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Drug discovery for Parkinson’s disease (PD) is impeded by the lack of screenable 
phenotypes in scalable cell models. Here we present a novel unbiased phenotypic profiling 
platform that combines automation, Cell Painting, and deep learning. We applied this 
platform to primary fibroblasts from 91 PD patients and carefully matched healthy controls, 
generating the largest publicly available Cell Painting dataset to date. Using fixed weights 
from a convolutional deep neural network trained on ImageNet, we generated unbiased 
deep embeddings from each image, and applied these to train machine learning models to 
detect morphological disease phenotypes. Interestingly, our models captured individual 
variation by identifying specific cell lines within the cohort with high fidelity, even across 
different batches and plate layouts, demonstrating platform robustness and sensitivity. 
Importantly, our models were able to confidently separate LRRK2 and sporadic PD lines 
from healthy controls (ROC AUC 0.79 (0.08 standard deviation (SD))) supporting the 
capacity of this platform for PD modeling and drug screening applications. 
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A major challenge in discovering effective therapies for complex diseases is defining robust 
disease phenotypes amenable to high-throughput drug screens. The increasing availability of 
patient cells through biobanking and induced pluripotent stem cell models presents an excellent 
opportunity for cell-based drug discovery, but in the absence of reliable drug targets, new methods 
to discover unbiased, quantitative cellular phenotypes are still needed. Recent advancements in 
artificial intelligence (AI) and deep learning–based analysis offer the potential to accelerate 
therapeutic discovery by distinguishing drug-induced cellular phenotypes1, elucidating 
mechanisms of action2 and gaining insights into drug repurposing3,4. Applying similar unbiased 
approaches to large, high-quality datasets using methods such as high-content imaging is a 
powerful strategy to capture novel patient- or disease-specific phenotypic patterns. Several 
studies have applied AI and large datasets to uncover population-based disease phenotypes and 
biomarkers, but the power of these studies thus far has been limited by small cohort sizes5,6 and 
non-physiological cellular perturbations7,8. 

Parkinson’s disease (PD) is the second most prevalent progressive neurodegenerative 
disease, affecting 2–3% of individuals over the age of 659. While variants in many genes have 
been associated with disease risk, including LRRK210, GBA11, and SNCA12, over 90% of cases 
are sporadic, caused by unknown genetic and environmental factors13. Substantial progress has 
been made in elucidating the pathological mechanisms underlying PD, but the failure of recent 
clinical trials targeting established pathological pathways suggests that our therapeutic strategies 
remain inadequate14. This challenge is exacerbated by the lack of animal models that sufficiently 
recapitulate PD pathology15 and of cellular phenotypes amenable to drug screening. Though it is 
known that PD pathogenesis involves a complex concert of events and molecular players, current 
strategies for drug discovery largely focus on hypothesis-driven approaches where single, pre-
defined cellular readouts or genetic variants are targeted16,17. 

In this study, we combined scalable automation and deep learning to develop a high-
throughput and high-content screening platform for unbiased population-scale morphological 
profiling of cellular phenotypes. We applied this platform to primary PD fibroblasts, a readily 
accessible cell type that reflects donor genetics and environmental exposure history. Our highly 
standardized automation procedures allowed for model generalization across batches, 
demonstrated by the power of our platform to recognize individual cell lines within a pool of 96 
lines across batches and plate layouts. Furthermore, cells acquired from multiple biopsies from 
the same individual, but collected years apart, resulted in more similar morphological profiles than 
cells derived from different individuals. Importantly, our unbiased profiling approach also identified 
generalizable PD disease signatures, which allowed us to distinguish both sporadic PD and 
LRRK2 PD cells from those of healthy controls. Taken together, our deep learning–based platform 
provides a powerful approach for de novo, unbiased identification of cellular disease phenotypes 
that can be leveraged for drug screening.  
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Fig. 1 | Automated high-content profiling platform demonstrates reproducibility across batches. a, 
Workflow overview. b, Overview of automated experimental pipeline. Scale bar: 35 μm. Running this 
pipeline yielded low variation across batches in: (c) well-level cell count; (d) well-level foreground staining 
intensity distribution per channel and plate; and (e) well-level image focus across the endoplasmic reticulum 
(ER) channel per plate. Box plot components are: horizontal line, median; box, interquartile range; whiskers, 
1.5× interquartile range; black squares, outliers.  

Results 
Automated high-content phenotyping platform achieves high data consistency. We 
developed an automated platform to morphologically profile large collections of cells leveraging 
the cell culture automation capabilities of the New York Stem Cell Foundation (NYSCF) Global 
Stem Cell Array®, a modular robotic platform for large-scale cell culture automation18, and applied 
it to investigate Parkinson’s disease-specific cellular signatures in primary human fibroblasts (Fig. 
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1a). Starting from a collection of more than 1000 fibroblast lines in the NYSCF repository that 
were collected and derived using highly standardized methods18, we selected a subset of PD lines 
from sporadic patients and patients carrying LRRK2 (G2019S) or GBA (N370S) mutations, as 
well as age-, sex-, and ethnicity-matched healthy controls. All lines underwent thorough genetic 
quality control and exclusion criteria–based profiling, which yielded lines from 45 healthy controls, 
32 sporadic PD, 8 GBA PD and 6 LRRK2 PD donors; 5 participants also donated a second skin 
biopsy 3 to 6 years later, which were analyzed as individual lines, for a total of 96 cell lines 
(Methods, Supplementary Table 1).  

We then applied our automated procedures for cell thawing, expansion and seeding, 
which were designed to minimize experimental variation and maximize reproducibility across 
plates and batches (Fig. 1b). This method resulted in consistent growth rates across all 4 
experimental groups during expansion (Supplementary Fig. 1) although some variation was 
seen in assay plate cell counts (Fig. 1c). Importantly, overall cell counts for healthy and PD cell 
lines remained highly similar (Supplementary Fig. 1).  

Two days after seeding into assay plates, we applied automated procedures to stain the 
cells with Cell Painting dyes19 for multiplexed detection of cell compartments and morphological 
features (i.e., nucleus (DAPI), nucleoli and cytoplasmic RNA (RNA), endoplasmic reticulum (ER), 
actin, golgi and plasma membrane (AGP), and mitochondria (MITO)). Plates were then imaged 
in 5 fluorescent channels with 76 tiles per well, resulting in uniform image intensity and focus 
quality across batches (Fig. 1d, e) and ~1 terabyte of data per plate. Additionally, to ensure 
consistent data quality across wells, plates and batches, we built an automated tool for near real-
time quantitative evaluation of image focus and staining intensity within each channel 
(Supplementary Fig. 2). The tool is based on random sub-sampling of tile images within each 
well of a plate to facilitate immediate analysis and has been made publicly available (see Code 
availability). Finally, the provenance of all but two cell lines were confirmed (Methods). In 
summary, using scalable automation, we built an end-to-end platform that consistently and 
robustly thaws, expands, plates, stains, and images primary human fibroblasts for phenotypic 
screening. 

 
Experimental strategy for achieving unbiased deep learning-based image analysis. To 
analyze our high-content imaging data, we built a custom unbiased deep learning pipeline. In 
our pipeline, both cropped cell images and tile images (i.e. full-resolution microscope images) 
were fed through an Inception architecture deep convolutional neural network20 that had been 
pre-trained on ImageNet, an object recognition dataset21 to generate deep embeddings that 
could be viewed as lower-dimensional morphological profiles of the original images (Fig. 2a). In 
this dataset, each tile or cell was represented as a 64-dimensional vector for each of the 5 
fluorescent channels, which were combined into a 320-dimensional deep embedding vector.  

For a more comprehensive analysis, we also used basic image statistics (e.g. image 
intensity) and conventional cell image features extracted by a CellProfiler22 pipeline that computes 
3483 features from each segmented cell. CellProfiler features, albeit potentially less accurate than 
deep image embeddings in some modeling tasks1 provide a comprehensive set of hand-
engineered measurements that have a direct link to a phenotypic characteristic, facilitating 
biological interpretation of the phenotypes identified. 
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Fig. 2 | Image analysis pipeline and rigorous experiment design enable unbiased deep learning–
based high-content screening. a, A deep embedding generator (a neural network pre-trained on an 
independent object recognition task) maps each tile or cell image independently to a deep embedding 
vector, which along with CellProfiler features and basic image statistics were used as data sources for 
model fitting and evaluation for supervised learning prediction tasks including healthy vs. PD classification. 
b, Two 96-well plate layouts used in each experimental batch control for location biases. In each layout, 
each well contained cells from one cell line denoted by the two-digit label. The second layout consisted of 
diagonally translating each of the four quadrants of the first. 45 healthy controls and 45 PD patients were 
matched in pairs based on demographics, including by (c) age and (d) sex. Error bars denote standard 
deviation. 

 
For modeling, we included random forest, multilayer perceptron and logistic regression 

classifier models, as well as ridge regression models trained on the well-average deep embedding 
and feature vectors. Specifically, we took the average along each deep embedding or feature 
dimension to obtain a single data point representative of all cellular phenotypes within a well. To 
appropriately assess model generalization on either data from new experiments or on data from 
new individuals, we adopted cross-validation stratified by batch or individuals for cell line and 
disease prediction, respectively.  

Since deep learning-based analysis is highly sensitive, including to experimental 
confounds, we ensured each 96-well plate contained all 96 cell lines (one line per well) and 
incorporated two distinct plate layout designs to control for potential location biases (Fig. 2b). The 
plate layouts alternate control and PD lines every other well and also position control and PD lines 
paired by both age (Fig. 2c) and sex (Fig. 2d) in adjacent wells, when possible. Importantly, we 
quantitatively confirmed the robustness of our experimental design by performing a lasso variable 
selection for healthy vs. PD on participant, cell line, and plate covariates, which did not reveal any 
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significant biases (Supplementary Fig. 1). We conducted four identical batches of the 
experiment, each with six replicates of each plate layout, yielding 48 plates of data, or 
approximately 48 wells for each of the 96 cell lines. In summary, we employed a robust 
experimental design that successfully minimized the effect of potential covariates; we also 
established a comprehensive image analysis pipeline where multiple machine learning models 
are applied to each classification task, using both computed deep embeddings and extracted cell 
features as data sources. 

 
Identification of individual cell lines based on morphological profiles using deep learning 
models. The strength and challenge of population-based profiling is the innate ability to capture 
individual variation. Similarly, the variation of high-content imaging data generated in separate 
batches is also a known confound in large-scale studies. We sought to assess the line-to-line 
and batch-to-batch variation in our dataset by evaluating if a model trained to identify an 
individual cell line could successfully identify that same cell line in an unseen batch among n = 
96 cell lines (Fig. 3a). To this end, we adopted a cross-validation scheme where a model was fit 
to three out of four batches and its performance was evaluated on the fourth, held-out batch. 
Importantly, we also held out the plate layout to ensure that the model was unable to rely on any 
possible location biases (Supplementary Table 2). 

Our analysis revealed that among the different models tested (Fig. 3b), the logistic 
regression model trained on well-mean cell image deep embeddings (i.e. a single 320-D vector 
representing each well) resulted in the highest mean classification accuracy. Specifically, for a 
given held-out test well, the correct line was in the top ranked position 76% (10% SD) of the time, 
compared to a 1.0% expected accuracy by chance alone. By averaging the predictions for all six 
held-out test wells for a given cell line to achieve the cell line–level prediction, the correct line was 
in the top ranked position 91% (6% SD) of the time. In cases when this model's prediction was 
incorrect, the predicted rank of the correct cell line was still at most within the top 22 out of 96 
lines (Fig. 3c). A review of the model's errors presented as a confusion matrix did not reveal any 
particular pattern in the errors (Supplementary Fig. 3). In summary, our results show that our 
model can successfully detect variation between individual cell lines by correctly identifying cell 
lines across different experimental batches and plate layouts. 

To determine how the quantity of available training data impacts accuracy, we varied the 
training data by reducing the number of tile images per well (from 76 to 1) and well examples 
(from 18 to 1, (6 plates per batch and 3 batches to 1 plate from 1 batch)) per cell line with a 
multilayer perceptron model trained on well-averaged cell image deep embeddings (Fig. 3d). 
Although reducing the number of training wells per cell line or tiles per well reduced accuracy, 
remarkably, a model trained on just a single well data point (i.e. the average of cell image deep 
embeddings from 76 tiles in that well) per cell line from a single batch still achieved 9% (3% SD) 
accuracy. Collectively, these results indicate the presence of robust line-specific signatures, which 
our deep learning platform is notably able to distinguish with minimal training data.  
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Fig. 3 | Robust identification of individual cell lines across batches and plate layouts. a, 96-way cell 
line classification task uses a cross-validation strategy with held-out batch and plate-layout. b, Test set 
classification accuracy is much higher than chance for both deep image embeddings and CellProfiler 
features using a variety of models (logistic regression (L), multilayer perceptron (M), ridge regression (R) 
and random forest (F)). Error bars denote standard deviation across 8 batch/plate layouts. c, Histogram of 
cell line–level predicted rank of true cell line for the logistic regression model trained on cell image deep 
embeddings from b shows that the correct cell line is ranked first in over 90% of cases. d, A multilayer 
perceptron model trained on a single well (average of cell image deep embeddings across 76 tiles) per cell 
line can identify a cell line in a held-out batch and plate layout with higher than chance well-level accuracy; 
accuracy rises with increasing training data. Error bars denote standard deviation. Dashed lines denote 
chance performance. 
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Fig. 4 | Donor-specific signatures revealed in analysis of repeated biopsies from individuals. a, The 
91-way biopsy donor classification task uses a cross-validation strategy with held-out cell lines, and also 
held-out batch and plate layout as in Fig. 3a. b, Histogram and (c) box plots of test set cell line–level 
predicted rank among 91 biopsy donors of the 8 held-out batch/plate layouts for 10 biopsies (first and 
second from 5 individuals) assessed, showing the correct donor is identified in most cases for 4 of 5 donors. 
Dashed lines denote chance performance. Box plot components are: horizontal line, median; box, 
interquartile range.  
 
Cell morphology is similar across multiple lines from the same donor. Next, we assessed 
whether the identified signal in a given cell line was in fact a characteristic of the donor rather than 
an artifact of the cell line handling process or biopsy procedures (e.g. location of skin biopsy). For 
this purpose, we leveraged the second biopsy samples provided by 5 of the 91 donors 3 to 6 
years after their first donation. We retrained the logistic regression on cell image deep 
embeddings on a modified task consisting of only one cell line from each of the 91 donors with 
batch and plate layout held out as before (Fig. 4a, Supplementary Table 3). After training, we 
tested the model by evaluating the ranking of the 5 held-out second skin biopsies among all 91 
possible predictions, in the held-out batch and plate-layout. This train and test procedure was 
repeated, interchanging whether the held-out set of lines corresponded to the first or second skin 
biopsy. 

The models achieved 21% (13% SD) accuracy overall, compared to 1.1% by chance (Fig. 
4b), with cell lines from four of the five donors being ranked much higher than chance (Fig. 4c), 
even though the first and second skin biopsies were acquired years apart. In one case (donor 
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51239), the second biopsy was acquired from the right arm instead of the left arm, but the cell 
line was still ranked higher than chance. The one individual (donor 50437) whose second biopsy 
was not consistently ranked higher than chance was the only individual who had one of the two 
biopsies acquired from the leg instead of both biopsies taken from the arm. Taken together, our 
model was able to identify donor-specific variations in morphological signatures that were 
unrelated to cell handling and derivation procedures. 
 
Deep learning-based morphological profiling can separate PD fibroblasts (sporadic and 
LRRK2) from healthy controls. Next, we evaluated the ability of our platform to achieve its 
primary goal of distinguishing between cell lines from PD patients and healthy controls. We 
divided sporadic PD, LRRK2 PD participants, and paired demographically matched healthy 
controls (n = 74 participants) into 5 groups (Supplementary Table 4) for 5-fold cross-validation, 
where a model is trained to predict healthy or PD on 4 of the 5 sets of the cell line pairs and tested 
on the held-out 5th set of cell lines (Fig. 5a). To evaluate performance, we used the area under 
the receiver operating characteristic curve (ROC AUC) metric, which evaluates the probability of 
ranking a random healthy cell line as "more healthy" than a random PD cell line, where 0.5 ROC 
AUC is chance and 1.0 is a perfect classifier. Following training, we evaluated the ROC AUC on 
the test set in three ways: first with both sporadic and LRRK2 PD (n = 37 participants) vs. all 
controls (n = 37 participants), then with the sporadic PD (n = 31 participants) vs. all controls (n = 
37 participants), and then with LRRK2 PD (n = 6 participants) vs. all controls (n = 37 participants). 
Finally, we ensured these results are robust to the cell line with potentially unconfirmed disease 
state (Methods). 

We omitted GBA PD samples from this evaluation because our analysis of these lines 
indicated a possible underlying stratification imbalance23 in our partitioning across cross-validation 
datasets, demonstrated by a majority of the splits achieving ROC AUCs well below 0.5 
(Supplementary Fig. 4). Interestingly, all PD donors but two GBA patients and one other were 
patients at the same medical center, a potential, but unverified confound.  

As in the above analyses, we used both cell and tile deep embeddings, CellProfiler 
features, and image statistics as data sources for model fitting in PD vs. healthy classification. 
The model with the highest mean ROC AUC, a logistic regression trained on tile deep 
embeddings, achieved a 0.79 (0.08 SD) ROC AUC for PD vs. healthy, while a random forest 
trained on CellProfiler features achieved a 0.76 (0.07 SD) ROC AUC (Fig. 5b). To investigate if 
the signal was predominantly driven by one of the PD subgroups, we probed the average ROC 
AUCs for each one. The model trained on tile deep embeddings achieved a 0.77 (0.10 SD) ROC 
AUC for separating sporadic PD from controls and 0.89 (0.10 SD) ROC AUC for separating 
LRRK2 PD from controls (Fig. 5c, d), indicating that both patient groups contain strong disease-
specific signatures.  

Finally, to investigate the source of the predictive signal, we studied the performance of 
the logistic regression trained on tile deep embeddings, but where the data either omitted one of 
the five Cell Painting stains or included only a single stain, in performing sporadic and LRRK2 PD 
vs. healthy classification (Supplementary Fig. 5). Interestingly, the performance was only 
minimally affected by the removal of any one channel, indicating the robustness of the signal. 
These results demonstrate that our platform can successfully distinguish PD fibroblasts (either 
LRRK2 or sporadic) from control fibroblasts. 
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Fig. 5 | PD-specific signatures identified in sporadic and LRRK2 PD primary fibroblasts. a, PD vs. 
healthy classification task uses a k-fold cross-validation strategy with held-out PD-control cell line pairs. 
Cell line–level ROC AUC, the probability of correctly ranking a random healthy control and PD cell line 
evaluated on held out–test cell lines for (b) LRRK2/sporadic PD and controls (c) sporadic PD and controls 
and (d) LRRK2 PD and controls, for a variety of data sources and models (logistic regression (L), multilayer 
perceptron (M), ridge regression (R) and random forest (F)), range from 0.79–0.89 ROC AUC for the top 
tile deep embedding model and 0.75–0.77 ROC AUC for the top CellProfiler feature model. Black bars 
denote the mean across all cross-validation sets. Grid line spacing denotes a doubling of the odds of 
correctly ranking a random control and PD cell line and dashed lines denote chance performance. 
 
Fixed feature extraction and analysis reveal biological complexity of PD-related 
signatures. Lastly, we further explored the CellProfiler features to investigate which biological 
factors might be driving the separation between disease and control, focusing on random forest, 
ridge regression and logistic regression model architectures, as these provide a ranking of the 
most meaningful features. We first estimated the number of top-ranking features among the total 
set of 3483 features that were sufficient to retain the performance of the entire feature set and 
found the first 1200 to be sufficient (Supplementary Fig. 6). 

Among the top 1200 features of each of the 3 model architectures (each with 5 cross-
validation folds), 100 features were present in all 15 folds (Fig. 6a). From among these, we 
removed correlated features using a Pearson correlation threshold of 0.75, leaving 55 
uncorrelated features (Supplementary Table 5). To see if these best performing features held 
any mechanistic clues, we grouped them based on their type of measurement (e.g. shape, texture 
and intensity) and their origin by cellular compartment (cell, nucleus or cytoplasm) or image 
channel (DAPI, ER, RNA, AGP, and MITO)24. Such groupings resulted in features implicated in 
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“area and shape”, “radial distribution” of signal within the RNA and AGP channels, and the 
“granularity” of signal in the mitochondria channel (Fig. 6b). 

From this pool of 55 features, we randomly selected 4 features and inspected their visual 
and statistical attributes for control, sporadic PD and LRRK2 PD cell lines (Fig. 6c). Although 
most of the 55 features were significantly different between control and both LRRK2 PD (42 had 
p < 5 × 10-2, Mann–Whitney U test) and sporadic PD lines (47 had p < 5 × 10-2, Mann–Whitney U 
test), there was still considerable variation within each group and the differences were not visually 
apparent in representative cell images. Collectively, the results show that the power of our models 
to accurately classify PD relies on a large number and complex combination of different 
morphological features.  

 

 
Fig. 6 | PD classification is driven by a large variety of cell features. a, Frequency among 5 cross-
validation folds of 3 models where a CellProfiler feature was within the top 1200 most important of the 3483 
features reveals a diverse set of features supporting PD classification. b, Frequency of each class of Cell 
Painting features of the top 100 most common features in a, with correlated features removed. c, Images 
of representative cells and respective cell line–level distributions for 4 features randomly selected from 
those in b. Cells closest to the 25th, 50th and 75th percentiles were selected. Scale bar: 20 μm. Box plot 
components are: horizontal line, median; box, interquartile range; whiskers, 1.5× interquartile range; black 
squares, outliers. Mann–Whitney U test: ns: p > 5.0 × 10-2; *: 10-2 < p ≤ 5.0 × 10-2; **: 10-3 < p ≤ 10-2; ***: 
10-4 < p ≤ 10-3; ****: p ≤ 10-4. 
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Discussion 
To overcome the poor clinical trial outcomes for Parkinson’s disease25,26, it is clear that more 
physiologically relevant disease models27 and drug screening approaches that are less reliant on 
preconceived hypotheses are required. To address this, we developed a robust platform for the 
unbiased phenotypic analysis of patient-derived cell lines by applying custom cell culture 
automation procedures, high-content imaging and cutting-edge deep learning–based image 
analysis. To our knowledge, this is the first successful demonstration in which automated, 
unbiased deep learning–based phenotypic profiling is able to discriminate between primary cells 
from PD patients (both sporadic and LRRK2) and healthy controls (Fig. 5b, c, d). Interestingly, 
both deep embeddings and CellProfiler features contained strong disease predictive signatures, 
evident by PD classification performance possibly approaching the limit set by the accuracy of 
the (refined expert) PD diagnoses of the individuals in our study28. The fact that two divergent 
analysis approaches both succeed in separating PD fibroblasts from healthy controls provides an 
independent validation of the results.  

Furthermore, we demonstrate that the generation of high-content imaging data in parallel 
with predictive machine learning enabled the individual identification of primary cell lines, even 
when a second biopsy was provided years later, suggesting the presence of morphological 
features that are inherent to specific individuals (Fig. 4c). This separation between individuals 
highlights the power of machine learning pattern recognition that is challenging, if not impossible, 
to explain by human observation alone. Such insights pave the way to uncover novel individual 
or patient-specific cellular phenotypes, with valuable implications for personalized medicine29.  

To fortify confidence in our predictions, we applied numerous considerations to reduce 
noise and confounds30. First, we developed a near real-time image quality visualization tool, which 
has been made publicly available (see Code availability) to maintain consistency across batches 
and ensure high quality data as input for model generation. Second, all samples were collected 
by the same organization in a standardized manner, in which all lines underwent equal and 
rigorous quality control. Third, the experimental design controlled for biases including age, sex, 
ancestry, passage, biopsy collection, and expansion. We used two plate layout designs to 
randomize samples and control for edge effects, a known confounder. To obtain spatially and 
temporally independent train and test datasets for cell line identification tasks, the models were 
trained on data from one plate layout across three batches, while testing was performed on data 
from the second layout within the fourth held-out batch. The custom automation procedures 
developed for this project were crucial for achieving data consistency that allowed for cross batch 
training and validation. Finally, all disease classification tasks were performed with 5-fold cross-
validation, using test cell lines from held-out donors, and were thus not influenced by individual 
signatures.  

Deep learning–based image analysis offers unparalleled classification performance; 
however, defining the specific morphological features that drive our predictions remains 
challenging. To gain insights into the mechanistic drivers, we performed two comprehensive and 
complementary analyses to determine which cellular compartments and classes of features were 
most important for PD classification. First, we repeated the PD classification task, removing the 
deep embedding dimensions corresponding to one, or all but one, fluorescent channel, and found 
the former did not have a profound effect on the classification, irrespective of which channel was 
removed. This indicates interchannel redundancy in observed disease signatures, which could be 
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explained by a combination of signal “bleed-through” between channels and mechanistic interplay 
between cellular compartments. Second, we evaluated the distribution and types of CellProfiler 
features important to various models for PD classification (Fig. 6). The advantage of this approach 
is that predictions can potentially be linked directly to specific morphological features. However, 
our analysis showed that the classification of healthy and PD states relied on over 1200 features, 
where even the most common important features were nearly impossible to discern by eye. Taken 
together, our analysis indicates that the detected PD-specific morphological signatures are 
extremely complex, and comprehensive disruption studies will be required to delineate the 
underlying molecular mechanisms.  

The scale of this unbiased high-content profiling experiment is, to our knowledge, 
unprecedented: it provides the scientific community with the largest publicly available Cell 
Painting dataset to date, at 48 terabytes in size. Scalable and reproducible automation procedures 
enabled the generation of high-quality data suited to cross-batch training and validation, an 
important technical feature for large-scale applications such as drug screening. Our ability to 
identify Parkinson’s-specific disease signatures using standard cell labeling and deep learning–
based image analysis highlights the generalizable potential of this platform to identify complex 
disease phenotypes in a broad variety of cell types. This represents a powerful, unbiased 
approach that may facilitate the discovery of novel precision drug candidates undetectable with 
traditional target- and hypothesis-driven methods. 

Code availability 
Code for generating a deep embedding from an image as well as fitting and evaluating the cell 
line and PD classification models is available https://nyscf.org/nyscf-adpd/.  
 
The near real-time image quality analysis is available as a Fiji (an ImageJ distribution) macro at 
https://github.com/google/microscopeimagequality/tree/main/wellmontagefijimacro. 

Materials availability 
Cell lines are available through the NYSCF Repository and can be requested by emailing 
repository@nyscf.org. 

Data availability 
The image, deep embedding, and CellProfiler datasets generated and analyzed in this study are 
available under the CC BY-SA 4.0 license at https://nyscf.org/nyscf-adpd/. 
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Methods 
Donor recruitment and biopsy collection. This project utilized fibroblasts collected under a 
Western IRB-approved protocol at NYSCF. After obtaining written consent, participants received 
a 2–3 mm punch biopsy under local anesthesia performed by a dermatologist at a collaborating 
clinic. The dermatologists utilized clinical judgement to determine the appropriate location for the 
biopsy, with the upper arm being most common. Individuals with a history of scarring and bleeding 
disorders were ineligible to participate. In addition to biological sample collection, all participants 
completed a health information questionnaire detailing their personal and familial health history, 
accompanied by demographic information. All PD subjects self-reported having PD and all but 
three PD patients had medical records from the same academic medical center in New York 
available which confirmed a clinical PD diagnosis. To protect participant confidentiality, the 
biological sample and data were coded and the key to the code securely maintained.  
 
Experimental design and validation. Cell lines were selected from the NYSCF fibroblast 
repository containing cell lines from over 1000 participants. We applied strict exclusion criteria 
based on secondary (non-PD) pathologies, including skin cancer, stroke, epilepsy, seizures, and 
neurological disorders and, for sporadic PD cases, UPDRS scores below 15. Out of the remaining 
cell lines, 120 healthy control and PD cell lines were preliminarily matched based on donor age 
and sex; all donors were self-reported white and most were confirmed to have at least 88% 
European ancestry via genotyping (Supplementary Table 1). The 120 cell lines were all 
expanded in groups of eight, comprising two pairs of PD and preliminary matched healthy 
controls, and after expansion was completed, a final set of 96 cell lines, including a set of 45 PD 
and final matched healthy controls, was selected for the study. 

We expanded and froze cells to conduct four identical batches, each consisting of twelve 
96-well plates in two unique plate layouts, of which each plate contained exactly one cell line per 
well. The plate layout consisted of a checkerboard-like pattern of placement of healthy control 
and Parkinson's cell lines and cell lines on the edge of the plate in one plate layout were near the 
center in the other layout (Fig. 2b). We populated the plate layouts by randomly permuting the 
order of the 45 cell line pairs.  

To ensure and confirm a balanced plate layout and experimental design, we performed a 
lasso variable selection for healthy vs. PD in advance of beginning the first experiment batch, to 
identify covariates that might be good predictors of disease state. Plate layout designs from three 
random reorderings of the cell line pairs were considered, and the best performing design was 
selected. Specifically, we sought a design that minimized the covariate weights of a cross-
validated linear regression model with L1 regularization with the following covariates as features: 
participant age (above or at/below 64 years), sex (male or female), biopsy location (arm, leg, not 
arm or leg, left, right, not left or right, unspecified), biopsy collection year (at/before or after 2013), 
expansion thaw freeze date (on/before or after July 11, 2019), thaw format, doubling time (at/less 
than or greater than 3.07 days), and plate location (well positions not in the center in both layouts, 
well positions on the edge in at least one plate layout, well positions on a corner in at least one 
plate layout, row (A/B, C/D, G/E, F/H), column (1–3, 4–6, 7–9, 10–12). 

After the experiment was conducted, to further confirm the total number of cells or the 
growth rates did not represent a potential confound, we reviewed the count of cells, extracted 
from the CellProfiler analysis, and the doubling time of each cell line by disease state (healthy, 
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sporadic PD, LRRK2 PD and GBA PD). A two-sided Mann–Whitney U test, Bonferroni adjusted 
for 3 comparisons, did not highlight statistical differences. 
 
Cell line expansion. Biopsy outgrowth was performed as described in Paull et al.18. Briefly, each 
biopsy was washed, dissected into small pieces and allowed to attach to a 6-well tissue culture 
plate, and grown out for 10 days before being enzymatically dissociated and re-plated at a 1:1 
ratio. Cell density was monitored with daily automated bright-field imaging and upon gaining 
confluence, cells were harvested and frozen down into repository vials at a density of 100,000 
cells per vial using automated procedures developed on the NYSCF Global Stem Cell Array®.  

To expand cells for profiling, custom automation procedures were developed on an 
automation platform consisting of a liquid handling system (Hamilton STAR) connected to a 
Cytomat C24 incubator, a Celigo cell imager (Nexcelom), a VSpin centrifuge (Agilent), and a 
Matrix tube decapper (Hamilton Storage Technologies). Repository vials were thawed manually 
in two batches of 4, for a total of 8 lines per run. To reduce the chance of processing confounds, 
when possible, every other line that was processed was a healthy control, the order of lines 
processed alternated between expansion groups, and the scientist performing the expansion was 
blinded to the experimental group. Repository tubes were placed in a 37 ºC water bath for 1 
minute. Upon removal, fibroblasts were transferred to their respective 15 mL conical tubes at a 
1:2 ratio of Synth-a-Freeze and Fibroblast Expansion Media (FEM). All 8 tubes were spun at 1100 
RPM for 4 minutes. Supernatant was aspirated and resuspended in 1 mL FEM for cell counting. 
Cells were plated in one well of a 6-well at 85,000–120,000 cells in 2 mL of FEM. If the count was 
lower than 75,000, cells were plated into a 12-well plate and given the appropriate amount of time 
to reach confluence. Upon reaching 90-100% confluence, the cell line was added into another 
group of 8 to enter the automated platform. All 6-well and 12-well plates were kept in a Cytomat 
C24 incubator and every passage and feed from this point onward was automated (Hamilton 
STAR). Each plate had a FEM media exchange every other day and underwent passages every 
7th day. The cells were fed with FEM using an automated method that retrieved the plates from 
the Cytomat two at a time and exchanged the media.  

After 7 days, the batch of 8 plates had a portion of their supernatant removed and banked 
for mycoplasma testing. Cells were passaged and plated at 50,000 cells per well (into up to 6 
wells of a 6 well plate) and allowed to grow for another 7 days. Not every cell line was expected 
to reach the target of filling an entire 6-well plate. To account for this, a second passage at a fixed 
seeding density of 50,000 cells per well was embedded in the workflow for all of the lines. After 
another 7 days, each line had a full 6-well plate of fibroblasts and generated a minimum of 5 assay 
vials with 100,000 cells per vial. The average doubling time for each cell line was calculated by 
taking the log base 2 of the ratio of the cell number at harvest over the initial cell number. Each 
line was then propagated a further two passages and harvested to cryovials for DNA extraction.  
 
Automated screening. Custom automation procedures were developed for large-scale 
phenotypic profiling of primary fibroblasts. For each of the four experimental batches, 2D 
barcoded matrix vials from 96 lines containing 100,000 cells per vial were thawed, decapped and 
rinsed with FEM. Cells were spun down at 192 g for 5 minutes, supernatant was discarded, and 
cells were resuspended in culture media. Using a Hamilton Star liquid handling system, the cells 
were then seeded onto five 96-well plates (Fisher Scientific, 07-200-91) for post-thaw recovery. 
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Cells were harvested 5 days later, consolidated and counted using an equivalent automation 
system. Using an automated seeding method developed on a Lynx liquid handling system 
(Dynamic Devices, LMI800), cell counts from each line were used to adjust cell densities across 
all 96 lines to transfer a fixed amount of cells into two 96-well deep well troughs in two distinct 
plate layouts. Each layout was then stamped onto six 96-well imaging plates (CellVis, P96-1.5H-
N) at a fixed target density of 3,000 cells per well. Assay plates were then transferred to a Cytomat 
C24 incubator for two days before phenotypic profiling where cells were stained and imaged as 
described below. All cell lines were screened at a final passage number of 10 or 11 +/- 2. In total, 
this process took 7 days and could be executed by a single operator.  
 
Staining and imaging. To fluorescently label the cells, the protocol published in Bray et al.19 was 
adapted to an automated liquid handling system (Hamilton STAR). Briefly, plates were placed on 
deck for addition of culture medium containing MitoTracker and incubated at 37 ºC for 30 minutes, 
then cells were fixed with 4% Paraformaldehyde (Electron Microscopy Sciences, 15710-S), 
followed by permeabilization with Triton X-100 (Sigma-Aldrich, T8787) in HBSS (Thermo Fisher 
Scientific, 14025126). After a series of washes, cells were stained at room temperature with the 
Cell Painting staining cocktail for 30 minutes. Plates were washed twice and imaged immediately. 

The images were acquired using an automated epifluorescence system (Nikon Ti2). For 
each of the 96 wells acquired per plate, the system performed an autofocus task in the ER 
channel, which provided dense texture for contrast, in the center of the well, and then acquired 
76 non-overlapping tiles per well at a 40× magnification (Olympus CFI-60 Plan Apochromat 
Lambda 0.95 NA). To capture the entire Cell Painting panel, we used 5 different combinations of 
excitation illumination (SPECTRA X from Lumencor) and emission filters (395 nm and 447/60 nm 
for Hoechst, 470 nm and 520/28 nm for Concanavalin A, 508 nm and 593/40 nm for RNA-
SYTO14, 555 nm and 640/40 nm for Phalloidin and wheat-germ agglutinin, and 640 nm and 
692/40 nm for MitoTracker Deep Red). Each 16-bit 5056×2960 tile image was acquired using 
NIS-Elements AR acquisition software from the image sensor (Photometrics Iris 15, 4.25 μm pixel 
size). Each 96-well plate resulted in approximately 1 terabyte of data. 

 
Near real-time image quality analysis. To assess the quality and consistency of the images 
collected from a full 96-well plate, we developed a near real-time Fiji (an ImageJ distribution) 
macro31. The tool creates image montages from random image crops from each channel across 
all wells on a plate with related focus scores and intensity statistics. These montages were 
inspected to confirm that images were suitable as input for further analysis. The tool is able to 
generate a representative sampling of images from one 96-well plate (1 terabyte) in 30 minutes. 
 
Confirming cell line provenance. All 96 lines were analyzed using NeuroChip32 to check for PD-
associated mutations (LRRK2 and GBA). PD Lines that did not contain LRRK2 or GBA mutations 
were classified as Sporadic. NeuroChip analysis confirmed the respective mutations for all lines 
from LRRK2 and GBA PD individuals, with the exception of cell line 48 from donor 010124, where 
no GBA mutation was detected. This prompted a post hoc ID SNP analysis (using Fluidigm 
SNPTrace) of all expanded study materials, which confirmed the lines matched the original ID 
SNP analysis made at the time of biopsy collection for all but two cell lines: cell line 48 from donor 
010124 (GBA PD) and cell line 57 from donor 050634 (healthy), which have been annotated as 
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having unconfirmed cell line identity in Supplementary Table 1. We confirmed the omission of 
line 48 did not qualitatively impact GBA PD vs healthy classification (Supplementary Figure 4) 
and although line 57 was most likely from another healthy individual, we confirmed the omission 
of line 57 had minimal impact, yielding a 0.77 (0.08 SD) ROC AUC (compared with 0.79 (0.08 
SD) from including the line) for LRRK2/Sporadic PD vs. healthy classification (logistic regression 
trained on tile deep embeddings). Importantly, the post hoc ID SNP analysis did confirm the 
uniqueness of all 96 lines in the study. 
 
Image statistics features. For assessing data quality and baseline predictive performance on 
classification tasks, we computed various image statistics. Statistics are computed independently 
for each of the 5 channels for the image crops centered on detected cell objects. For each tile or 
cell, a "focus score" between 0.0 and 1.0 was assigned using a pre-trained deep neural network 
model33. Otsu's method was used to segment the foreground pixels from the background and the 
mean and standard deviation of both the foreground and background were calculated. 
Foreground fraction was calculated as the number of foreground pixels divided by the total pixels. 
All features were normalized by subtracting the mean of each batch and plate layout from each 
feature and then scaling each feature to have unit L2 norm across all examples. 
 
Image pre-processing. We first flat field–corrected 16-bit images as previously described1. Next, 
Otsu's method was used in the DAPI channel to detect nuclei centers. Images were converted to 
8-bit after clipping at the 0.001 and 1.0 minimum and maximum percentile values per channel and 
applying a log transformation. These 8-bit 5056×2960×5 images, along with 512×512×5 image 
crops centered on the detected nuclei, were used to compute deep embeddings. Only image 
crops existing entirely within the original image boundary were included for deep embedding 
generation.  
 
Deep image embedding generation. Deep image embeddings were computed on both the tile 
images and the 512×512×5 cell image crops. In each case, for each image and each channel 
independently, we first duplicated the single channel image across the RGB (red-green-blue) 
channels and then inputted the 512×512×3 image into an Inception architecture20 convolutional 
neural network, pre-trained on the ImageNet20,21 object recognition dataset consisting of 1.2 
million images of a thousand categories of (non-cell) objects, and then extracted the activations 
from the penultimate fully connected layer and took a random projection to get a 64-dimensional 
deep embedding vector (i.e. 64×1×1). We concatenated the five vectors from the 5 image 
channels to yield a 320-dimensional vector or embedding for each tile or cell crop. 0.7% of tiles 
were omitted because they were either in wells never plated with cells due to shortages or 
because no cells were detected, yielding a final dataset consisting of 347,821 tile deep 
embeddings and 5,813,995 cell image deep embeddings. All deep embeddings were normalized 
by subtracting the mean of each batch and plate layout from each deep embedding. Finally, we 
computed datasets of the well-mean deep embeddings, the mean across all cell or tile deep 
embeddings in a well, for all wells.  
 
CellProfiler feature generation. We used a CellProfiler pipeline template19 where we determined 
Cells in the RNA channel, Nuclei in the DAPI channel and Cytoplasm by subtracting the Nuclei 
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objects from the Cell objects. We ran CellProfiler22 version 3.1.534 independently on each 16-bit 
5056×2960×5 tile image set, inside a Docker container on Google Cloud. 0.2% of the tiles resulted 
in errors after multiple attempts and were omitted. Features were concatenated across Cells, 
Cytoplasm and Nuclei to obtain a 3483-dimensional feature vector per cell, across 7,450,738 
cells. As we were unable to load this dataset and fit a model35 in memory with 196 gigabytes of 
memory, we computed a reduced dataset with the well-mean feature vector per well. We then 
normalized all features by subtracting the mean of each batch and plate layout from each feature 
and then scaled each feature to have unit L2 norm across all examples. 
 
Modeling and analysis. We evaluated several classification tasks ranging from cell line 
prediction to disease state prediction using various data sources and multiple classification 
models. Data sources consisted of image statistics, CellProfiler features and deep image 
embeddings. Since data sources and predictions could have existed at different levels of 
aggregation ranging from the cell-level, tile-level, well-level to cell line–level, we used well-mean 
aggregated data sources as input to all classification models, and aggregated the model 
predictions by averaging predicted probability distributions (e.g. across wells for a cell line). In 
each classification task, we defined an appropriate cross-validation approach and all figures of 
merit reported are those on the held-out test sets. 

Various classification models (sklearn) were used, including a cross-validated logistic 
regression (solver = "lbfgs", max_iter = 1000000), random forest classifier (with 100 base 
estimators), cross-validated ridge regression and multilayer perceptron (single hidden layer with 
200 neurons, max_iter = 1000000); these settings ensured solver convergence to the default 
tolerance. 

 
Cell line identification analysis. For each of the various data sources, we utilized the cross-
validation sets defined in Supplementary Table 2. For each train/test split, one of several 
classification models was fit or trained to predict a probability distribution across the 96 classes, 
the ID of the 96 unique cell lines. For each prediction, we evaluated both the top predicted cell 
line, the cell line class to which the model assigns highest probability, as well as the predicted 
rank, the rank of probability assigned to the true cell line (i.e. when the top predicted cell line is 
the correct one, the predicted rank is 1). We used as the figure of merit the well-level or cell line–
level accuracy, the fraction of wells or cell lines for which the top predicted cell line among the 96 
possible choices was correct.  
 
Biopsy donor identification analysis. For each of the various data sources, we utilized the 
cross-validation sets defined in Supplementary Table 3. For each train/test split, one of several 
classification models was fit or trained to predict a probability distribution across 91 classes, the 
possible donors from which a given cell line was obtained. For each of the 5 held-out cell lines, 
we evaluated the cell line–level predicted rank, i.e. the predicted rank assigned to the true donor. 
 
LRRK2 and sporadic PD classification analysis. For each of the various data sources, we 
partitioned the demographically-matched healthy/PD cell line pairs into 5 groups with a near-even 
distribution of PD mutation, sex and age, which were then used as folds for cross-validation 
(Supplementary Table 4). For a given group, we trained a model on the other 4 groups on a 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.13.380576doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.380576
http://creativecommons.org/licenses/by/4.0/


 

 21 

binary classification task, healthy vs. PD, before testing the model on the held-out group of cell 
line pairs. The model predictions on the held-out group were used to compute a receiver operator 
characteristic (ROC) curve, for which the area under the curve (ROC AUC) can be evaluated. The 
ROC curve is the true positive rate vs. false positive rate, evaluated at different predicted 
probability thresholds. ROC AUC can be interpreted as the probability of correctly ranking a 
random healthy control and PD cell line. The ROC AUC was computed for cell line–level 
predictions, the average of the models' predictions for each well from each cell line. We evaluated 
the ROC AUC for a given held-out fold in three ways: with model predictions for both all sporadic 
and LRRK2 PD vs. all controls, all LRRK2 PD vs. all controls, and all sporadic PD vs. all controls. 
We obtained overall ROC AUC by taking the average and standard deviation across the 5 cross-
validation sets.  
 
PD classification analysis with GBA PD cell lines. For a preliminary analysis (Supplementary 
Figure 4) only, the PD vs. healthy classification task was conducted with a simplified cross-
validation strategy, where matched PD and healthy cell line pairs were randomly divided into a 
train half and a test half 8 times. This was done for all matched cell line pairs, just GBA PD and 
matched controls, just LRRK2 PD and matched controls, and just sporadic PD and matched 
controls. Test set ROC AUC was evaluated as in the above analysis. 

 
CellProfiler feature importance analysis. First, we estimated the threshold for number of top-
ranked CellProfiler features for a random forest classifier (1000 base estimators) required to 
maintain the same classification performance as the full set of 3483 CellProfiler features, by 
evaluating performance for sets of features increasing in size in increments of 20 features.  
After selecting 1200 as the threshold, we looked at the top 1200 features for each of the logistic 
regression, ridge regression and a random forest classifier models. The 100 CellProfiler features 
shared in common across all five folds of all three model architectures were further clustered into 
groups of correlated features using a Pearson’s correlation value threshold of 0.75, leaving 55 
feature clusters. A feature was selected at random from each of 4 randomly selected clusters to 
inspect the distribution of their values and representative cells from each disease state, with the 
closest value to the distribution median and quantiles, were selected for inspection. The statistical 
differences were evaluated using a two-sided Mann–Whitney U test, Bonferroni adjusted for 2 
comparisons. 
  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.13.380576doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.380576
http://creativecommons.org/licenses/by/4.0/

