Supplementary Information: ## Deep learning and automated Cell Painting reveal Parkinson's disease-specific signatures in primary patient fibroblasts Lauren Schiff^{1,3}, Bianca Migliori^{2,3}, Ye Chen^{1,3}, Deidre Carter^{2,3}, Caitlyn Bonilla¹, Jenna Hall², Minjie Fan¹, Edmund Tam², Sara Ahadi¹, Brodie Fischbacher², Anton Geraschenko¹, Christopher J. Hunter², Subhashini Venugopalan¹, Sean DesMarteau², Arunachalam Narayanaswamy¹, Selwyn Jacob², Zan Armstrong¹, Peter Ferrarotto², Brian Williams¹, Geoff Buckley-Herd², Jon Hazard¹, Jordan Goldberg², Marc Coram¹, Reid Otto², Edward A. Baltz¹, Laura Andres-Martin², Orion Pritchard¹, Alyssa Duren-Lubanski², Kathryn Reggio², NYSCF Global Stem Cell Array Team², Lauren Bauer², Raeka S. Aiyar², Elizabeth Schwarzbach², Daniel Paull², Scott A. Noggle², Frederick J. Monsma, Jr.², Marc Berndl^{1,4}, Samuel J. Yang^{1,4}, Bjarki Johannesson^{2,4} ¹Google Research, Mountain View, California, USA. ²The New York Stem Cell Foundation Research Institute, New York, New York, USA. ³These authors contributed equally: Lauren Schiff, Bianca Migliori, Ye Chen, Deidre Carter. ⁴These authors contributed equally: Marc Berndl, Samuel J. Yang, Bjarki Johannesson. e-mail: marcberndl@google.com; samuely@google.com; bjohannesson@nyscf.org | Cell | Donor | Cross-val | Pair | | | | European | UPDRS | Biopsy | Biopsy | Thaw | Thaw freeze | _ | |-----------|-----------------|-----------|----------|------------------------|--------|----------|-------------|-------|-----------------|---|------------------|------------------------|--------------| | line ID | ID | fold | ID
0 | Disease state | Sex | Age | ancestry | score | collection year | location | format | date | time
3.32 | | 02 | 50121
51255 | 1 | 0 | LRRK2 PD | F | 56 | 92% | 71 | 2012 | unspecified
left upper thigh | 6w | 6/17/2019
6/17/2019 | 2.66 | | 03 | 51260
51253 | 2 | 1 | Healthy | F | 64 | 98% | | 2017 | left upper leg | 12w→6w | 8/9/2019 | 2.70 | | 04
05 | 51253 | 2 | 2 | Sporadic PD
Healthy | M | 63
67 | 99% | 23 | 2017
2012 | left upper arm
unspecified | 6w | 7/30/2019
7/31/2019 | 3.41
2.77 | | 06 | 50463 | 4 | 2 | Sporadic PD | M | 69 | 92% | 34 | 2013 | unspecified | 6w | 8/15/2019 | 3.39 | | 07
08 | 50752
50437 | 4 | 3 | Healthy
Sporadic PD | F | 58
59 | 90% | 45 | 2013
2013 | left upper arm
left upper leg | 12w→6w
6w | 8/22/2019
7/11/2019 | 5.36
3.80 | | 09 | 50665 | 1 | 4 | Healthy | F | 71 | 91% | 40 | 2013 | right lower leg | 12w→6w | 7/30/2019 | 3.24 | | 10 | 50373 | 1 | 4 | Sporadic PD | F | 69 | 100% | 61 | 2012 | right thigh | 6w | 7/5/2019 | 4.37 | | 11 | 51218
51193 | 3 | 5
5 | Healthy
Sporadic PD | F | 60
60 | 100%
91% | 53 | 2016
2015 | left upper arm | 6w | 7/11/2019
7/22/2019 | 2.47
2.49 | | 13 | 50584 | 4 | 6 | Healthy | M | 81 | | | 2013 | right lower cheek | 6w | 6/7/2019 | 3.11 | | 14 | 51259 | 4 | 6 | Sporadic PD | M | 76 | 95% | 29 | 2017 | left arm | 6w | 9/3/2019 | 3.87 | | 15
16 | 51005
51149 | 4 | 7 | Healthy
Sporadic PD | F | 57
57 | 90%
97% | 26 | 2014
2015 | left upper arm
left upper arm | 6w
6w | 7/5/2019
7/5/2019 | 2.83
2.50 | | 17 | 50183 | 3 | 8 | Healthy | M | 62 | 98% | | 2012 | chest | 6w | 7/18/2019 | 6.19 | | 18 | 50951
51107 | 3 | 8 | Sporadic PD | M | 62
59 | 98%
97% | 20 | 2014
2014 | left upper arm | 12w→6w | 7/30/2019
7/11/2019 | 3.30
2.53 | | 19 | 51107 | 0 | 9 | Healthy
Sporadic PD | M | 61 | 100% | 19 | 2014 | upper arm
upper left arm | 6w
12w→6w | 7/11/2019 | 4.06 | | 21 | 51183 | 1 | 10 | Healthy | M | 66 | 89% | | 2015 | left arm | 6w | 8/9/2019 | 2.12 | | 22 | 50480
50764 | 1 | 10
11 | Sporadic PD | M
F | 66 | 99%
89% | 56 | 2013
2013 | left upper arm | 6w
6w | 7/31/2019
6/7/2019 | 4.55
2.71 | | 23 | 51266 | | 11 | GBA PD | F | 56
54 | 96% | 30 | 2013 | left upper arm
unspecified | 6w | 6/7/2019 | 2.28 | | 25 | 50167 | 0 | 12 | Healthy | M | 62 | 98% | | 2012 | unspecified | 12w→6w | 7/22/2019 | 4.64 | | 26
27 | 51156
50956 | 0 | 12
13 | Sporadic PD
Healthy | M | 68
47 | 100% | 20 | 2015
2014 | left upper arm
left upper arm | 6w
6w | 8/13/2019
6/11/2019 | 2.41
6.64 | | 28 | 51249 | | 13 | GBA PD | M | 46 | 92% | 20 | 2014 | right upper arm | 6w | 6/11/2019 | 2.44 | | 29 | 50767 | 2 | 14 | Healthy | F | 71 | 88% | | 2013 | left upper arm | 6w | 7/30/2019 | 2.71 | | 30
31 | 50406
51105 | 2 2 | 14
15 | Sporadic PD
Healthy | F
M | 68
59 | 90% | 24 | 2012
2014 | right upper arm
upper arm | 12w→6w
6w | 9/3/2019
6/19/2019 | 5.24
2.28 | | 31 | 51105 | 2 | 15 | Sporadic PD | M | 59
59 | 90% | 36 | 2014 | upper arm
right arm | 12w→6w | 7/5/2019 | 3.07 | | 33 | 51140 | 0 | 16 | Healthy | M | 55 | 96% | | 2015 | left upper arm | 6w | 6/13/2019 | 3.53 | | 34
35 | 51256
50939 | 0 | 16
17 | Sporadic PD
Healthy | M | 54
64 | 94%
91% | 31 | 2017
2014 | left inner arm
left upper arm | 6w
6w | 6/13/2019
7/22/2019 | 6.57
4.36 | | 36 | 50449 | 1 | 17 | Sporadic PD | M | 64 | 98% | 44 | 2013 | left upper arm | 12w→6w | 7/30/2019 | 3.41 | | 37 | 50128 | 3 | 18 | Healthy | M | 57 | 97% | | 2012 | unspecified | 6w | 7/11/2019 | 2.72 | | 38 | 50392
51239 | 3 | 18
19 | LRRK2 PD
Healthy | M | 59
64 | 93% | 20 | 2012
2016 | right thigh
left upper inner arm | 6w | 7/11/2019
7/31/2019 | 3.58
2.25 | | 40 | 51037 | 0 | 19 | Sporadic PD | M | 68 | 93% | 34 | 2014 | left upper arm | 12w→6w | 8/26/2019 | 4.29 | | 41 | 50199 | 1 | 20 | Healthy | M | 81 | 99% | 07 | 2012 | right arm | 6w | 6/7/2019 | 3.03 | | 42 | 50590
50112 | 0 | 20
21 | Sporadic PD
Healthy | M
F | 76
77 | 92%
92% | 27 | 2013
2012 | left upper arm
unspecified | 6w
12w→6w | 8/13/2019
7/5/2019 | 3.30
4.28 | | 44 | 51126 | 0 | 21 | Sporadic PD | F | 74 | 99% | 35 | 2015 | unspecified | 6w | 6/17/2019 | 3.42 | | 45 | 50192 | 2 | 22 | Healthy | M | 77 | 97% | | 2012 | nose | 6w | 6/25/2019 | 4.53 | | 46
47 | 51261
51152 | 2 | 22 23 | LRRK2 PD
Healthy | M
F | 74
74 | 92%
100% | 29 | 2017
2015 | right upper arm
left upper arm | 12w→6w
12w→6w | 8/22/2019
6/19/2019 | 2.78
2.94 | | 48* | 10124* | | 23 | GBA PD⁺ | F | 74 | 94% | | 2011 | right arm | 6w | 6/13/2019 | 6.04 | | 49 | 51030 | 2 2 | 24 | Healthy | F | 70
69 | 94%
98% | 21 | 2014
2016 | left arm | 6w | 7/18/2019 | 2.80
3.22 | | 50
51 | 51250
51093 | 0 | 24
25 | Sporadic PD
Healthy | F | 73 | 99% | 21 | 2015 | left upper arm
left upper arm | 6w
12w→6w | 7/18/2019
7/11/2019 | 2.75 | | 52 | 50864 | 0 | 25 | Sporadic PD | F | 73 | 98% | 34 | 2013 | left upper arm | 6w | 6/19/2019 | 3.48 | | 53
54 | 51254
10198 | | 26
26 | Healthy
GBA PD | M
M | 66
66 | 92%
98% | 38 | 2017
2012 | unspecified | 6w | 7/5/2019
7/5/2019 | 2.25 | | 55 | 51148 | 4 | 27 | Healthy | M | 61 | 90% | 36 | 2012 | right upper inner arm
left upper arm | 6w | 8/13/2019 | 2.40 | | 56 | 50640 | 4 | 27 | Sporadic PD | M | 66 | 93% | 21 | 2013 | upper arm | 6w | 8/13/2019 | 2.90 | | 57*
58 | 50634*
51243 | 4 | 28
28 | Healthy* Sporadic PD | F | 72
72 | 92%
90% | 47 | 2013
2016 | left upper arm
right thigh | 6w
12w→6w | 7/5/2019
8/22/2019 | 2.61
2.66 | | 59 | 51194 | 3 | 29 | Healthy | M | 80 | 99% | | 2015 | left arm | 6w | 6/11/2019 | 3.75 | | 60 | 51268 | 3 | 29 | Sporadic PD | M | 79 | 92% | 44 | 2017 | unspecified | 6w | 6/11/2019 | 2.70 | | 61
62 | 51123
50483 | 1 | 30
30 | Healthy
Sporadic PD | F | 54
56 | 92%
91% | 42 | 2015
2013 | left upper arm | 6w | 6/25/2019
6/25/2019 | 3.21
4.79 | | 63 | 51004 | 3 | 31 | Healthy | M | 54 | 98% | -,2 | 2014 | left upper arm | 12w→6w | 6/25/2019 | 3.09 | | 64 | 50963 | 3 | 31 | Sporadic PD | M | 54 | 99% | 24 | 2014 | left upper arm | 6w | 6/7/2019 | 3.67 | | 65
66 | 10130
50674 | 4 | 32
32 | Healthy
LRRK2 PD | M | 52
51 | 91% | 12 | 2011
2013 | left inner arm
right upper arm | 6w
6w | 6/11/2019
6/11/2019 | 2.52
4.23 | | 67 | 50598 | 2 | 33 | Healthy | M | 58 | 91% | | 2013 | left forearm | 6w | 7/30/2019 | 2.57 | | 68
69 | 50610 | 2 | 33 | Sporadic PD | M | 59
47 | 97%
98% | 28 | 2013
2015 | left upper arm | 6w | 6/25/2019 | 2.88 | | 69
70 | 51162
50492 | 1 | 34
34 | Healthy LRRK2 PD | M | 47
45 | 98%
91% | | 2015
2013 | left arm
left upper arm | 6w
12w→6w | 8/13/2019
8/22/2019 | 2.01
2.90 | | 71 | 51235 | 0 | 35 | Healthy | M | 68 | 98% | | 2016 | left arm | 6w | 8/9/2019 | 2.48 | | 72 | 51212 | 0 | 35 | Sporadic PD | M | 70 | 98%
92% | 28 | 2015 | left arm | 6w | 8/15/2019 | 3.08 | | 73
74 | 50191
50660 | | 36
36 | GBA PD | M | 61
65 | 92% | | 2012
2013 | right cheek
left upper arm | 6w
12w→6w | 7/22/2019
7/30/2019 | 6.10
5.78 | | 75 | 50105 | | 37 | Healthy | M | 76 | 90% | | 2012 | unspecified | 12w→6w | 7/22/2019 | 4.07 | | 76 | 51221
51274 | | 37
38 | GBA PD | M | 74
64 | 93% | 22 | 2016 | left upper arm | 6w | 6/25/2019 | 2.63 | | 78 | 51274 | | 38 | GBA PD | M | 65 | 93% | | 2018 | left upper arm | 6w | 8/13/2019 | 2.82 | | 79 | 50176 | | 39 | Healthy | M | 58 | | | 2012 | chin | 6w | 6/19/2019 | 3.16 | | 80
81 | 50880
50659 | 0 | 39
40 | GBA PD
Healthy | M | 59
64 | 93%
91% | 18 | 2013
2013 | upper arm
left upper arm | 6w
6w | 6/19/2019
7/31/2019 | 3.50
2.58 | | 82 | 51010 | 0 | 40 | LRRK2 PD | F | 63 | 94% | 18 | 2013 | left upper arm | 12w→6w | 8/26/2019 | 3.91 | | 83 | 50617 | 4 | 41 | Healthy | M | 53 | | | 2013 | right upper leg | 6w | 6/13/2019 | 2.79 | | 84 | 51176 | 3 | 41
42 | Sporadic PD | M
F | 53
52 | 98%
99% | 31 | 2015
2015 | left arm | 6w | 6/13/2019
8/15/2019 | 2.71 | | 85
86 | 51139
51187 | 3 | 42 | Healthy
Sporadic PD | F | 52
66 | 99% | 16 | 2015
2015 | left upper arm
left upper arm | 6w | 8/15/2019
8/26/2019 | 2.38
2.52 | | 87 | 50758 | 3 | 43 | Healthy | F | 78 | 91% | | 2013 | left upper arm | 6w | 6/13/2019 | 4.02 | | 88
89 | 51200
50174 | 3
2 | 43
44 | Sporadic PD
Healthy | F
M | 80
56 | 90%
98% | 79 | 2015
2012 | left arm
forehead | 6w
6w | 6/11/2019
6/17/2019 | 4.54
2.55 | | 90 | 50174 | 2 | 44 | Sporadic PD | M | 55 | 98% | 26 | 2012 | left upper arm | 6w | 6/17/2019 | 4.93 | | 91 | 50437 | | | Sporadic PD | F | 64 | 90% | 45 | 2019 | left upper arm | 6w | 7/11/2019 | 2.53 | | 92
93 | 51239 | | | Healthy | M
F | 67 | 99% | | 2019 | right arm | 6w | 7/31/2019 | 2.33 | | 93 | 51093
51148 | | | Healthy
Healthy | M | 77
65 | 99% | | 2019
2019 | left arm
upper arm | 6w | 6/19/2019
8/13/2019 | 3.08
2.21 | | 95 | 50492 | | | LRRK2 PD | M | 51 | 91% | | 2019 | left upper arm | 6w | 7/18/2019 | 3.55 | | 96 | 50626 | | | Sporadic PD | M | 70 | 97% | 43 | 2013 | unspecified | 6w | 9/3/2019 | 2.60 | Supplementary Table 1 | Information about the 96 cell lines from 91 donors used in the study. Columns left to right: a 2-digit ID mapping to a cell line from a unique skin biopsy; the biopsy donor; the cross-validation fold for healthy vs. PD prediction; ID for PD individual and matched healthy control; PD status; donor sex; donor age; an ancestry score from genotyping; the Unified Parkinson Disease Rating Scale, a clinical measure of PD severity; skin biopsy collection year; location where biopsy was acquired; cell expansion in 6-well ("6w") or from 12-well to 6-well format ("12w→6w"); date expanded cells were frozen; and doubling time during cell expansion in days, respectively. *: unconfirmed cell line (see Methods). | | | | Cross-validation | | | | | | | | |-------|--------------|------------|------------------|--------|--------|--------|--------|--------|--------|--------| | | | | set #1 | set #2 | set #3 | set #4 | set #5 | set #6 | set #7 | set#8 | | Batch | Plate layout | Cell lines | | | | | | | | | | | 1 | all 96 | test | ignore | ignore | ignore | ignore | train | train | train | | 1 | 2 | all 96 | ignore | train | train | train | test | ignore | ignore | ignore | | | 1 | all 96 | ignore | test | ignore | ignore | train | ignore | train | train | | 2 | 2 | all 96 | train | ignore | train | train | ignore | test | ignore | ignore | | | 1 | all 96 | ignore | ignore | test | ignore | train | train | ignore | train | | 3 | 2 | all 96 | train | train | ignore | train | ignore | ignore | test | ignore | | | 1 | all 96 | ignore | ignore | ignore | test | train | train | train | ignore | | 4 | 2 | all 96 | train | train | train | ignore | ignore | ignore | ignore | test | **Supplementary Table 2 | Cross-validation strategy for 96-way cell line classification.** For each of 8 cross-validation sets, both batch and plate layout were held out in the test set. | | | | Cross-validation | | | | | | | | |-------|--------------|---------------------|------------------|--------|--------|--------|--------|--------|--------|--------| | | | | set #1 | set #2 | set #3 | set #4 | set #5 | set #6 | set #7 | set#8 | | Batch | Plate layout | Cell lines | | | | | | | | | | | | 5 held-out biopsies | test | ignore | | 1 | remaining 91 lines | ignore | ignore | ignore | ignore | ignore | train | train | train | | | | 5 held-out biopsies | ignore | ignore | ignore | ignore | test | ignore | ignore | ignore | | 1 | 2 | remaining 91 lines | ignore | train | train | train | ignore | ignore | ignore | ignore | | | | 5 held-out biopsies | ignore | test | ignore | ignore | ignore | ignore | ignore | ignore | | | 1 | remaining 91 lines | ignore | ignore | ignore | ignore | train | ignore | train | train | | | | 5 held-out biopsies | ignore | ignore | ignore | ignore | ignore | test | ignore | ignore | | 2 | 2 | remaining 91 lines | train | ignore | train | train | ignore | ignore | ignore | ignore | | | | 5 held-out biopsies | ignore | ignore | test | ignore | ignore | ignore | ignore | ignore | | | 1 | remaining 91 lines | ignore | ignore | ignore | ignore | train | train | ignore | train | | | | 5 held-out biopsies | ignore | ignore | ignore | ignore | ignore | ignore | test | ignore | | 3 | 2 | remaining 91 lines | train | train | ignore | train | ignore | ignore | ignore | ignore | | | | 5 held-out biopsies | ignore | ignore | ignore | test | ignore | ignore | ignore | ignore | | | 1 | remaining 91 lines | ignore | ignore | ignore | ignore | train | train | train | ignore | | | | 5 held-out biopsies | ignore test | | 4 | 2 | remaining 91 lines | train | train | train | ignore | ignore | ignore | ignore | ignore | Supplementary Table 3 | Cross-validation strategy for 91-way biopsy donor classification. For each of 8 cross-validation sets, the test set consisted of cell lines from one of the two biopsies from the 5 individuals who donated two biopsies, while the train set consisted of cell lines from the complementary set of biopsies from these 5 individuals and the remaining 86 individuals who donated only a single biopsy. To avoid plate position biases as potential confounds, plate layout was also held out, and to assess model generalization to a test biopsy acquired in a new batch, batch was also held out. These 8 cross-validation sets were conducted twice, once holding out in the test sets the earlier set of skin biopsies from the 5 individuals who donated two biopsies (cell lines 08, 39, 51, 55, 70), and again holding out the later set (cell lines 91, 92, 93, 94, 95). | | | | | | Cross-validation | | | | | | |-----------|------------------------|----------|----------------|--------------|-----------------------------------|----------------|----------------|----------------|----------------|--| | | | | | | set #0 set #1 set #2 set #3 set # | | | | | | | Cell line | Disease state | Pair ID | Batch | Plate layout | | | | | | | | 25 | Healthy | 12 | all 4 | both | test | train | train | train | train | | | 26 | Sporadic PD | 12 | all 4 | both | test | train | train | train | train | | | 33 | Healthy | 16 | all 4 | both | test | train | train | train | train | | | 34 | Sporadic PD | 16 | all 4 | both | test | train | train | train | train | | | 39 | Healthy | 19 | all 4 | both | test | train | train | train | train | | | 40 | Sporadic PD | 19 | all 4 | both | test | train | train | train | train | | | 43 | Healthy | 21 | all 4 | both | test | train | train | train | train | | | 44 | Sporadic PD | 21 | all 4 | both | test | train | train | train | train | | | 51
52 | Healthy Sporadic PD | 25
25 | all 4 | both
both | test | train
train | train | train
train | train
train | | | 71 | Healthy | 35 | all 4 | both | test | train | train
train | train | train | | | 72 | Sporadic PD | 35 | all 4 | both | test | train | train | train | train | | | 81 | Healthy | 40 | all 4 | both | test | train | train | train | train | | | 82 | LRRK2 PD | 40 | all 4 | both | test | train | train | train | train | | | 19 | Healthy | 9 | all 4 | both | test | train | train | train | train | | | 20 | Sporadic PD | 9 | all 4 | both | test | train | train | train | train | | | 1 | Healthy | 0 | all 4 | both | train | test | train | train | train | | | 2 | LRRK2 PD | 0 | all 4 | both | train | test | train | train | train | | | 21 | Healthy | 10 | all 4 | both | train | test | train | train | train | | | 22 | Sporadic PD | 10 | all 4 | both | train | test | train | train | train | | | 35 | Healthy | 17 | all 4 | both | train | test | train | train | train | | | 36 | Sporadic PD | 17 | all 4 | both | train | test | train | train | train | | | 41 | Healthy | 20 | all 4 | both | train | test | train | train | train | | | 42 | Sporadic PD | 20 | all 4 | both | train | test | train | train | train | | | 61 | Healthy | 30 | all 4 | both | train | test | train | train | train | | | 62 | Sporadic PD | 30 | all 4 | both | train | test | train | train | train | | | 69 | Healthy LRRK2 PD | 34
34 | all 4 | both | train | test
test | train | train | train | | | 70
9 | | | all 4 | both | train | | train | train | train | | | | Healthy | 4 | all 4 | both | train | test | train | train | train | | | 10 | Sporadic PD | | all 4 | both | train | test | train | train | train | | | 3 4 | Healthy | 1 | all 4 | both
both | train | train | test | train | train | | | 29 | Sporadic PD | 14 | all 4 | | train | train | test | train | train | | | 30 | Healthy | 14 | all 4 | both | train | train | test | train | train | | | 31 | Sporadic PD Healthy | 15 | all 4 | both
both | train
train | train
train | test | train
train | train | | | 32 | Sporadic PD | 15 | all 4 | both | train | train | test | train | train | | | 45 | Healthy | 22 | all 4 | both | train | train | test | train | train | | | 46 | I RRK2 PD | 22 | all 4 | both | train | train | test | train | train | | | 49 | Healthy | 24 | all 4 | both | train | train | test | train | train | | | 50 | Sporadic PD | 24 | all 4 | both | train | train | test | train | train | | | 67 | Healthy | 33 | all 4 | both | train | train | test | train | train | | | 68 | Sporadic PD | 33 | all 4 | both | train | train | test | train | train | | | 89 | Healthy | 44 | all 4 | both | train | train | test | train | train | | | 90 | Sporadic PD | 44 | all 4 | both | train | train | test | train | train | | | 37 | Healthy | 18 | all 4 | both | train | train | train | test | train | | | 38 | LRRK2 PD | 18 | all 4 | both | train | train | train | test | train | | | 59 | Healthy | 29 | all 4 | both | train | train | train | test | train | | | 60 | Sporadic PD | 29 | all 4 | both | train | train | train | test | train | | | 63 | Healthy | 31 | all 4 | both | train | train | train | test | train | | | 64 | Sporadic PD | 31 | all 4 | both | train | train | train | test | train | | | 85 | Healthy
Sporadic PD | 42 | all 4
all 4 | both | train | train | train | test | train | | | 86
87 | Sporadic PD
Healthy | 42 | all 4 | both
both | train
train | train
train | train
train | test | train
train | | | 88 | Sporadic PD | 43 | all 4 | | | | | test | | | | 11 | Sporadic PD
Healthy | 43 | all 4 | both
both | train
train | train
train | train
train | test | train
train | | | 12 | Sporadic PD | 5 | all 4 | both | train | train | train | test | train | | | 17 | Healthy | 8 | all 4 | both | train | train | train | test | train | | | 18 | Sporadic PD | 8 | all 4 | both | train | train | train | test | train | | | 5 | Healthy | 2 | all 4 | both | train | train | train | train | test | | | 6 | Sporadic PD | 2 | all 4 | both | train | train | train | train | test | | | 55 | Healthy | 27 | all 4 | both | train | train | train | train | test | | | 56 | Sporadic PD | 27 | all 4 | both | train | train | train | train | test | | | 57* | Healthy* | 28 | all 4 | both | train | train | train | train | test | | | 58 | Sporadic PD | 28 | all 4 | both | train | train | train | train | test | | | 7 | Healthy | 3 | all 4 | both | train | train | train | train | test | | | 8 | Sporadic PD | 3 | all 4 | both | train | train | train | train | test | | | 65 | Healthy | 32 | all 4 | both | train | train | train | train | test | | | 66 | LRRK2 PD | 32 | all 4 | both | train | train | train | train | test | | | 83 | Healthy | 41 | all 4 | both | train | train | train | train | test | | | 84 | Sporadic PD | 41 | all 4 | both | train | train | train | train | test | | | 13 | Healthy | 6 | all 4 | both | train | train | train | train | test | | | 14 | Sporadic PD | 6 | all 4 | both | train | train | train | train | test | | | 15 | Healthy | 7 | all 4 | both | train | train | train | train | test | | | 16 | Sporadic PD | 7 | all 4 | both | train | train | train | train | test | | **Supplementary Table 4 | 5-fold Cross-validation strategy for healthy vs. PD classification.** A subset of 74 cell lines from 74 individuals (6 *LRRK2* PD and paired controls, and 31 sporadic PD and paired controls was divided into 5 cross-validation folds. For each of 5 cross-validation sets, one fold of cell lines was held out in the test set. *: unconfirmed cell line (see Methods). | cells_AreaShape_Compactness | cytoplasm_AreaShape_Solidity | nuclei_Granularity_11_ER | |--|--|--| | cells_AreaShape_Eccentricity | cytoplasm_AreaShape_Extent | nuclei_Granularity_8_ER | | cytoplasm_AreaShape_Compactness | cells_AreaShape_Solidity | nuclei_Granularity_7_ER | | cytoplasm_AreaShape_Eccentricity | | | | | cytoplasm_AreaShape_Zernike_6_4 | nuclei_Granularity_13_Mito | | cells_AreaShape_Zernike_8_4 | cytoplasm_AreaShape_Zernike_8_8 | | | | cells_AreaShape_Zernike_6_6 | nuclei_Granularity_14_DNA | | cells_Correlation_K_ER_RNA | cytoplasm_AreaShape_Zernike_6_6 | | | cytoplasm_Correlation_K_ER_RNA | | nuclei_Granularity_2_Mito | | cytoplasm_Correlation_K_ER_DNA | cytoplasm_Correlation_Correlation_Mito_ER | | | | cells_Correlation_Correlation_Mito_ER | nuclei_Granularity_4_Mito | | cells_Correlation_Overlap_DNA_ER | | | | | cytoplasm_Correlation_Manders_AGP_DNA | nuclei_Granularity_6_ER | | cells_Correlation_Overlap_ER_RNA | cytoplasm_Correlation_Manders_RNA_DNA | | | | cytoplasm_Correlation_Manders_Mito_DNA | nuclei_Granularity_8_Mito | | cells_Correlation_Overlap_Mito_ER | | | | cytoplasm_Correlation_Overlap_Mito_ER | cytoplasm_Correlation_RWC_DNA_AGP | nuclei_Granularity_8_RNA | | cells_Correlation_RWC_RNA_Mito | cytoplasm_Granularity_10_RNA | nuclei_Intensity_IntegratedIntensityEdge_E | | | | nuclei_Texture_Contrast_ER_10_02 | | cells_Granularity_6_AGP | cytoplasm_Granularity_1_AGP | | | cells_Granularity_7_AGP | cells_Granularity_1_AGP | nuclei_Intensity_IntegratedIntensityEdge_RN | | | | nuclei_Intensity_IntegratedIntensity_RNA | | cells_Intensity_IntegratedIntensity_Mito | cytoplasm_RadialDistribution_MeanFrac_AGP_1of4 | | | cytoplasm_Intensity_MassDisplacement_AGP | cytoplasm_RadialDistribution_MeanFrac_AGP_3of4 | nuclei_Intensity_IntegratedIntensity_ER | | cytoplasm_AreaShape_Area | - | • | | cytoplasm_Intensity_IntegratedIntensity_RNA | cytoplasm_RadialDistribution_MeanFrac_RNA_3of4 | nuclei_Neighbors_NumberOfNeighbors_ | | cells_AreaShape_MeanRadius | cells_Granularity_15_RNA | | | cells_AreaShape_MaximumRadius | | nuclei_Neighbors_SecondClosestDistance | | cytoplasm_Intensity_IntegratedIntensityEdge_Mito | cytoplasm_RadialDistribution_RadialCV_AGP_3of4 | | | cells_Intensity_IntegratedIntensityEdge_Mito | | nuclei_RadialDistribution_FracAtD_RNA_3 | | cytoplasm_Intensity_IntegratedIntensity_Mito | cytoplasm_RadialDistribution_RadialCV_RNA_2of4 | | | cells_AreaShape_Area | | nuclei RadialDistribution MeanFrac AGP 2 | | cytoplasm_Intensity_IntegratedIntensity_DNA | nuclei_AreaShape_Zernike_2_0 | | | cells_Intensity_IntegratedIntensity_RNA | | nuclei_RadialDistribution_MeanFrac_Mito_3 | | cytoplasm_Intensity_IntegratedIntensity_ER | nuclei_AreaShape_Zernike_4_2 | nuclei_Correlation_Correlation_DNA_Mit | | cells_Intensity_MassDisplacement_DNA | nuclei_AreaShape_Zernike_7_1 | nuclei RadialDistribution MeanFrac Mito 4 | | cens_intensity_wasspispiacement_bivA | nuclei_Al eachape_Zentike_r_1 | nuclei_vaulaiDistribution_wearii rac_witto_v | | cells_Neighbors_PercentTouching_5 | nuclei_Correlation_Correlation_DNA_RNA | nuclei_RadialDistribution_RadialCV_AGP_3 | | cells_Neighbors_PercentTouching_Adjacent | | | | cells_Neighbors_NumberOfNeighbors_5 | nuclei_Correlation_Correlation_ER_AGP | nuclei_RadialDistribution_RadialCV_ER_10 | | cells_Neighbors_NumberOfNeighbors_Adjacent | nuclei_Correlation_Correlation_Mito_AGP | | | | | nuclei_RadialDistribution_RadialCV_ER_3 | | cells_RadialDistribution_FracAtD_AGP_1of4 | nuclei_Correlation_Manders_AGP_DNA | nuclei_RadialDistribution_RadialCV_ER_2 | | | nuclei_Correlation_Manders_RNA_DNA | | | cells_RadialDistribution_MeanFrac_ER_3of4 | | nuclei_RadialDistribution_RadialCV_RNA_4 | | | nuclei_Correlation_Manders_Mito_ER | cells_RadialDistribution_RadialCV_RNA_3 | | cells_RadialDistribution_MeanFrac_RNA_4of4 | nuclei_Correlation_Manders_RNA_ER | | | | | nuclei_Texture_Correlation_AGP_10_01 | | | nuclei_Correlation_Overlap_DNA_AGP | nuclei_Texture_InfoMeas2_AGP_10_01 | | | | | Supplementary Table 5 | Most common important CellProfiler features grouped based on correlation. The top 100 most important CellProfiler features from Fig. 6a, clustered into 55 groups based on Pearson correlation. **Supplementary Fig. 1** | **Experiment design details for high-content screening.** Various donor demographics including (**a**) sex (male (M), female (F)) and (**b**) age for the two 96-well plate layouts, where each well contains cells from the cell line denoted by the two-digit label. **c**, Lasso variable selection for healthy vs. PD on donor, biopsy, cell line, and plate covariates reveals no significant biases. Distributions of additional cell line covariates including (**d**) percentage European ancestry from genotyping analysis, (**e**) biopsy collection year, (**f**) cell doubling times (Mann–Whitney U = 57.0, $p = 1.0 \times 10^{-2}$ for sporadic, U = 118.0, $p = 6.4 \times 10^{-1}$ for LRRK2 PD, and U = 193.5, p = 1.00 for GBA PD vs. healthy, respectively, ns: $p > 5.0 \times 10^{-2}$), (**g**) well-level cell count, and biopsy location, (**h**) arm or leg and (**i**) left or right. Error bars denote standard deviation. Supplementary Fig. 2 | Overview of near real-time image quality analysis and sample Cell Painting images of primary human fibroblasts. A Fiji (an ImageJ distribution) macro assesses the quality and consistency of the images sampled from a full 96-well plate. $\bf a$, Four random regions of interest (ROI) are cropped from images in each channel and in each well, and 96-well montages are constructed for viewing. A measurement of mean image intensity across the plate is reported for each plate montage. Next, the montage corresponding to the user-designated focus channel is inputted to a microscope image focus classifier which calculates a focus quality score for each image patch. For visualization, a color-coded overlay on top of the montage highlights regions that are in focus (red) or out of focus (blue). Scale bar: 50 μ m. $\bf b$, Sample images of one tile from the 5 Cell Painting channels. Scale bar: 100 μ m. **Supplementary Fig. 3 | Identification of individual cell lines in held-out batches and plate layouts at the well-level. a**, Confusion matrix, sorted by the diagonal, showing the test set well-level predicted and actual cell lines for each of 6 wells in each of 8 held-out batch and held-out plate layouts for the model in **Fig. 3c. b**, Test set well-level predicted rank, among 96 of the 6 wells in each of 8 held-out batch and held-out plate layouts for the model in **Fig. 3c**. Supplementary Fig. 4 | Preliminary evaluation of PD classification performance. Test set cell line–level PD classification for (a) all PD (n = 45 participants) and matched controls (n = 45 participants), (b) sporadic PD (n = 31) and matched controls (n = 31 participants), (c) LRRK2 PD (n = 6 participants) and matched controls (n = 6 participants), (d) GBA PD (n = 8 participants) and matched controls (n = 8 participants), and (e) GBA PD (n = 7 participants) and matched controls (n = 8 participants), excluding the unconfirmed GBA line (see Methods). In each case, for cross-validation, matched cell line pairs were randomly divided into a train half and a test half 8 times. Dashed line denotes chance performance. **Supplementary Fig. 5 | Impact of individual Cell Painting channels on PD classification.** The same logistic regression model with tile deep embeddings from **Fig. 5b** evaluated with a subset of the deep embedding dimensions corresponding to a subset of the 5 channels. Black bars denote the mean across all cross-validation sets. Grid line spacing denotes a doubling of the odds of correctly ranking a random healthy control and PD cell line. Dashed line denotes chance performance. Supplementary Fig. 6 | Estimating threshold for number of top-ranked CellProfiler features required for PD classification. Performance of the random forest classifier as a function of number of top-ranked features used for training, evaluated in increments of 20 features. The dashed line represents the threshold selected for subsequent analyses.