣ̂LDw, (26)

indicating that the expected Z-score for each allele is determined by its effect size as well as
its strongly-associated neighbors. By absorbing

√
N into w, we eventually get Eq. 1 in the

RefMap model.

2 Inference for RefMap

The RefMap model was defined in Eqs. 1 to 18 in the Method section of the main text. Here,
we are interested in the posterior p(T | Z,S), whose exact calculation is intractable. There-
fore, we seek for approximate inference based on the mean-field variational inference (MFVI).
Basically, we first assume that the approximate posterior over latent variables factorizes,
indicating conditional independence across latent variables, and then perform approximate

5



inference by optimizing the evidence lower bound (ELBO) with respect to factorized proposal
distributions, i.e.,

q (λj,k, λ, τ ,v,w,M ,T ,U ,Λ) = max
q

Eq
[
log

(
p (Z, λj,k, λ, τ ,v,w,M ,T ,U ,Λ | S)

q (λj,k, λ, τ ,v,w,M ,T ,U ,Λ)

)]
,

(27)
which can be shown to be equivalent to minimizing the Kullback-Leibler (KL) divergence
between the true posterior and its proposal.

In the following, we will first introduce several specific techniques we used in MFVI, and
then summarize the update rules for different variational parameters. At last, a coordinate
ascent-based VI algorithm will be given.

2.1 Rectification nonlinearity

We impose non-negativity on v−1 and v+1 using the technique of rectification nonlinearity
proposed in [5]. This technique relaxes the sparsity constraint over factors and meanwhile
enjoys tractable variational inference.

We first note that the approximate posterior q(r−1) from MFVI follows the free-form
solution

q(r−1) =
1

Z̃−1

K∏
k=1

Jk∏
j=1

N
(
E[mj,k] | −v−1,E[τ−1]−1

)E[t(−1)
j,k

]
×N

(
r−1 | E[m−1],E[λ−1]−1

)
,

(28)

where Z̃−1 is the normalization term to be computed later. Moreover, it can be easily shown
that Eq. 28 can be written as q(r−1) = qp(r−1) + qn(r−1) with the form

qp(r−1) =
w̃

(−1)
p

Z̃−1

N
(
r−1 | µ̃(−1)

p ,
(
λ̃(−1)
p

)−1
)
u(r−1), (29)

qn(r−1) =
w̃

(−1)
n

Z̃−1

N
(
r−1 | µ̃(−1)

n ,
(
λ̃(−1)
n

)−1
)
u(−r−1), (30)

in which

µ̃(−1)
p =

−E[τ−1]
K∑
k=1

Jk∑
j=1

E
[
t
(−1)
j,k

]
E[mj,k] + E[λ−1]E[m−1]

(λ̃(−1)
p

)−1
,

µ̃(−1)
n = E[m−1],

λ̃(−1)
p = E[τ−1]

K∑
k=1

Jk∑
j=1

E
[
t
(−1)
j,k

]
+ E[λ−1],

λ̃(−1)
n = E[λ−1],

(31)

(32)

(33)

(34)

and u(·) is the standard step function. With Eqs. 31 to 34, w̃
(−1)
p and w̃

(−1)
n can be computed

by integrating Eqs. 28, 29 and 30 with respect to r−1. Then the normalization term is given
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by

Z̃−1 =
w̃

(−1)
n

2
erfc

(
µ̃(−1)
n

√
λ̃

(−1)
n /2

)
+
w̃

(−1)
p

2
erfc

(
−µ̃(−1)

p

√
λ̃

(−1)
p /2

)
. (35)

The moments for posteriors are obtained by

E[r−1] = M̃ (−1)
p + M̃ (−1)

n , (36)

E[r2
−1] = M̃ (−2)

p + M̃ (−2)
n , (37)

E[v−1] = M̃ (−1)
p , (38)

E[v2
−1] = M̃ (−2)

p , (39)

where

M̃ (−0)
p =

w̃
(−1)
p

2Z̃−1

erfc

(
−µ̃(−1)

p

√
λ̃

(−1)
p /2

)
, (40)

M̃ (−1)
p =

w̃
(−1)
p

2Z̃−1

erfc

(
−µ̃(−1)

p

√
λ̃

(−1)
p /2

)
µ̃(−1)
p +

√
2

πλ̃
(−1)
p

1

exp

(
λ̃

(−1)
p

(
µ̃

(−1)
p

)2
/2

)
 , (41)

M̃ (−2)
p =

w̃
(−1)
p

2Z̃−1

erfc

(
−µ̃(−1)

p

√
λ̃

(−1)
p /2

)((
µ̃(−1)
p

)2
+

1

λ̃
(−1)
p

)
+

√
2

πλ̃
(−1)
p

µ̃
(−1)
p

exp

(
λ̃

(−1)
p

(
µ̃

(−1)
p

)2
/2

)
 ,

(42)

M̃ (−0)
n =

w̃
(−1)
n

2Z̃−1

erfc

(
µ̃(−1)
n

√
λ̃

(−1)
n /2

)
, (43)

M̃ (−1)
n =

w̃
(−1)
n

2Z̃−1

erfc

(
µ̃(−1)
n

√
λ̃

(−1)
n /2

)
µ̃(−1)
n −

√
2

πλ̃
(−1)
n

1

exp

(
λ̃

(−1)
n

(
µ̃

(−1)
n

)2
/2

)
 , (44)

M̃ (−2)
n =

w̃
(−1)
n

2Z̃−1

erfc

(
µ̃(−1)
n

√
λ̃

(−1)
n /2

)((
µ̃(−1)
n

)2
+

1

λ̃
(−1)
n

)
−
√

2

πλ̃
(−1)
n

µ̃
(−1)
n

exp

(
λ̃

(−1)
n

(
µ̃

(−1)
n

)2
/2

)
 .

(45)

Similar to q(r−1), the posterior q(r+1) also follows a free-form solution given by

q(r+1) =
1

Z̃+1

K∏
k=1

Jk∏
j=1

N
(
E[mj,k] | v+1,E[τ+1]−1

)E[t(+1)
j,k

]
×N

(
r+1 | E[m+1],E[λ+1]−1

)
,

(46)

where Z̃+1 is the normalization term. Equation 46 can also be written as q(r+1) = qp(r+1) +

7



qn(r+1) with the form

qp(r+1) =
w̃

(+1)
p

Z̃+1

N
(
r+1 | µ̃(+1)

p ,
(
λ̃(+1)
p

)−1
)
u(r+1), (47)

qn(r+1) =
w̃

(+1)
n

Z̃+1

N
(
r+1 | µ̃(+1)

n ,
(
λ̃(+1)
n

)−1
)
u(−r+1), (48)

in which

µ̃(+1)
p =

E[τ+1]

K∑
k=1

Jk∑
j=1

E
[
t
(+1)
j,k

]
E[mj,k] + E[λ+1]E[m+1]

(λ̃(+1)
p

)−1
,

µ̃(+1)
n = E[m+1],

λ̃(+1)
p = E[τ+1]

K∑
k=1

Jk∑
j=1

E
[
t
(+1)
j,k

]
+ E[λ+1],

λ̃(+1)
n = E[λ+1].

(49)

(50)

(51)

(52)

After computing w̃
(+1)
p and w̃

(+1)
n , the normalization term is given by

Z̃+1 =
w̃

(+1)
n

2
erfc

(
µ̃(+1)
n

√
λ̃

(+1)
n /2

)
+
w̃

(+1)
p

2
erfc

(
−µ̃(+1)

p

√
λ̃

(+1)
p /2

)
. (53)

The moments for posteriors are obtained by

E[r+1] = M̃ (+1)
p + M̃ (+1)

n , (54)

E[r2
+1] = M̃ (+2)

p + M̃ (+2)
n , (55)

E[v+1] = M̃ (+1)
p , (56)

E[v2
+1] = M̃ (+2)

p , (57)

in which

M̃ (+0)
p =

w̃
(+1)
p

2Z̃+1

erfc

(
−µ̃(+1)

p

√
λ̃

(+1)
p /2

)
, (58)

M̃ (+1)
p =

w̃
(+1)
p

2Z̃+1

erfc

(
−µ̃(+1)

p

√
λ̃

(+1)
p /2

)
µ̃(+1)
p +

√
2

πλ̃
(+1)
p

1

exp

(
λ̃

(+1)
p

(
µ̃

(+1)
p

)2
/2

)
 , (59)

M̃ (+2)
p =

w̃
(+1)
p

2Z̃+1

erfc

(
−µ̃(+1)

p

√
λ̃

(+1)
p /2

)((
µ̃(+1)
p

)2
+

1

λ̃
(+1)
p

)
+

√
2

πλ̃
(+1)
p

µ̃
(+1)
p

exp

(
λ̃

(+1)
p

(
µ̃

(+1)
p

)2
/2

)
 ,

(60)

M̃ (+0)
n =

w̃
(+1)
n

2Z̃+1

erfc

(
µ̃(+1)
n

√
λ̃

(+1)
n /2

)
, (61)
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M̃ (+1)
n =

w̃
(+1)
n

2Z̃+1

erfc

(
µ̃(+1)
n

√
λ̃

(+1)
n /2

)
µ̃(+1)
n −

√
2

πλ̃
(+1)
n

1

exp

(
λ̃

(+1)
n

(
µ̃

(+1)
n

)2
/2

)
 , (62)

M̃ (+2)
n =

w̃
(+1)
n

2Z̃+1

erfc

(
µ̃(+1)
n

√
λ̃

(+1)
n /2

)((
µ̃(+1)
n

)2
+

1

λ̃
(+1)
n

)
−
√

2

πλ̃
(+1)
n

µ̃
(+1)
n

exp

(
λ̃

(+1)
n

(
µ̃

(+1)
n

)2
/2

)
 .

(63)

2.2 Local variational method

We adopt the local variational method to tackle the intractability of MFVI for w due to the
introduction of the sigmoid function (Eq. 16 in the Method section). In particular, we have
the following result regarding Eq. 15 in the Method section:

(0.5πj,k)
t
(−1)
j,k (1− πj,k)t

(0)
j,k(0.5πj,k)

t
(+1)
j,k ∝ π

t
(−1)
j,k +t

(+1)
j,k

j,k (1− πj,k)t
(0)
j,k

= exp
{
wᵀsj,k

(
t
(−1)
j,k + t

(+1)
j,k

)}
σ (−wᵀsj,k)

≥ exp
{
wᵀsj,k

(
t
(−1)
j,k + t

(+1)
j,k

)}
σ(ξj,k) exp

{
−1

2
(wᵀsj,k + ξj,k)− χ(ξj,k)

(
(wᵀsj,k)

2 − ξ2
j,k

)}
,

(64)

where

χ(ξ) =
1

2ξ

(
σ(ξ)− 1

2

)
. (65)

Then we can perform standard MFVI with respect to the lower bound of Eq. 64, which yields

ln q(w) ∝ E−w

 K∑
k=1

Jk∑
j=1

wᵀsj,k

(
t
(−1)
j,k + t

(+1)
j,k

)
− 1

2
wᵀsj,k − χ(ξj,k)(w

ᵀsj,k)
2 − 1

2
wᵀΛw


= −1

2
wᵀ

E[Λ] + 2
K∑
k=1

Jk∑
j=1

χ(ξj,k)sj,ks
ᵀ
j,k

w +wᵀ
K∑
k=1

Jk∑
j=1

sj,k

(
E
[
t
(−1)
j,k

]
+ E

[
t
(+1)
j,k

]
− 1

2

)
.

(66)

This indicates that q(w) follows a normal distribution given by

q
(
w; µ̃w, Λ̃w

)
= N

(
µ̃w, Λ̃w

)
, (67)

in which

µ̃w = Λ̃
−1
w

K∑
k=1

Jk∑
j=1

sj,k

(
E
[
t
(−1)
j,k

]
+ E

[
t
(+1)
j,k

]
− 1

2

)
,

Λ̃w = E[Λ] + 2

K∑
k=1

Jk∑
j=1

χ(ξj,k)sj,ks
ᵀ
j,k.

(68)

(69)
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2.3 Update rules for other variational parameters

For other latent variables in RefMap besides v−1, v+1 and w, we carry out the naive MFVI
and obtain

q
(
uk; µ̃k, Λ̃k

)
= N

(
uk; µ̃k, Λ̃

−1
k

)
, (70)

q
(
mj,k; µ̃j,k, λ̃j,k

)
= N

(
mj,k; µ̃j,k, λ̃

−1
j,k

)
, (71)

q(λj,k; ãj,k, b̃j,k) = Gamma
(
λj,k; ãj,k, b̃j,k

)
, (72)

q
(
τ−1; ã−1, b̃−1

)
= Gamma

(
τ−1; ã−1, b̃−1

)
, (73)

q
(
τ+1; ã+1, b̃+1

)
= Gamma

(
τ+1; ã+1, b̃+1

)
, (74)

q
(
τ0; ã0, b̃0

)
= Gamma

(
τ0; ã0, b̃0

)
, (75)

q
(
m−1, λ−1; µ̃−1, β̃−1, c̃−1, d̃−1

)
= N

(
m−1; µ̃−1,

(
β̃−1λ−1

)−1
)
Gamma

(
λ−1; c̃−1, d̃−1

)
,

(76)

q
(
m+1, λ+1; µ̃+1, β̃+1, c̃+1, d̃+1

)
= N

(
m+1; µ̃+1,

(
β̃+1λ+1

)−1
)
Gamma

(
λ+1; c̃+1, d̃+1

)
,

(77)

q (tj,k; π̃j,k) = π̃
tj,k
j,k , (78)

q
(
Λ; W̃Λ, ν̃Λ

)
=W

(
W̃Λ, ν̃Λ

)
, (79)

in which

µ̃k = Λ̃
−1
uk

(√
Nzk + E[Λk]E[mk]

)
,

Λ̃k = NΣk + E[Λk],

µ̃j,k =

(
E[λj,k]

Ij,k∑
i=1

E[ui,j,k]− E[v−1]E[τ−1]E
[
t
(−1)
j,k

]
+ E[v+1]E[τ+1]E

[
t
(+1)
j,k

])
λ̃−1
j,k ,

λ̃j,k = Ij,kE[λj,k] + E
[
t
(−1)
j,k

]
E[τ−1] + E

[
t
(0)
j,k

]
E[τ0] + E

[
t
(+1)
j,k

]
E[τ+1],

ãj,k = a0 +
Ij,k
2
,

b̃j,k = b0 +
1

2

Ij,k∑
i=1

E
[
u2
i,j,k

]
+
Ij,k
2

E
[
m2
j,k

]
− E [mj,k]

Ij,k∑
i=1

E [ui,j,k] ,

ã−1 = a0 +
1

2

K∑
k=1

Jk∑
j=1

E
[
t
(−1)
j,k

]
,

b̃−1 = b0 +
1

2

K∑
k=1

Jk∑
j=1

E
[
t
(−1)
j,k

] (
E
[
m2
j,k

]
+ E

[
v2
−1

]
+ 2E [mj,k]E [v−1]

)
,

(80)

(81)

(82)

(83)

(84)

(85)

(86)

(87)
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ã+1 = a0 +
1

2

K∑
k=1

Jk∑
j=1

E
[
t
(+1)
j,k

]
,

b̃+1 = b0 +
1

2

K∑
k=1

Jk∑
j=1

E
[
t
(+1)
j,k

] (
E
[
m2
j,k

]
+ E

[
v2

+1

]
− 2E [mj,k]E [v+1]

)
,

ã0 = a0 +
1

2

K∑
k=1

Jk∑
j=1

E
[
t
(0)
j,k

]
,

b̃0 = b0 +
1

2

K∑
k=1

Jk∑
j=1

E
[
m2
j,k

]
E
[
t
(0)
j,k

]
,

µ̃−1 =
β0µ0 + E[r−1]

β0 + 1
,

β̃−1 = β0 + 1,

c̃−1 = a0 +
1

2
,

d̃−1 = b0 +
1

2
β0µ

2
0 +

1

2
E
[
r2
−1

]
− 1

2(β0 + 1)
(β0µ0 + E[r−1])2 ,

µ̃+1 =
β0µ0 + E[r+1]

β0 + 1
,

β̃+1 = β0 + 1,

c̃+1 = a0 +
1

2
,

d̃+1 = b0 +
1

2
β0µ

2
0 +

1

2
E
[
r2

+1

]
− 1

2(β0 + 1)
(β0µ0 + E[r+1])2 ,

π̃
(i)
j,k =

exp
{
ρ̃

(i)
j,k

}
exp

{
ρ̃

(−1)
j,k

}
+ exp

{
ρ̃

(0)
j,k

}
+ exp

{
ρ̃

(+1)
j,k

} (i = −1, 0,+1),

ν̃Λ = ν0 + 1,

W̃Λ =
(
W−1

0 + E [wwᵀ]
)−1

,

(88)

(89)

(90)

(91)

(92)

(93)

(94)

(95)

(96)

(97)

(98)

(99)

(100)

(101)

(102)

and we define

ρ̃
(−1)
j,k =

1

2
E[ln τ−1]− 1

2
E[τ−1]

(
E
[
m2
j,k

]
+ E

[
v2
−1

]
+ 2E[mj,k]E[v−1]

)
+ E[lnπj,k]− ln 2,

(103)

ρ̃
(+1)
j,k =

1

2
E[ln τ+1]− 1

2
E[τ+1]

(
E
[
m2
j,k

]
+ E

[
v2

+1

]
− 2E[mj,k]E[v+1]

)
+ E[lnπj,k]− ln 2,

(104)

ρ̃
(0)
j,k =

1

2
E[ln τ0]− 1

2
E[τ0]E

[
m2
j,k

]
+ E[ln(1− πj,k)]. (105)
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Algorithm 1: MFVI for RefMap

Input : Z-scores zi,j,k, epigenome features sj,k and LD matrices Σk.
Output : Posteriors q and local variational parameters ξj,k.

1 Initialize variational parameters.

2 while not converged do
3 Update global variational parameters based on Eqs. 31, 32, 33, 34, 49, 50, 51, 52,

68, 69, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
100, 101, and 102.

4 Update local variational parameters based on Eq. 107.
5 Calculate ELBO (details omitted).

6 end

2.4 Update rules for local variational parameters

One needs to maximize the lower bound on marginal likelihood in Eq. 64 with respect to ξj,k
to rationalize the local variational inference. In particular, we have the following optimization
problem

Q
(
ξ, ξold

)
∝

K∑
k=1

Jk∑
j=1

lnσ(ξj,k)−
1

2
ξj,k − χ(ξj,k)

(
(wᵀsj,k)

2 − ξ2
j,k

)
. (106)

Solving the above problem with respect to each ξj,k gives its update rule

ξnew
j,k =

√
sᵀj,kE [wwᵀ] sj,k. (107)

2.5 Coordinate ascent algorithm for MFVI

With the above update rules we can construct a coordinate ascent algorithm to update
variational parameters iteratively until convergence (i.e., the change of ELBO falls below a
threshold which was set to be 10−6 in our study). The inference algorithm is summarized in
Algorithm 1.
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